Geophysical Constraints on Geodynamic Processes at Convergent Margins: a Global Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(2019): Upper-Mantle Density Structure in the Philippine Sea and Adjacent Region and Its Relation to Tectonics
Originally published as: Liang, Q., Chen, C., Kaban, M. K., Thomas, M. (2019): Upper-mantle density structure in the Philippine Sea and adjacent region and its relation to tectonics. - Geophysical Journal International, 219, 2, pp. 945—957 DOI: http://doi.org/10.1093/gji/ggz335 This article has been accepted for publication in Geophysical Journal International ©The Author(s) 2019. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Geophys. J. Int. (2019) 219, 945–957 doi: 10.1093/gji/ggz335 Advance Access publication 2019 July 30 GJI Gravity, Geodesy and Tides Upper-mantle density structure in the Philippine Sea and adjacent region and its relation to tectonics Downloaded from https://academic.oup.com/gji/article-abstract/219/2/945/5541063 by Geoforschungszentrum Potsdam user on 06 September 2019 Qing Liang,1,2 Chao Chen,1,2 Mikhail K. Kaban2,4 and Maik Thomas2,3 1Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, P.R. China. E-mail: [email protected]; [email protected] 2Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam 14473,Germany 3Institute of Meteorology, Freie Universitat¨ Berlin, Berlin 12165,Germany 4Schmidt Institute of Physics of the Earth RAS, Moscow 123242, Russia Accepted 2019 July 20. Received 2019 June 14; in original form 2019 February 27 SUMMARY The evolution of the Philippine Sea Plate (PSP) since Jurassic is one of the key issues in the dynamics of lithosphere and mantle. The related studies benefited mostly from seismic tomography which provides velocity structures in the upper mantle. -
Marie Tharp: Mapping the Seafloor of Back-Arc Basins, Mid-Ocean Ridges, Continental Margins & Plate Boundaries Vienna (Austria), EGU 2020-3676, 7/5/2020
A Tribute to Marie Tharp: Mapping the seafloor of back-arc basins, mid-ocean ridges, continental margins & plate boundaries Vienna (Austria), EGU 2020-3676, 7/5/2020 Eulàlia Gràcia, Sara Martínez Loriente, Susana Diez, Laura Gómez de la Peña*, Cristina S. Serra, Rafael Bartolome, Valentí Sallarès, Claudio Lo Iacono, Hector Perea**, Roger Urgeles, Ingo Grevemeyer* and Cesar R. Ranero B-CSI at Institut de Ciències del Mar – CSIC, Barcelona *GEOMAR, Kiel, Germany **Universidad Complutense de Madrid, Facultad de Geologia, Madrid 1 The first steps of Marie Tharp • Marie Tharp, July 30, 1920 (Ypsilanti, Michigan) – August 23, 2006 (Nyack, New York) was an American geologist & oceano- graphic cartographer who, in partnership with Bruce Heezen, created the first scientific map of the Atlantic Ocean floor. • Tharp's work revealed the detailed topography and multi-dimensional geographical landscape of the ocean bottom. • Her work revealed the presence of a continuous rift-valley along the axis Fig. 1. A young Marie in the field helping his father, William E. of the Mid- Atlantic Ridge, causing a Tharp, a soil surveyor for United States Dpt. of Agriculture. Marie often paradigm shift in Earth Sciences that helped him with this task, which gave her an introduction to map- led to acceptance of Plate Tectonics making. From book “Soundings” by Hali Felt (2012). and Continental Drift. 2 Working at Columbia University Lamont Geological Observatory (NY) Fig. 2. Marie Fig. 3. at streets of Bruce New York, Heezen after she looking at a was hired to fathogram work by Dr. being Maurice produced by Ewing’, at an early the newly- echosounder formed (year 1940). -
The Sub-Crustal Stress Field in the Taiwan Region
Terr. Atmos. Ocean. Sci., Vol. 26, No. 3, 261-268, June 2015 doi: 10.3319/TAO.2014.12.04.01(T) The Sub-Crustal Stress Field in the Taiwan Region Robert Tenzer1, * and Mehdi Eshagh 2 1 The Key Laboratory of Geospace Environment and Geodesy, School of Geodesy and Geomatics, Wuhan University, Wuhan, China 2 Department of Engineering Science, University West, Trollhättan, Sweden Received 22 May 2014, revised 3 December 2014, accepted 4 December 2014 ABSTRACT We investigate the sub-crustal stress in the Taiwan region. A tectonic configuration in this region is dominated by a col- lision between the Philippine oceanic plate and the Eurasian continental margin. The horizontal