Mouse Hsd17b3 Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Hsd17b3 Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Hsd17b3 Knockout Project (CRISPR/Cas9) Objective: To create a Hsd17b3 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Hsd17b3 gene (NCBI Reference Sequence: NM_008291 ; Ensembl: ENSMUSG00000033122 ) is located on Mouse chromosome 13. 11 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 11 (Transcript: ENSMUST00000166224). Exon 3~4 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 3 starts from about 20.77% of the coding region. Exon 3~4 covers 20.11% of the coding region. The size of effective KO region: ~2587 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 3 4 11 Legends Exon of mouse Hsd17b3 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 3 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 1785 bp section downstream of Exon 4 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 8 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(25.25% 505) | C(21.45% 429) | T(31.45% 629) | G(21.85% 437) Note: The 2000 bp section upstream of Exon 3 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(1785bp) | A(25.66% 458) | C(21.74% 388) | T(31.32% 559) | G(21.29% 380) Note: The 1785 bp section downstream of Exon 4 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr13 - 64076424 64078423 2000 browser details YourSeq 168 42 703 2000 87.4% chr1 - 4757905 5000202 242298 browser details YourSeq 121 48 680 2000 89.6% chr11 + 101693611 101711697 18087 browser details YourSeq 107 37 167 2000 93.6% chrX - 36679685 36679819 135 browser details YourSeq 107 4 179 2000 84.4% chr15 + 89930246 89930403 158 browser details YourSeq 95 37 185 2000 90.6% chr13 + 89351446 89351604 159 browser details YourSeq 91 47 178 2000 90.4% chr2 - 154762604 154762733 130 browser details YourSeq 88 48 178 2000 88.5% chr11 + 30400321 30400448 128 browser details YourSeq 86 192 708 2000 74.6% chr14 + 30193569 30193977 409 browser details YourSeq 85 42 172 2000 89.5% chr12 + 3564117 3564246 130 browser details YourSeq 83 42 177 2000 90.4% chr1 - 63385842 63385978 137 browser details YourSeq 81 38 252 2000 93.7% chr7 + 143889552 143889977 426 browser details YourSeq 79 54 353 2000 71.9% chr2 + 157156454 157156565 112 browser details YourSeq 79 27 139 2000 91.9% chr1 + 180543639 180543754 116 browser details YourSeq 78 195 673 2000 72.9% chr11 + 73163533 73163886 354 browser details YourSeq 75 510 695 2000 78.5% chr5 - 63997465 63997651 187 browser details YourSeq 74 71 183 2000 96.4% chr11 + 120702943 120703068 126 browser details YourSeq 74 54 176 2000 91.7% chr11 + 64380634 64380754 121 browser details YourSeq 74 42 172 2000 92.1% chr10 + 55387568 55387698 131 browser details YourSeq 72 510 698 2000 85.8% chr6 - 30894336 30894523 188 Note: The 2000 bp section upstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 1785 1 1785 1785 100.0% chr13 - 64072052 64073836 1785 browser details YourSeq 267 832 1180 1785 90.9% chr3 + 103162497 103162868 372 browser details YourSeq 266 836 1179 1785 90.7% chr11 - 76068637 76069061 425 browser details YourSeq 265 833 1180 1785 88.9% chr12 + 28584626 28584980 355 browser details YourSeq 263 829 1182 1785 90.3% chr9 + 60850898 60851258 361 browser details YourSeq 261 832 1180 1785 89.5% chr19 + 46115282 46115640 359 browser details YourSeq 260 831 1178 1785 91.2% chr9 - 44557069 44557421 353 browser details YourSeq 258 836 1259 1785 90.6% chr8 + 86907867 86908445 579 browser details YourSeq 258 860 1503 1785 84.5% chr6 + 52710611 52711189 579 browser details YourSeq 257 844 1528 1785 86.3% chr5 - 146820061 146820719 659 browser details YourSeq 257 830 1180 1785 88.5% chr11 + 87138504 87138875 372 browser details YourSeq 254 839 1528 1785 83.1% chrX - 157544272 157544622 351 browser details YourSeq 254 836 1200 1785 86.5% chr8 - 84849070 