Are Mima-Like Mounds the Consequence of Long-Term Stability of Vegetation Spatial Patterning?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2013 Draft Mazama Pocket Gopher Status Update and Recovery Plan
DRAFT Mazama Pocket Gopher Status Update and Recovery Plan Derek W. Stinson Washington Department of Fish and Wildlife Wildlife Program 600 Capitol Way N Olympia, Washington January 2013 In 1990, the Washington Wildlife Commission adopted procedures for listing and de-listing species as endangered, threatened, or sensitive and for writing recovery and management plans for listed species (WAC 232-12-297, Appendix A). The procedures, developed by a group of citizens, interest groups, and state and federal agencies, require preparation of recovery plans for species listed as threatened or endangered. Recovery, as defined by the U.S. Fish and Wildlife Service, is the process by which the decline of an endangered or threatened species is arrested or reversed, and threats to its survival are neutralized, so that its long-term survival in nature can be ensured. This is the Draft Washington State Status Update and Recovery Plan for the Mazama Pocket Gopher. It summarizes what is known of the historical and current distribution and abundance of the Mazama pocket gopher in Washington and describes factors affecting known populations and its habitat. It prescribes strategies to recover the species, such as protecting populations and existing habitat, evaluating and restoring habitat, and initiating research and cooperative programs. Target population objectives and other criteria for down-listing to state Sensitive are identified. As part of the State’s listing and recovery procedures, the draft recovery plan is available for a 90-day public comment period. Please submit written comments on this report by 19 April 2013 via e-mail to: [email protected], or by mail to: Endangered Species Section Washington Department of Fish and Wildlife 600 Capitol Way North Olympia, WA 98501-1091 This report should be cited as: Stinson, D. -
Malde, 1964). in the Present Status of North Texas 10,000 Years Ago (Kupsch, 1960)
Ritchie, 1953; Malde, 1964). In the Present Status of North Texas 10,000 years ago (Kupsch, 1960). The Central Valley of California, along the Origin Theories retreat was followed by a warming base of the Sierra Nevada Mountains, trend which lasted from about 8,000 Although a myriad of hypotheses the Hydrostatic Pressure Theory is B.C.to the beginning of the Christian have been projected concerning mima popular (Nikiforoff, 1941; Retzer, era (Dix, 1964) and is recognized as mounds in north Texas, no specific 1945). A recent study of landscape the Hypsithermal period (Deevy and theory of mima mound formation is features of the Texas Gulf Coast by Flint, 1957). During the Hypsithermal commonly accepted.’ Theories of Aronow (1968) resulted in a theory of period, the deciduous forest retreated erosion and accumulation are “Landscape Deterioration.” eastward and grasslands occupied the currently the most widely accepted. The Patterned Ground Theory is vacated area. Some members of the The erosional theory suggests that the based on the concept that a network forest flora, especially grasses, removal of the intermound area by of polygonal-fissured ice could have withstood the climatic change. These running water and wind has left the developed on the landscape early in species survived, reproduced, and mounds as essentially residual forms the last ice recession. As the landscape integrated with the grassland flora (Featherman, 1872; Holland et al., began to thaw, the meltwater removed (Dix, 1964). Gleason (1923) noted 1952; Goebel, 1971). Goebel (1971) the glacial till from around the still that the three most important grass postulated that mima mounds in north frozen hemispheroidal cores of each genera Texas primarily result from a low (Andropogon, Sorghas trum, polygon. -
Soil Morphological Characteristics of Prairie Mounds in the Forested Region of South-Central United States