components of the sub-crustal stress are computed based on the modified Runcorn’s formulae in terms of the stress function with a subsequent numerical differentiation. This modification increases the (degree-dependent) convergence domain of the asymptotically-convergent series and consequently allows evaluating the stress components to a spectral resolution, which is compatible with currently available global crustal models. Moreover, the solution to the Vening Meinesz-Moritz’s (VMM) inverse isostasy problem is explicitly incorporated in the stress function definition. The sub-crustal stress is then computed for a variable Moho geometry, instead of assuming only a constant Moho depth. The regional results reveal that the Philippine plate subduction underneath the Eurasian continental margin generates the shear sub-crustal stress along the Ryukyu Trench. Some stress anomalies asso- ciated with this subduction are also detected along both sides of the Okinawa Trough. A tensional stress along this divergent tectonic plate boundary is attributed to a back-arc rifting. -
Visualization of the Geophysical Settings in the Philippine Sea Margins by Means of GMT and ISC Data
Central European Journal of Geography and Sustainable Development 2020, Volume 2, Issue 1, Pages: 5-15 ISSN 2668-4322, ISSN-L 2668-4322 https://doi.org/10.47246/CEJGSD.2020.2.1.1 Visualization of the geophysical settings in the Philippine Sea margins by means of GMT and ISC data Polina Lemenkova* Ocean University of China, College of Marine Geo-sciences, 238 Songling Rd, Laoshan, 266100, Qingdao, Shandong, China; [email protected] Received: 22 February 2020; Revised: 12 March 2020; Accepted: 20 March 2020; Published online: 25 March 2020 _________________________________________________________________________________________________________________________ Abstract: The presented research aimed to perform geophysical modelling (gravity and geoid) and to evaluate the spatio-temporal variation of the marine geological data (distribution and depth of earthquakes) using combination of the Generic Mapping Tools (GMT) and available sources from the International Seismological Centre (ISC-EHB) that produce data on earthquakes as part of seismic survey and regional research projects. The target study area is a Philippine Sea basin (PSB) with two focused marginal areas: Philippine Trench and Mariana Trench, two hadal trenches located in the places of the tectonic plates subduction. Marine free-air gravity anomaly in the PSP shows higher values (>80 mGal) of the gravity fields structure at the volcanic areas and Philippine archipelago. Current study presented comparative geophysical analysis, and mapping free-air gravity and geoid in the Philippine Sea basin area. As a result of this study, the average level of earthquakes located in the Philippine Trench and Mariana Trench areas were compared, and those located in the Philippine archipelago are determined to be in the souther-western part (area of west Mindanao, south-west Visayas islands), while Luzon Islands shown shallower located earthquakes. -
Active Continental Margin
Encyclopedia of Marine Geosciences DOI 10.1007/978-94-007-6644-0_102-2 # Springer Science+Business Media Dordrecht 2014 Active Continental Margin Serge Lallemand* Géosciences Montpellier, University of Montpellier, Montpellier, France Synonyms Convergent boundary; Convergent margin; Destructive margin; Ocean-continent subduction; Oceanic subduction zone; Subduction zone Definition An active continental margin refers to the submerged edge of a continent overriding an oceanic lithosphere at a convergent plate boundary by opposition with a passive continental margin which is the remaining scar at the edge of a continent following continental break-up. The term “active” stresses the importance of the tectonic activity (seismicity, volcanism, mountain building) associated with plate convergence along that boundary. Today, people typically refer to a “subduction zone” rather than an “active margin.” Generalities Active continental margins, i.e., when an oceanic plate subducts beneath a continent, represent about two-thirds of the modern convergent margins. Their cumulated length has been estimated to 45,000 km (Lallemand et al., 2005). Most of them are located in the circum-Pacific (Japan, Kurils, Aleutians, and North, Middle, and South America), Southeast Asia (Ryukyus, Philippines, New Guinea), Indian Ocean (Java, Sumatra, Andaman, Makran), Mediterranean region (Aegea, Cala- bria), or Antilles. They are generally “active” over tens (Tonga, Mariana) or hundreds (Japan, South America) of millions of years. This longevity has consequences on their internal structure, especially in terms of continental growth by tectonic accretion of oceanic terranes, or by arc magmatism, but also sometimes in terms of continental consumption by tectonic erosion. Morphology A continental margin generally extends from the coast down to the abyssal plain (see Fig. -
Contrasting Morphological Trends of Islands in Central Philippines: Speculation on Their Origin
The Island Arc (2000) 9, 627–637 Thematic Article Contrasting morphological trends of islands in Central Philippines: Speculation on their origin GRACIANO P. YUMUL JR,1* CARLA B. DIMALANTA,1,2 RODOLFO A. TAMAYO JR 1,3 AND JENNY ANNE L. BARRETTO1 1Rushurgent Working Group, National Institute of Geological Sciences, College of Science, University of the Philippines, Diliman, 1101, Quezon City The Philippines, (email: [email protected]), 2Ocean Research Institute, University of Tokyo, Tokyo, Japan, 3UMR 6538 Domaines Océaniques, Université de Bretagne Occidentale, Brest, France Abstract The Palawan microcontinental block collided with the Philippine Mobile Belt in the Central Philippine region resulting in the counterclockwise rotation of Mindoro– Marinduque and clockwise rotation of Panay. The collision also brought about the clock- wise rotation of north-east Negros, Cebu, north-west Masbate and Bohol (collectively called the Western Visayan block), resulting into their present-day northeast–southwest trend. This suggests a far more dramatic role of the collision than was previously recog- nized. Furthermore, the south-east Sulu Sea sub-basin is inferred to have also undergone collision-related clockwise rotation which can account for the observed east-west trending magnetic lineations in the basin. Aside from explaining the contrasting morphological trends of the different islands in Central Philippines, the rotation can also explain, albeit in a different way, how the belts of sedimentary basins, ophiolites and arcs in Panay and Negros can extend to Northern Luzon. Published paleomagnetic data suggest that the collision-related rotation commenced during the early to middle Miocene and had ceased by the late Miocene. -
An Evaporite-Bearing Accretionary Complex in the Northern Front of The
PUBLICATIONS Tectonics RESEARCH ARTICLE An evaporite-bearing accretionary complex in the northern 10.1002/2016TC004414 front of the Betic-Rif orogen Special Section: Fernando Pérez-Valera1,2 , Mario Sánchez-Gómez1,3 , Alberto Pérez-López4,5 , fi Orogenic cycles: from eld and Luis Alfonso Pérez-Valera1 observations to global geodynamics 1Centro de Estudios Avanzados en Ciencias de la Tierra (Universidad de Jaén), Jaén, Spain, 2Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Alicante, Spain, 3Departamento de Geología, Facultad de Ciencias Key Points: Experimentales (Universidad de Jaén), Jaén, Spain, 4Departamento de Estratigrafía y Paleontología, Facultad de Ciencias • Evaporite-bearing units form an (Universidad de Granada), Granada, Spain, 5Instituto Andaluz de Ciencias de la Tierra (CSIC-Universidad de Granada), accretional complex in Betics Armilla, Spain north end • Evaporites display a suite of ductile structures with coherent kinematics • Kinematics indicate westward motion, Abstract The Guadalquivir Accretionary Complex forms a largely oblique prism at the northern edge of with subordinate N-S contraction the Betic-Rif orogen, where Miocene sediments plus allochthonous evaporite-bearing units were accreted during the displacement of the Alborán Domain toward the west. Traditional interpretations end the tectonic structuring of the Betic Cordillera at the present topographic front, beyond which gravitational and/or Correspondence to: diapiric processes would predominate. However, this study shows pervasive tectonic deformation in the F. Pérez-Valera, outer prism with coherent oblique shortening kinematics, which is achieved through an alternation of [email protected] roughly N-S arcuate thrust systems connected by E-W transfer fault zones. These structures accord well with the geophysical models that propose westward rollback subduction. -