84849426 357 browser details YourSeq 252 840 1180 1785 88.7% chr9 - 25632920 25633405 486 browser details YourSeq 250 841 1177 1785 88.2% chr4 - 11304906 11305266 361 browser details YourSeq 249 735 1468 1785 83.4% chr18 - 34573201 34573926 726 browser details YourSeq 248 836 1157 1785 89.5% chr4 - 137066186 137066522 337 browser details YourSeq 246 836 1177 1785 91.6% chr5 + 110899324 110899859 536 browser details YourSeq 246 838 1261 1785 91.0% chr13 + 24577902 24578497 596 browser details YourSeq 245 830 1157 1785 92.4% chr17 - 35604542 35604887 346 Note: The 1785 bp section downstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. Page 5 of 8 https://www.alphaknockout.com Gene and protein information: Hsd17b3 hydroxysteroid (17-beta) dehydrogenase 3 [ Mus musculus (house mouse) ] Gene ID: 15487, updated on 15-Oct-2019 Gene summary Official Symbol Hsd17b3 provided by MGI Official Full Name hydroxysteroid (17-beta) dehydrogenase 3 provided by MGI Primary source MGI:MGI:107177 See related Ensembl:ENSMUSG00000033122 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Expression Restricted expression toward testis adult (RPKM 6.2) See more Orthologs human all Genomic context Location: 13; 13 B3 See Hsd17b3 in Genome Data Viewer Exon count: 12 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 13 NC_000079.6 (64058274..64089262, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 13 NC_000079.5 (64159582..64190509, complement) Chromosome 13 - NC_000079.6 Page 6 of 8 https://www.alphaknockout.com Transcript information: This gene has 5 transcripts Gene: Hsd17b3 ENSMUSG00000033122 Description hydroxysteroid (17-beta) dehydrogenase 3 [Source:MGI Symbol;Acc:MGI:107177] Gene Synonyms 17(beta)HSD type 3 Location Chromosome 13: 64,058,266-64,089,230 reverse strand. GRCm38:CM001006.2 About this gene This gene has 5 transcripts (splice variants), 178 orthologues, 31 paralogues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Hsd17b3-202 ENSMUST00000166224.7 1286 305aa ENSMUSP00000132011.1 Protein coding CCDS26594 P70385 TSL:2 GENCODE basic APPRIS P1 Hsd17b3-204 ENSMUST00000222783.1 1184 305aa ENSMUSP00000152848.1 Protein coding CCDS26594 P70385 TSL:5 GENCODE basic APPRIS P1 Hsd17b3-201 ENSMUST00000039832.6 1131 305aa ENSMUSP00000044217.6 Protein coding CCDS26594 P70385 TSL:1 GENCODE basic APPRIS P1 Hsd17b3-203 ENSMUST00000221513.1 655 123aa ENSMUSP00000152478.1 Protein coding - A0A1Y7VJL6 CDS 5' incomplete TSL:5 Hsd17b3-205 ENSMUST00000222810.1 653 193aa ENSMUSP00000152274.1 Protein coding - A0A1Y7VJ36 CDS 3' incomplete TSL:3 50.97 kb Forward strand 64.05Mb 64.06Mb 64.07Mb 64.08Mb 64.09Mb Contigs CT009717.9 > Genes (Comprehensive set... < Hsd17b3-204protein coding < Slc35d2-203retained intron < Hsd17b3-202protein coding < Slc35d2-201protein coding < Hsd17b3-201protein coding < Slc35d2-202protein coding < Hsd17b3-203protein coding < Slc35d2-208nonsense mediated decay < Hsd17b3-205protein coding < Slc35d2-206nonsense mediated decay Regulatory Build 64.05Mb 64.06Mb 64.07Mb 64.08Mb 64.09Mb Reverse strand 50.97 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding merged Ensembl/Havana Ensembl protein coding Non-Protein Coding processed transcript Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000166224 < Hsd17b3-202protein coding Reverse strand 30.93 kb ENSMUSP00000132... Superfamily NAD(P)-binding domain superfamily Prints Short-chain dehydrogenase/reductase SDR Short-chain dehydrogenase/reductase SDR Pfam Short-chain dehydrogenase/reductase SDR PROSITE patterns Short-chain dehydrogenase/reductase, conserved site PIRSF PIRSF000126 PANTHER PTHR43899 Testosterone 17-beta-dehydrogenase 3 Gene3D 3.40.50.720 CDD cd05356 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant synonymous variant Scale bar 0 40 80 120 160 200 240 305 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 8 of 8.