Soil morphological characteristics of prairie mounds in the forested region of south-central United States Brad Lee A and Brian Carter B APlant and Soil Sciences Department, University of Kentucky, Lexington, KY 40546, Email [email protected] BPlant and Soil Sciences Department, Oklahoma State University, Stillwater, OK 74078, Email [email protected] Abstract Prairie mounds are common in the prairie islands of the forested regions of the south-central United States, however their origin is not well understood. A topographic survey and pedon investigation of a mound and intermound area was conducted in a grassed field of prairie mounds 15 – 25 m in diameter and ~ 1 m. Both soils contain three parent materials: loess over an alluvial silty clay paleosol underlain by weathered shale. The mounded soil loess thickness is ~1.5 m while the loess in the intermound area is ~0.5 m thick. Fragic soil properties (dense, brittle, silt coats above dense horizon) are present in the loess immediately above the paleosol contact. Crayfish ( Cambarus spp .) chimneys in the intermound and abundant gopher burrows (Geomys spp .) above the fragic horizon in the mound mound and loess of the intermound soil indicate the soils across the field are actively bioturbated. Depletions near the surface of the intermound soil indicate a seasonally high water table. Relict crayfish krotavinas in the paleosol under the mound and active crayfish burrows in intermound areas suggest the entire plain was previously bioturbated by crayfish. Bioturbation by gophers appears to be more recent and associated with the loess deposit. Key Words Prairie pimples, pimpled plains, mima mounds, Arkansas River valley. -
2. Desertification of the Mesopotamian Plain
Journal of Earth Sciences and Geotechnical Engineering, Vol.10, No.4, 2020, 125-142 ISSN: 1792-9040 (print version), 1792-9660 (online) Scientific Press International Limited Desertification and Salinization of the Mesopotamian Plain: A Critical Review Varoujan K. Sissakian1,2, Nadhir Al-Ansari3, Nasrat Adamo4, Mukhalad Abdullah5 and Jan Laue6 Abstract Most of the Mesopotamian Plain is covered by Quaternary sediments among which the flood plain sediments of the Tigris and Euphrates rivers are the most dominant parts. Aeolian sediments; however, also cover considerable areas at different parts of the plain in forms of sand dunes, sand sheets and Nebkhas. The dunes are the most common form and they are creeping as well as sand sheets in vast areas causing desertification. The main reasons causing this is climate change, abandoning of agricultural areas. Salinization is another significant problem in the plain whereby the affected areas are growing in size and the concentration of the salt in the soil, as well as the groundwater is increasing rapidly. The increase in salinization is due to miss- management of water resources, and the increasing salinity of the surface and ground water which due to the use of irrigation water supplied from Al-Tharthar Depression (lake) and the Main Outfall Drain. Keywords: Desertification, Sand dunes, Groundwater, Salinization, Solonization. 1 Lecturer, University of Kurdistan Hewler. 2 Private Consultant Geologist, Erbil. 3 Professor, Water Resource Engineering, Lulea University of Technology, Sweden. 4 Consultant Dam Engineer, Sweden. 5 Private Engineer, Baghdad, Iraq. 6 Professor, Water Resource Engineering, Lulea University of Technology, Sweden. Article Info: Received: March 10, 2020. -
Rose-Marcella-Thesis-2020.Pdf
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Nebkha Morphology, Distribution and Stability Black Rock Playa, Nevada A thesis submitted in partial fulfillment of the requirements For the degree of Master of Arts in Geography By Marcella Rose December 2019 The thesis of Marcella Rose is approved: _______________________________________ _____________ Dr. Julie Laity Date _______________________________________ _____________ Dr. Thomas Farr Date _______________________________________ _____________ Dr. Amalie Orme, Chair Date California State University, Northridge ii Acknowledgements Dr. Orme, I really don’t think that there is a sufficient combination of words that exist to properly express the immense amount of gratitude I feel for everything that you have done for me. This college