Gondwana Breakup Via Double-Saloon-Door Rifting and Seafloor Spreading in a Backarc Basin During Subduction Rollback
Available online at www.sciencedirect.com Tectonophysics 445 (2007) 245–272 www.elsevier.com/locate/tecto Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback A.K. Martin Repsol YPF Exploración, Al Fattan Plaza, PO Box 35700, Dubai, United Arab Emirates Received 2 February 2007; received in revised form 4 July 2007; accepted 21 August 2007 Available online 28 August 2007 Abstract A model has been developed where two arc-parallel rifts propagate in opposite directions from an initial central location during backarc seafloor spreading and subduction rollback. The resultant geometry causes pairs of terranes to simultaneously rotate clockwise and counterclockwise like the motion of double-saloon-doors about their hinges. As movement proceeds and the two terranes rotate, a gap begins to extend between them, where a third rift initiates and propagates in the opposite direction to subduction rollback. Observations from the Oligocene to Recent Western Mediterranean, the Miocene to Recent Carpathians, the Miocene to Recent Aegean and the Oligocene to Recent Caribbean point to a two-stage process. Initially, pairs of terranes comprising a pre-existing retro-arc fold thrust belt and magmatic arc rotate about poles and accrete to adjacent continents. Terrane docking reduces the width of the subduction zone, leading to a second phase during which subduction to strike-slip transitions initiate. The clockwise rotated terrane is caught up in a dextral strike-slip zone, whereas the counterclockwise rotated terrane is entrained in a sinistral strike-slip fault system. The likely driving force is a pair of rotational torques caused by slab sinking and rollback of a curved subduction hingeline. -
Polyphase Tectonic Evolution of Fore-Arc Basin Related to STEP Fault As Revealed by Seismic Reflection Data from the Alboran Sea (W-Mediterranean) E
Polyphase Tectonic Evolution of Fore-Arc Basin Related to STEP Fault as Revealed by Seismic Reflection Data From the Alboran Sea (W-Mediterranean) E. d’Acremont, M. Lafosse, A. Rabaute, G. Teurquety, D. Do Couto, G. Ercilla, C. Juan, B. Mercier Lépinay, S. Lafuerza, J. Galindo-zaldivar, et al. To cite this version: E. d’Acremont, M. Lafosse, A. Rabaute, G. Teurquety, D. Do Couto, et al.. Polyphase Tectonic Evolution of Fore-Arc Basin Related to STEP Fault as Revealed by Seismic Reflection Data From the Alboran Sea (W-Mediterranean). Tectonics, American Geophysical Union (AGU), 2020, 39 (3), 10.1029/2019TC005885. hal-03004274 HAL Id: hal-03004274 https://hal.archives-ouvertes.fr/hal-03004274 Submitted on 15 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Polyphase Tectonic Evolution of Fore‐Arc Basin Related 10.1029/2019TC005885 to STEP Fault as Revealed by Seismic Reflection Data Key Points: ‐ • The reactivation of the Subduction From the Alboran Sea (W Mediterranean) Tear Edge Propagator fault zone on E. d'Acremont1 , M. Lafosse1 , A. Rabaute1 , G. Teurquety1,2, D. Do Couto1, G. Ercilla3, the southern edge of the Alboran 3 4 1 5,6 3 Domain forms the South Alboran C. -
2014 Newsletter Draft
DECEMBER 2014 ISSUE NO.8 Earth & Environmental Sciences A letter from the chair.... Dear friends, students, and alumni of Earth and Environmental Sciences, I wish you the warmest of holiday greetings. The EES department continues to be a vibrant academic community of highly talented faculty, staff, and students...albeit with change. Professor Bruce Hargreaves is set to retire after 38 years at Lehigh. We all wish Bruce and his family good health and much success for years to come. EES achievements in 2014 made it difficult to select what to highlight in the following pages. Noteworthy were the election of Professor Ken Kodama as a Fellow of the American Association for the Advancement of Science, the awarding of the Christian and Mary Linback award for distinguished teaching to Professor Frank Pazzaglia, and the selection of EES graduate student Helen Malenda as a National Science Foundation Fellow. The newsletter also gives me an opportunity to acknowledge the generosity of our alumni