Recommended publications
  • Clinical and Molecular Spectrum of Patients with 17Β-Hydroxysteroid
    case report Clinical and molecular spectrum of patients with 17b-hydroxysteroid dehydrogenase type 3 (17-b-HSD3) deficiency Espectro clínico e molecular de pacientes com deficiência de 17b-hidroxiesteroide desidrogenase tipo 2 (17-b-HSD3) Carla Cristina Telles de Sousa Castro1, Guilherme Guaragna-Filho1, Flavia Leme Calais2, Fernanda Borchers Coeli2, Ianik Rafaela Lima Leal3, Erisvaldo Ferreira Cavalcante-Junior4, Isabella Lopes Monlleó4, Silma Regina Ferreira Pereira3, Roberto Benedito de Paiva e Silva5,6, José Roberto Erbolato Gabiatti7, Antonia Paula Marques-de-Faria6,8, Andrea Trevas Maciel-Guerra6,8, Maricilda Palandi De Mello2, Gil Guerra-Junior1,6 1 Unidade de Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), SUMMARY Campinas, SP, Brazil The enzyme 17b-hydroxysteroid dehydrogenase type 3 (17-b-HSD3) catalyzes the conversion of 2 Laboratório de Genética androstenedione to testosterone in the testes, and its deficiency is a rare disorder of sex devel- Molecular Humana, Centro de Biologia Molecular e Engenharia opment in 46,XY individuals. It can lead to a wide range of phenotypic features, with variable Genética (CBMEG), Unicamp, hormonal profiles. We report four patients with the 46,XY karyotype and 17-b-HSD3 deficiency, Campinas, SP, Brazil 3 showing different degrees of genital ambiguity, increased androstenedione and decreased tes- Departamento de Biologia, Universidade Federal do Maranhão tosterone levels, and testosterone to androstenedione ratio < 0.8. In three of the patients, diag- (UFMA), São Luís, MA, Brazil nosis was only determined due to the presence of signs of virilization at puberty. All patients had 4 Centro de Ciências da Saúde, been raised as females, and female gender identity was maintained in all of them.
    [Show full text]
  • Differential but Concerted Expression of HSD17B2, HSD17B3, SHBG And
    cancers Article Differential but Concerted Expression of HSD17B2, HSD17B3, SHBG and SRD5A1 Testosterone Tetrad Modulate Therapy Response and Susceptibility to Disease Relapse in Patients with Prostate Cancer Oluwaseun Adebayo Bamodu 1,2,3,* , Kai-Yi Tzou 1,4, Chia-Da Lin 1,4, Su-Wei Hu 1,4, Yuan-Hung Wang 2,5, Wen-Ling Wu 1,4, Kuan-Chou Chen 1,4,5,6 and Chia-Chang Wu 1,4,5,6,* 1 Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; [email protected] (K.-Y.T.); [email protected] (C.-D.L.); [email protected] (S.-W.H.); [email protected] (W.-L.W.); [email protected] (K.-C.C.) 2 Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; [email protected] 3 Department of Hematology and Oncology, Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan 4 TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 11031, Taiwan 5 Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan 6 Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Citation: Bamodu, O.A.; Tzou, K.-Y.; Taipei City 11031, Taiwan Lin, C.-D.; Hu, S.-W.; Wang, Y.-H.; * Correspondence: [email protected] (O.A.B.); [email protected] (C.-C.W.); Wu, W.-L.; Chen, K.-C.; Wu, C.-C. Tel.: +886-02-22490088 (ext.
    [Show full text]
  • Uman Enome News
    uman enome news ISSN: 1050-6101 Vol. 7, No.2, July-August 1995 Optical Mapping Offers Fast, Accurate Method for Generating Restriction Maps New Approach Eliminates Electrophoresis, Is Amenable to Automation evelopment of cheaper and faster technologies for large-scale Dgenome mapping has been a major priority in the first 5 years of the Human Genome Project. Although many efforts have focused on improving standard gel electrophoresis and hybridization methods, a new approach using optical detection of single DNA mole.cules shows great promise for rapid construction of ordered genome maps based on restriction endonuclease cutting sites. l -4 Restriction endonucleases-enzymes that cut DNA molecules at specific sites in the genome-have played a major role in allowing investigators to identify and characterize various loci on a DNA molecule. Unlike maps based on STSs (a sequence-based landmark), restriction maps provide the precise genomic distances that are essential for efficient sequencing and for determining the spatial relationships of specific loci. Compared with hybridization-based fingerprinting approaches, ordered restriction maps offer relatively unambiguous clone characterization, which is useful for determining overlapping areas in contig formation, establishing minimum tiling paths for sequencing (coverage of a region), and characterizing genetic lesions with respect to various structural alterations. Image of a human chromosome 11 YAC clone (425 kb) cleaved by restriction endonucleases, Despite the broad applications of restriction maps, however, associated stained with a fluorochrome, and visualized by techniques for their generation have changed little over the last 10 years fluorescence microscopy. (White bar at lower left because of their reliance on tedious electrophoresis methods.