education changed my life for the better and I hope you realize what a significant role you were within that experience. I am thankful that not only did I get a great professor, but also a friend. Dr. Laity, thank you so much for having faith in me and for taking me on as one of your last students to advise. But most of all, thank you for pushing me to be better – I needed that. Dr. Farr, I was so excited during DEVELOP that you accepted to be a part of my committee. It was a pleasure to work with you within the Black Rock Playa research team but then to also take our research a step further for this graduate thesis. I would also like to thank the staff at the Bureau of Land Management, Winnemucca: Dr. Mark E. Hall, Field Manager of the Black Rock Field Office; Shane Garside, Black Rock Station Manager/ Outdoor Recreation Planner; Brian McMillan, Rangeland Management Technician; and Braydon Gaard, Interim Outdoor Recreation Planner. -
Small-Stone Content of Mima Mounds of the Columbia Plateau and Rocky Mountain Regions: Implications for Mound Origin
Great Basin Naturalist Volume 47 Number 4 Article 10 10-31-1987 Small-stone content of Mima mounds of the Columbia Plateau and Rocky Mountain regions: implications for mound origin George W. Cox San Diego State University Christopher G. Gakahu Moi University, Eldoret, Kenya Douglas W. Allen San Diego State University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Cox, George W.; Gakahu, Christopher G.; and Allen, Douglas W. (1987) "Small-stone content of Mima mounds of the Columbia Plateau and Rocky Mountain regions: implications for mound origin," Great Basin Naturalist: Vol. 47 : No. 4 , Article 10. Available at: https://scholarsarchive.byu.edu/gbn/vol47/iss4/10 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. SMALL-STONE CONTENT OF MIMA MOUNDS OF THE COLUMBIA PLATEAU AND ROCKY MOUNTAIN REGIONS: IMPLICATIONS FOR MOUND ORIGIN George W. Cox', Christopher G. Gakalui", and Douglas W. Allen' Abstr.\ct —Mima moundfields were investigated at the Lawrence Memorial Grassland Preserve, located on the Columbia Plateau in southern Wasco County, Oregon, and at three locations in the San Luis Valley and Sangre de Cristo Mountains, southern Colorado, to test the alternative hypotheses of mound origin by erosion, frost action, and soil translocation by geomyid pocket gophers. The concentrations of two size classes of small stones, gravel (8-15 mm diameter) and pebbles (15-50 mm diameter), were sampled along mound-to-intermound transects and at different depths within the mounds. -
Range Managem Ent
September, 1960 Journal of Volume 13, Number 5 RANGE MANAGEM ENT site, an opening in the ponderosa Effect of Mima-Type Microrelief on pine forest, was dominated by big sagebrush (Artemisia triden- Herbage Production of Five Seeded tutu) before seeding. Soil parent material is sandstone. Grasses in Western Colorado1 The sagebrush was removed WILLIAM J. McGINNIES with a brushland plow in 1949. One-tenth-acre p 1 o t s w e r e Range Conservationist, Crops Research Division, Agri- seeded by the Rocky Mountain cultural Research Service, U. S. Department of Agri- Forest and Range Experiment . culture, Fort Collins, Colorado Station, U. S. Forest Service, in 1949, 1950, 1952, and 1953 to in- Mima-type microrelief h a s the mounds vary in height from termediate wheatgrass (Agro- been commonly observed in the less than a foot to several feet pyron intermedium), c r e s t e d treeless areas of the western and in diameter from 15 to 25 United States. This microrelief feet; the diameter is approxi- wheatgrass (A. desertorum), is characterized by low mounds mately equal to the territory of smooth brome (Bromus iner- or soil pimples, commonly called a pocket gopher. The mounds mis), Russian wildrye (E Zymus “Mima mounds” after the Mima may be closely or widely spaced. junceus), and big bluegrass (Pea Prairie in western Washington, The presence of Mima-type umplu). Some light grazing by where they were described by microrelief in Colorado has been cattle and horses had been per- Dalquest and Scheffer, (1942). reported by Scheffer, (1958). mitted in recent years, but the Some contend that the Mima Dalquest and Scheffer (1942) re- area was protected during the ported that in Washington her- mounds are a result of physical first few years following plant- actions of ice wedges and erosion bage production on top of Mima ing of the grasses. -