who have given their time to share their career experiences with our students or their wealth to EES to embellish the educational experiences we can provide. For many earth and environmental scientists, a field setting always stirs emotions, provides awe and wonder, and inspires our curiosity. The field setting also provides a strong social learning environment where professor-student and peer-to-peer relations flourish. Inspirational field trips and summer field camp provides students with the opportunity to discover the breadth and scale of the many processes that have shaped the Earth. Thanks to the generosity of the Chevron Corporation and Chevron-EES alumni our field programs got a boost in 2014. -
The Geologic Record of the Antarctic Ice Sheet from Drilling, Coring and Seismic Studies
Direttore Enzo Boschi Comitato di Redazione Cesidio Bianchi Tecnologia Geofisica Rodolfo Console Sismologia Giorgiana De Franceschi Relazioni Sole-Terra Leonardo Sagnotti Geomagnetismo Giancarlo Scalera Geodinamica Ufficio Editoriale Francesca Di Stefano Istituto Nazionale di Geofisica e Vulcanologia Via di Vigna Murata, 605 00143 Roma Tel. (06) 51860468 Telefax: (06) 51860507 e-mail: [email protected] Extended Abstracts for the International ANTOSTRAT Symposium on THE GEOLOGIC RECORD OF THE ANTARCTIC ICE SHEET FROM DRILLING, CORING AND SEISMIC STUDIES “Ettore Majorana” Foundation and Centre for Scientific Culture, Erice, Italy, September 8-14, 2001 Edited by Fabio Florindo and Alan K. Cooper Conveners of the symposium (ANTOSTRAT Steering Committee) A. Cooper P. Barker P. Barrett G. Brancolini I. Goodwin Y. Kristoffersen R. Oglesby P. O’Brien Directors of the symposium A. Cooper F. Florindo A. Meloni Director of the School E. Boschi Director of the Center A. Zichichi Contents Foreword.............................................................................................................................................................IX ********** Carbonate Diagenesis of the Cenozoic Sedimentary Successions Recovered at the CRP-1, 2 and 3 Drillsites, Ross Sea, Antarctica. An Overview F.S. Aghib, M. Ripamonti and G. Riva...........................................................................................................1 Late Quaternary Fluctuations in the Antarctic Ice Sheet J.B. Anderson, S.S. Shipp, A.L. Lowe, J.W. Wellner -
A Reconstruction of the Depositional History and Palaeoenvironment of the Plio-Pleistocene of Northeast Iceland
FACULTY OF SCIENCES A reconstruction of the depositional history and palaeoenvironment of the Plio-Pleistocene of northeast Iceland A combined terrestrial and marine palynological approach Koen Verhoeven Thesis submitted in partial fulfilment to achieve the degree of Doctor in Sciences, Geology Academic year 2011-2012 Ghent University Faculty of Sciences, Department of Geology and Soil Sciences Research Unit Palaeontology Krijgslaan 281, S8, WE 13, B-9000 Ghent, Belgium Promotor: Prof. Dr. Stephen Louwye Co-promotor: Prof. Dr. Jacques Verniers Members of the reading committee: 1. Prof. dr. Jacques Verniers (Ghent University) 2. Prof. dr. Jón Eiríksson (University of Iceland; University of Copenhagen, Denmark) 3. Prof. dr. David Van Rooij (Ghent University) 4. Dr. Stijn De Schepper (University of Bergen, Norway) Members of the examination committee: 1. Prof. dr. Stephen Louwye (Ghent University) – Promotor 2. Prof. dr. Jacques Verniers (Ghent University) – co-promotor 3. Prof. dr. Peter Van den haute (Ghent University) – chairman 4. Prof. dr. David Van Rooij (Ghent University) 5. Dr. Jan De Coninck (Ghent University) 6. Prof. dr. Etienne Steurbaut (Royal Institute for Natural Sciences; Catholique University of Leuven) 7. Prof. dr. Jón Eiríksson (University of Iceland; University of Copenhagen, Denmark) 8. Dr. Stijn De Schepper (University of Bergen, Norway) Public thesis defence: Thursday, December 20th 2012 at 4.00 p.m., Ghent University, Auditorium A3, S9, Krijgslaan 281, 9000 Ghent To refer to this thesis: Verhoeven, K. 2012. A reconstruction of the depositional history and plaeoenvironment of northeast Iceland: a combined terrestrial and marine palynological approach. PhD thesis, Ghent University, Belgium, 192 pp. The autor and the promotor give the authorization to consult and copy parts of this work for personal use only.