    [Show full text]
  • Physiological and Biochemical Aspects of 17Β-Hydroxysteroid Dehydrogenase Type 2 and 3
    Physiological and Biochemical Aspects of 17β-Hydroxysteroid Dehydrogenase Type 2 and 3 Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Roger Thomas Engeli aus Sulgen (TG), Schweiz Basel, 2017 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung-Nicht kommerziell 4.0 International Lizenz. Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Alex Odermatt und Prof. Dr. Rik Eggen Basel, den 20.06.2017 ________________________ Dekan Prof. Dr. Martin Spiess 2 Table of Contents Table of Contents ............................................................................................................................... 3 Abbreviations ..................................................................................................................................... 4 1. Summary ........................................................................................................................................ 6 2. Introduction ................................................................................................................................... 8 2.1 Steroid Hormones ............................................................................................................................... 8 2.2 Human Steroidogenesis....................................................................................................................
    [Show full text]
  • Gnomad Lof Supplement
    1 gnomAD supplement gnomAD supplement 1 Data processing 4 Alignment and read processing 4 Variant Calling 4 Coverage information 5 Data processing 5 Sample QC 7 Hard filters 7 Supplementary Table 1 | Sample counts before and after hard and release filters 8 Supplementary Table 2 | Counts by data type and hard filter 9 Platform imputation for exomes 9 Supplementary Table 3 | Exome platform assignments 10 Supplementary Table 4 | Confusion matrix for exome samples with Known platform labels 11 Relatedness filters 11 Supplementary Table 5 | Pair counts by degree of relatedness 12 Supplementary Table 6 | Sample counts by relatedness status 13 Population and subpopulation inference 13 Supplementary Figure 1 | Continental ancestry principal components. 14 Supplementary Table 7 | Population and subpopulation counts 16 Population- and platform-specific filters 16 Supplementary Table 8 | Summary of outliers per population and platform grouping 17 Finalizing samples in the gnomAD v2.1 release 18 Supplementary Table 9 | Sample counts by filtering stage 18 Supplementary Table 10 | Sample counts for genomes and exomes in gnomAD subsets 19 Variant QC 20 Hard filters 20 Random Forest model 20 Features 21 Supplementary Table 11 | Features used in final random forest model 21 Training 22 Supplementary Table 12 | Random forest training examples 22 Evaluation and threshold selection 22 Final variant counts 24 Supplementary Table 13 | Variant counts by filtering status 25 Comparison of whole-exome and whole-genome coverage in coding regions 25 Variant annotation 30 Frequency and context annotation 30 2 Functional annotation 31 Supplementary Table 14 | Variants observed by category in 125,748 exomes 32 Supplementary Figure 5 | Percent observed by methylation.
    [Show full text]
  • Reveals of Candidate Active Ingredients in Justicia and Its Anti-Thrombotic Action of Mechanism Based on Network Pharmacology Ap
    www.nature.com/scientificreports OPEN Reveals of candidate active ingredients in Justicia and its anti‑thrombotic action of mechanism based on network pharmacology approach and experimental validation Zongchao Hong1,5, Ting Zhang2,5, Ying Zhang1, Zhoutao Xie1, Yi Lu1, Yunfeng Yao1, Yanfang Yang1,3,4*, Hezhen Wu1,3,4* & Bo Liu1,3* Thrombotic diseases seriously threaten human life. Justicia, as a common Chinese medicine, is usually used for anti‑infammatory treatment, and further studies have found that it has an inhibitory efect on platelet aggregation. Therefore, it can be inferred that Justicia can be used as a therapeutic drug for thrombosis. This work aims to reveal the pharmacological mechanism of the anti‑thrombotic efect of Justicia through network pharmacology combined with wet experimental verifcation. During the analysis, 461 compound targets were predicted from various databases and 881 thrombus‑related targets were collected. Then, herb‑compound‑target network and protein–protein interaction network of disease and prediction targets were constructed and cluster analysis was applied to further explore the connection between the targets. In addition, Gene Ontology (GO) and pathway (KEGG) enrichment were used to further determine the association between target proteins and diseases. Finally, the expression of hub target proteins of the core component and the anti‑thrombotic efect of Justicia’s core compounds were verifed by experiments. In conclusion, the core bioactive components, especially justicidin D, can reduce thrombosis by regulating F2, MMP9, CXCL12, MET, RAC1, PDE5A, and ABCB1. The combination of network pharmacology and the experimental research strategies proposed in this paper provides a comprehensive method for systematically exploring the therapeutic mechanism of multi‑component medicine.