Change in Characteristics of Soil Carbon and Nitrogen During the Succession of Nitraria Tangutorum in an Arid Desert Area
sustainability Article Change in Characteristics of Soil Carbon and Nitrogen during the Succession of Nitraria Tangutorum in an Arid Desert Area Xinyou Wang 1,2,3, Quanlin Ma 2,*, Hujia Jin 2, Baoli Fan 2, Duobin Wang 1 and Huilong Lin 1,* 1 State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; [email protected] (X.W.); [email protected] (D.W.) 2 State Key Laboratory of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou 730070, China; [email protected] (H.J.); [email protected] (B.F.) 3 College of Science and Technology, Gansu Radio & TV University, Lanzhou 730030, China * Correspondence: [email protected] (Q.M.); [email protected] (H.L.) Received: 5 January 2019; Accepted: 19 February 2019; Published: 21 February 2019 Abstract: The shrub Nitraria tangutorum is distributed widely in arid desert areas, and plays a critical role in the desert–oasis ecosystem. This study quantified varying characteristics of carbon (C) and nitrogen (N) in the soil at four stages—the initial stage (IS), stable stage (SS), degradation stage (DS), and severe degradation stage (SDS)—in a steppe ecosystem in the desert of northwestern China. The results indicated that N. tangutorum experienced both expansion and deterioration as a decline of 50.7% occurred in the available soil water due to agricultural utilization, and the plant community transformed from being shrub-dominated to annual herb-dominated. At soil layer depths between 0–100 cm in the N. -
WIND and ITS IMPACT on the GEOMORPHOLOGICAL APPEARANCE on MUSANDAM PENINSULA- SULTANATE of OMAN Dr
WIND AND ITS IMPACT ON THE GEOMORPHOLOGICAL APPEARANCE ON MUSANDAM PENINSULA- SULTANATE OF OMAN Dr. Naglaa Tawfik Oref Lecturer of physical geography and GIS Department of social studies, Taibahu University, Saudi Arabia Received on 5/10/2018 Accepted on 4/12/2018 Vol.11 (1) March 2019 51 WIND AND ITS IMPACT ON THE the submerged coasts and a number of intents GEOMORPHOLOGICAL APPEARANCE ON that formulate the area coast(Torab , M 2002). MUSANDAM PENINSULA- SULTANATE OF OMAN Location: Dr. Naglaa Tawfik Oref Musandam peninsula lies at the entrance of lecturer of physical geography and GIS The Arabian Gulf, extending between two Department of social studies, latitudes of 25º 40′ and 26º 30′ to the north, and Taibahu University, Saudi Arabia between two longitudes of 56º 05′ and 56º 30′ The Egyptian Journal Of Environmental Change Key words: coastal sand dunes, Rock Chimney, to the east. limited by The Gulf of Oman from Musandam Peninsula, Arabian Gulf, the east and by The Arabian Gulf from the west. Abstract: It overlooks Strait of Hormuz northerly, but the Musandam peninsula lies at the entrance of southern watershed separating between Basins The Arabian Gulf. The area affected by the of Wadi Tibet, Wadi Khasab, Wadi Al-Wahiya tilting subsidence that had happened in the and Mala which slopes towards west, north and Tertiary and are still happening now (Falcon, east, on one hand, and between Wadi Sha'am and N.L., 1973). The climate impact on the area’s Al-Bih, sloping towards south and west, on the surface. The old climate effect on the drainage other one this line is considered as a southern networks. -
A Holistic Approach to Mima Mound Prairie Restoration Kristin R