    [Show full text]
  • REVIEW 17Β-Hydroxysteroid Dehydrogenase (HSD)/17-Ketosteroid Reductase (KSR) Family; Nomenclature and Main Characteristics of T
    1 REVIEW 17â-Hydroxysteroid dehydrogenase (HSD)/17-ketosteroid reductase (KSR) family; nomenclature and main characteristics of the 17HSD/KSR enzymes H Peltoketo, V Luu-The1, J Simard1 and Jerzy Adamski2 Biocenter Oulu and WHO Collaborating Center for Research on Reproductive Health, University of Oulu, FIN-90220 Oulu, Finland 1MRC Group in Molecular Endocrinology, CHUL Research Center and Laval University, Que´bec, Canada 2GSF National Research Center for Health and Environment, Institute for Mammalian Genetics, Genome Analysis Center, Neuherberg, Germany (Requests for offprints should be addressed to any author) ABSTRACT A number of enzymes possessing 17â- descriptions of the eight cloned 17HSD/KSRs are hydroxysteroid dehydrogenase/17-ketosteroid re- given and guidelines for the classification of novel ductase (17HSD/KSR) activities have been 17HSD/KSR enzymes are presented. described and cloned, but their nomenclature needs Journal of Molecular Endocrinology (1999) 23, 1–11 specification. To clarify the present situation, INTRODUCTION enzymatic activities, which has also complicated the definition of them. During the past decades, the Since the 1950s (Ryan & Engel 1953), 17â- names of the 17HSD/KSRs have become diverse hydroxysteroid dehydrogenase/17-ketosteroid re- and impractical, and therefore we attempt here to ductase (17HSD/KSR) activities have been clarify the nomenclature and specification of them. characterized, and 17HSD/KSR enzymes have been A brief description of individual and common purified from a large number of tissues of several features of the known 17HSD/KSR enzymes is species (see Jarabak 1969, Nicolas & Harris 1973, given, enough to identify each enzyme discussed. Bogovich & Payne 1980, Milewich et al. 1985, Inano & Tamaoki 1986, Murdock et al.
    [Show full text]
  • Human Adrenal Corticocarcinoma NCI-H295R Cells Produce More
    459 Human adrenal corticocarcinoma NCI-H295R cells produce more androgens than NCI-H295A cells and differ in 3b-hydroxysteroid dehydrogenase type 2 and 17,20 lyase activities Elika Samandari, Petra Kempna´, Jean-Marc Nuoffer1, Gaby Hofer, Primus E Mullis and Christa E Flu¨ck Pediatric Endocrinology and Diabetology, University Children’s Hospital Bern, Freiburgstrasse 15, G3 812, 3010 Bern, Switzerland 1Department of Clinical Chemistry, University Hospital Inselspital, 3010 Bern, Switzerland (Correspondence should be addressed to C E Flu¨ck; Email: christa.fl[email protected]) Abstract The human adrenal cortex produces mineralocorticoids, dehydrogenase (HSD3B2), cytochrome b5, and sulfonyl- glucocorticoids, and androgens in a species-specific, hor- transferase genes is higher in NCI-H295A cells, whereas monally regulated, zone-specific, and developmentally expression of the cytochrome P450c17 (CYP17), characteristic fashion. Most molecular studies of adrenal 21-hydroxylase (CYP21), and P450 oxidoreductase genes steroidogenesis use human adrenocortical NCI-H295A and does not differ between the cell lines. We found lower 3b- NCI-H295R cells as a model because appropriate animal hydroxysteroid dehydrogenase type 2 but higher 17,20-lyase models do not exist. NCI-H295A and NCI-H295R cells activity in NCI-H295R cells explaining the ‘androgenic’ originate from the same adrenocortical carcinoma which steroid profile for these cells and resembling the zona produced predominantly androgens but also smaller amounts reticularis of the human adrenal cortex. Both cell lines were of mineralocorticoids and glucocorticoids. Research data found to express the ACTH receptor at low levels consistent obtained from either NCI-H295A or NCI-H295R cells are with low stimulation by ACTH. By contrast, both cell generally compared, although for the same experiments no lines were readily stimulated by 8Br-cAMP.
    [Show full text]
  • Table of Human SDR Enzymes with SDR Designations Version 3
    Human SDRs as of Uniprot version 2015_10 SDR member Uniprot identifier Uniprot description Unigene Ensembl gene ID Ensembl protein ID Seq len Pfam Type SDR1E1-1 sp|Q14376|GALE_HUMAN UDP-glucose 4-epimerase Hs.632380 ENSG00000117308 ENSP00000363621 348 PF01370 E SDR1E1-4 tr|Q5QPP4|Q5QPP4_HUMAN UDP-glucose 4-epimerase ENSG00000117308 ENSP00000398585 239 PF01370 E SDR1E1-5 tr|Q5QPP3|Q5QPP3_HUMAN UDP-glucose 4-epimerase ENSG00000117308 ENSP00000414719 227 PF01370 E SDR1E1-7 tr|Q5QPP1|Q5QPP1_HUMAN UDP-glucose 4-epimerase ENSG00000117308 ENSP00000393359 194 PF01370 E SDR1E1-8 tr|Q5QPP9|Q5QPP9_HUMAN UDP-glucose 4-epimerase ENSG00000117308 ENSP00000397045 108 SDR1E1-18 tr|A0A024RAB7|A0A024RAB7_HUMAN UDP-galactose-4-epimerase, isoform Hs.632380 239 PF01370 E CRA_b SDR2E1-1 sp|O95455|TGDS_HUMAN dTDP-D-glucose 4,6-dehydratase Hs.12393 ENSG00000088451 ENSP00000261296 350 PF01370 E SDR3E1-1 sp|O60547|GMDS_HUMAN GDP-mannose 4,6 dehydratase Hs.144496 ENSG00000112699 ENSP00000370194 372 PF01370 E SDR3E1-2 tr|B2R9X3|B2R9X3_HUMAN cDNA, FLJ94599, highly similar to Hs.144496 372 PF01370 E Homo sapiens GDP-mannose 4,6- dehydratase (GMDS), mRNA SDR4E1-1 sp|Q13630|FCL_HUMAN GDP-L-fucose synthase Hs.404119 ENSG00000104522 ENSP00000398803 321 PF01370 E SDR4E1-3 tr|B3KU96|B3KU96_HUMAN cDNA FLJ39433 fis, clone Hs.404119 161 PF01370 U PROST2004142, highly similar to GDP-L- fucose synthetase (EC 1.1.1.271) SDR4E1-4 tr|B4DZW9|B4DZW9_HUMAN cDNA FLJ57685, highly similar to GDP-L-Hs.404119 178 PF01370 fucose synthetase (EC 1.1.1.271) SDR4E1-6 tr|E9PKL9|E9PKL9_HUMAN GDP-L-fucose
    [Show full text]
  • 17-Beta Hydroxysteroid Dehydrogenase 3 Deficiency
    17-beta hydroxysteroid dehydrogenase 3 deficiency Description 17-beta hydroxysteroid dehydrogenase 3 deficiency is a condition that affects male sexual development. People with this condition are genetically male, with one X and one Y chromosome in each cell, and they have male gonads (testes). Their bodies, however, do not produce enough of a male sex hormone (androgen) called testosterone. Testosterone has a critical role in male sexual development, and a shortage of this hormone disrupts the formation of the external sex organs before birth. Most people with 17-beta hydroxysteroid dehydrogenase 3 deficiency are born with external genitalia that appear female. In some cases, the external genitalia do not look clearly male or clearly female (sometimes called ambiguous genitalia). Still other affected infants have genitalia that appear predominantly male, often with an unusually small penis (micropenis) or the urethra opening on the underside of the penis ( hypospadias). During puberty, people with this condition develop some male secondary sex characteristics, such as increased muscle mass, deepening of the voice, and development of male pattern facial and body hair. In addition to these changes typical of adolescent boys, some affected individuals may also experience breast enlargement ( gynecomastia). Despite having testes, people with this disorder are generally unable to father children (infertile). Children with 17-beta hydroxysteroid dehydrogenase 3 deficiency are often raised as girls. About half of these individuals adopt a male gender role in adolescence or early adulthood. Frequency 17-beta hydroxysteroid dehydrogenase 3 deficiency is a rare disorder. Researchers have estimated that this condition occurs in approximately 1 in 147,000 newborns.