Eastern Washington University EWU Digital Commons EWU Masters Thesis Collection Student Research and Creative Works 2013 A holistic approach to Mima mound prairie restoration Kristin R. Anicito Eastern Washington University Follow this and additional works at: http://dc.ewu.edu/theses Part of the Biology Commons Recommended Citation Anicito, Kristin R., "A holistic approach to Mima mound prairie restoration" (2013). EWU Masters Thesis Collection. 115. http://dc.ewu.edu/theses/115 This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of EWU Digital Commons. For more information, please contact [email protected]. A Holistic Approach to Mima mound Prairie Restoration ________________________________________________________________________ A Thesis Presented to Eastern Washington University Cheney, Washington ________________________________________________________________________ In Partial Fulfillment of the Requirements For the Degree Master of Science ________________________________________________________________________ By Kristin R. Anicito Fall 2013 Thesis of Kristin Rae Anicito Approved by ______________________________________________ Date_____________ Dr. Rebecca Brown, Graduate study committee chair ______________________________________________ Date_____________ Dr. Robin O’Quinn, Graduate study committee member ______________________________________________ Date_____________ -
Geologic Evolution of the Dukhan Salt Flats in Western Qatar Peninsula, Arabian Gulf
Qatar Univ. Sci. J. (2003), 23:41-58 Geologic Evolution of the Dukhan salt flats in Western Qatar Peninsula, Arabian Gulf Abdulali M. Sadiq Department of Geology, College of Science, University of Qatar, P.O. Box 2713, Doha, Qatar E-mail: [email protected] ~..;il\-- ~~' ~ 4y,lJ\ w~J ~t,h~ ~~~'- JP\ ~~\ ~\ ,_;hi;~~~ ~ J.l~~~' ¥- 4...JS ~ J -·- 11 •· r"Y"'-'_u, .. ' ... y~ ~ _;b9 .:u 3~ , ~ 3 ..l..l\ , 'I' v~ r ~Y. <J3 ~ , _;b9 4...t..al;.. ~~ e,l:..~ wl.,b."J (wLjj'J if-_,ill ~WI~ 0A ~1) ~\.....ail\ .J__,_.....JI ~ ~ .w\.,b."JI o~ ~ w~_;JI 4.ib..i\ 0A ~.WI ~_Y.o- 3 .)\ _;b§ :U_3~ (.)4 ~_jJI ~U\ ~ ~\)\ 1~\ - .;;II · ~~\ ~ ··- 11 . ~oWl 4.5. ~.h.A · ~ ~ LQ w~ ::11 ~ i..ff" ~ (.,)-'~ ~ 1,.,? ~ _;:::. _J '-?~ . ..? . Y"' 4........Shil _J 4l)§_J ~\_3 ~.h.A ~ bh.A I~\. ca.:. i<l tL:.uJI o~ )W .;;~\ ~\.l\1 tl:-uJI ~ 0A ~y:;JI -:11 w1..J.....u .-:11 JS,..:;w .(....J .:..1\ 11 ~\ -'\ ojl.:J\ ·l:..j 1-.: U ··. :·.11 1\ .U .Q ~ ~\ '-:?"' . Y"' _J . ....)"'-' (.S"' y (..) ~ .. 3 l.9...J""""' (.S"' y= l.J"l ..:r .. 1.5 __AJI -UL lh .1<1\ · .:..1\ w1..J.....u · ;..,9.;.; Jl ~ .. _) . c....- . ~. (..)·fo '-:?"'~.11 ~)\ _J ~\.. _J ~ U:1....?-' . y ~ u----a (..).a..ll.::o.....I....-A.l ~ w_J_);ll ~ 1~ ~JA ~~ ~~ e,l:..j wl.,b."<l ~ .~hhll 0A wl4--b ~ '-?~ w~ _;JI ufo_3 • -.;;., b. "l\ e,yy:JI 0A cJWI ~.l:JI _J ~_HI o4-JI r-b.:l§l _J ;;jjL..uJI ~4-JI ~WI ~_J -~~~ 0A '-?_,.;t:l )~ A..b~ clJI (.)4 ~)c ~_J ~\ ~ ~.J ~ ~l.:JI ~jjc ' a.1 ·all J41 ~ \..t\ ~_,.b)\ ~ e,i ~ ~ )\ w~ _;JI o~ e,\.9 , ~WI -.;; ., l Jl lA I~ '1~ o~~ ~\ ~ ~ ,~\ tlb§ (.)4 \~'-?~\~I ~_J .%"1 • ~\ ~_,.b~l j}~ ~~A ;;_)_Jj .)1 ~y:; ~ ~~ 0t.::..j wl.,b."<l ufo 0i ~ ,.clli\ ~_J .~I.J~4JI ~~ .;; ~·~1 ~ w'll ~~ U-""l)l:. -
Coastal Vegetation of South Africa 14
658 S % 19 (2006) Coastal Vegetation of South Africa 14 Ladislav Mucina, Janine B. Adams, Irma C. Knevel, Michael C. Rutherford, Leslie W. Powrie, John J. Bolton, Johannes H. van der Merwe, Robert J. Anderson, Thomas G. Bornman, Annelise le Roux and John A.M. Janssen Table of Contents 1 Introduction: Distribution and Azonal Character of Coastal Vegetation 660 2 Origins of South African Coastal Features 661 3 Ecology of Coastal Habitats 662 3.1 Aquatic and Semi-aquatic Habitats 662 3.1.1 Algal Beds 662 3.1.2 Estuaries 662 3.2 Terrestrial Habitats 666 3.2.1 Sandy Beaches and Dunes 666 3.2.2 Rocky Shores: Coastal Cliffs and Headlands 671 4 Biogeographical Patterns 672 4.1 Major Biogeographical Divisions 672 4.2 Algal Beds 673 4.3 Estuaries 674 4.4 Dunes 675 5 Principles of Delimitation of Vegetation Units 675 5.1 Algal Beds 675 5.2 Estuarine Vegetation 675 5.3 Dry Seashore Vegetation 676 5.4 Eastern Strandveld 676 6 Conservation Challenges: Status, Threats and Actions 677 6.1 Algal Beds 677 6.2 Estuaries 677 6.3 Beaches, Dunes and Strandveld 678 7 Future Research 679 8 Descriptions of Vegetation Units 680 9 Credits 690 10 References 690 Figure 14.1 Evening mood with Scaevola plumieri (Goodeniaceae) on the coastal dunes of Maputaland (northern KwaZulu-Natal). 659 W.S. Matthews W.S. S % 19 (2006) List of Vegetation Units cate interactions between sea and air temperature, geology and local topography, wind patterns and deposition of sand Algal Beds 680 and salt, and of tidal regime.