    [Show full text]
  • Elucidating the Role of 17Β Hydroxysteroid Dehydrogenase Type 14 in Normal Physiology and in Breast Cancer
    Linköping University Medical Dissertation No. 1339 Elucidating the role of 17β hydroxysteroid dehydrogenase type 14 in normal physiology and in breast cancer Tove Sivik Division of Clinical Sciences Department of Clinical and Experimental Medicine Faculty of Health Sciences, Linköping University SE-581 85 Linköping, Sweden Linköping University 2012 © Tove Sivik, 2012 ISBN: 978-91-7519-763-0 ISSN: 0345-0082 Paper I was reprinted with permission from the American Association for Cancer Research Paper II was reprinted with permission from Georg Thieme Verlag KG Printed by LiU-Tryck, Linköping, Sweden 2012 MAIN SUPERVISOR Agneta Jansson, Associate Professor Division of Medical Sciences, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden CO-SUPERVISOR Olle Stål, Professor Division of Medical Sciences, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden OPPONENT Lars-Arne Haldosén, Associate Professor Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Stockholm, Sweden ABSTRACT Oestrogens play key roles in the development of the majority of breast tumours, a fact that has been exploited successfully in treating breast cancer with tamoxifen, which is a selective oestrogen receptor modulator. In post-menopausal women, oestrogens are synthesised in peripheral hormone-target tissues from adrenally derived precursors. Important in the peripheral fine-tuning of sex hormone levels are the 17β hydroxysteroid dehydrogenases (17βHSDs). These enzymes catalyse the oxidation/reduction of carbon 17β of androgens and oestrogens. Upon receptor binding, the 17β-hydroxy conformation of androgens and oestrogens (testosterone and oestradiol) triggers a greater biological response than the corresponding keto-conformation of the steroids (androstenedione and oestrone), and the 17βHSD enzymes are therefore important mediators in pre-receptor regulation of sex hormone action.
    [Show full text]
  • NR0B1 Supporting Information Biorxiv
    Supporting Information: Supporting Figures - Figure S1. Comparison of Xp21.2 CNVs. Schematic representation comparing NR0B1 locus copy number variations in patients presented in this study with those previously described in the literature and associated with 46, XY sex reversal. The green bars represent the duplications and the triplication described in the patients of this study (P1 -P3) and the blue bars represent duplications previously reported by others researchers (Barbaro, Oscarson et al. 2007, Barbaro, Cicognani et al. 2008, Ledig, Hiort et al. 2010, White, Ohnesorg et al. 2011, Barbaro, Cook et al. 2012, Dong, Yi et al. 2016, Garcia-Acero, Molina et al. 2019) . All previously reported duplications include the NR0B1 (red underlined), CXorf21 and GK gene. The red bar marks the deletion reported by Smyk et al. (Smyk, Berg et al. 2007). There is a mutual 35kb region present in all Xp21.2 copy number variations associated with 46,XY GD, highlighted by the green box. The representation was generated using the UCSC Genome Browser (GRCh37/hg19)(Kent, Sugnet et al. 2002). 1 Figure S2. Sox9 activation during testicular development. Mechanism of Sox9 regulation, as suggested by Ludbrook et al. (2012). Sox9 gene with upstream enhancer Enh13 as grey bar. Grey spheres symbolize SF1 and SRY/SOX9 binding sites within the enhancer. Besides Enh13 (Gonen, Futtner et al. 2018) also an enhancer termed TESCO (Sekido and Lovell-Badge 2008) has previously been proposed as especially relevant for testis specific Sox9 expression in mice. Sox9 enhancers appear to be activated in three phases (i-iii) (Sekido and Lovell-Badge 2008).
    [Show full text]