Anthony C. Hearn Resume
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bridging the Data Charging Gap in the Cellular Edge
Bridging the Data Charging Gap in the Cellular Edge Yuanjie Li, Kyu-Han Kim, Christina Vlachou, Junqing Xie Hewlett Packard Labs {yuanjiel,kyu-han.kim,christina.vlachou,jun-qing.xie}@hpe.com ABSTRACT licensed spectrum and support carrier-grade QoS for low latency. The 4G/5G cellular edge promises low-latency experiences any- We have seen some early operational edge services via 4G/5G (x2.2). where, anytime. However, data charging gaps can arise between The cellular network data is not free. To enjoy the low-latency the cellular operators and edge application vendors, and cause services, the edge app vendors should pay the cellular operators by over-/under-billing. We find that such gap can come from data loss, traffic usage (similar to our mobile data plans). Even for the“un- selfish charging, or both. It can be amplified in the edge, duetoits limited” data plans, the edge app’s network speed will be throttled low-latency requirements. We devise TLC, a Trusted, Loss-tolerant (e.g., 128Kbps) if its usage exceeds pre-defined quota. This model Charging scheme for the cellular edge. In its core, TLC enables loss- inherits from 4G/5G [6, 7], and is standardized in the edge [8]. selfishness cancellation to bridge the gap, and constructs publicly However, the cellular operator and edge app vendor may not verifiable, cryptographic proof-of-charging for mutual trust. Weim- always agree on how much data should be paid. A data charging plement TLC with commodity edge nodes, OpenEPC and small cells. gap can arise, i.e., the data volume charged by the cellular opera- Our experiments in various edge scenarios validate TLC’s viability tor differs from what the edge sends/receives. -
[Front Matter]
Future Technologies Conference (FTC) 2017 29-30 November 2017| Vancouver, Canada About the Conference IEEE Technically Sponsored Future Technologies Conference (FTC) 2017 is a second research conference in the series. This conference is a part of SAI conferences being held since 2013. The conference series has featured keynote talks, special sessions, poster presentation, tutorials, workshops, and contributed papers each year. The goal of the conference is to be a world's pre-eminent forum for reporting technological breakthroughs in the areas of Computing, Electronics, AI, Robotics, Security and Communications. FTC 2017 is held at Pan Pacific Hotel Vancouver. The Pan Pacific luxury Vancouver hotel in British Columbia, Canada is situated on the downtown waterfront of this vibrant metropolis, with some of the city’s top business venues and tourist attractions including Flyover Canada and Gastown, the Vancouver Convention Centre, Cruise Ship Terminal as well as popular shopping and entertainment districts just minutes away. Pan Pacific Hotel Vancouver has great meeting rooms with new designs. We chose it for the conference because it’s got plenty of space, serves great food and is 100% accessible. Venue Name: Pan Pacific Hotel Vancouver Address: Suite 300-999 Canada Place, Vancouver, British Columbia V6C 3B5, Canada Tel: +1 604-662-8111 3 | P a g e Future Technologies Conference (FTC) 2017 29-30 November 2017| Vancouver, Canada Preface FTC 2017 is a recognized event and provides a valuable platform for individuals to present their research findings, display their work in progress and discuss conceptual advances in areas of computer science and engineering, Electrical Engineering and IT related disciplines. -
SIGOPS Annual Report 2012
SIGOPS Annual Report 2012 Fiscal Year July 2012-June 2013 Submitted by Jeanna Matthews, SIGOPS Chair Overview SIGOPS is a vibrant community of people with interests in “operatinG systems” in the broadest sense, includinG topics such as distributed computing, storaGe systems, security, concurrency, middleware, mobility, virtualization, networkinG, cloud computinG, datacenter software, and Internet services. We sponsor a number of top conferences, provide travel Grants to students, present yearly awards, disseminate information to members electronically, and collaborate with other SIGs on important programs for computing professionals. Officers It was the second year for officers: Jeanna Matthews (Clarkson University) as Chair, GeorGe Candea (EPFL) as Vice Chair, Dilma da Silva (Qualcomm) as Treasurer and Muli Ben-Yehuda (Technion) as Information Director. As has been typical, elected officers agreed to continue for a second and final two- year term beginning July 2013. Shan Lu (University of Wisconsin) will replace Muli Ben-Yehuda as Information Director as of AuGust 2013. Awards We have an excitinG new award to announce – the SIGOPS Dennis M. Ritchie Doctoral Dissertation Award. SIGOPS has lonG been lackinG a doctoral dissertation award, such as those offered by SIGCOMM, Eurosys, SIGPLAN, and SIGMOD. This new award fills this Gap and also honors the contributions to computer science that Dennis Ritchie made durinG his life. With this award, ACM SIGOPS will encouraGe the creativity that Ritchie embodied and provide a reminder of Ritchie's leGacy and what a difference a person can make in the field of software systems research. The award is funded by AT&T Research and Alcatel-Lucent Bell Labs, companies that both have a strong connection to AT&T Bell Laboratories where Dennis Ritchie did his seminal work. -
Polynomial Transformations of Tschirnhaus, Bring and Jerrard
ACM SIGSAM Bulletin, Vol 37, No. 3, September 2003 Polynomial Transformations of Tschirnhaus, Bring and Jerrard Victor S. Adamchik Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA [email protected] David J. Jeffrey Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada [email protected] Abstract Tschirnhaus gave transformations for the elimination of some of the intermediate terms in a polynomial. His transformations were developed further by Bring and Jerrard, and here we describe all these transformations in modern notation. We also discuss their possible utility for polynomial solving, particularly with respect to the Mathematica poster on the solution of the quintic. 1 Introduction A recent issue of the BULLETIN contained a translation of the 1683 paper by Tschirnhaus [10], in which he proposed a method for solving a polynomial equation Pn(x) of degree n by transforming it into a polynomial Qn(y) which has a simpler form (meaning that it has fewer terms). Specifically, he extended the idea (which he attributed to Decartes) in which a polynomial of degree n is reduced or depressed (lovely word!) by removing its term in degree n ¡ 1. Tschirnhaus’s transformation is a polynomial substitution y = Tk(x), in which the degree of the transformation k < n can be selected. Tschirnhaus demonstrated the utility of his transformation by apparently solving the cubic equation in a way different from Cardano. Although Tschirnhaus’s work is described in modern books [9], later works by Bring [2, 3] and Jerrard [7, 6] have been largely forgotten. Here, we present the transformations in modern notation and make some comments on their utility. -
Llista Congressos Notables
Llistat de congressos notables per la UPC (Ordenat pel nom del congrés) Servei d'Informació RDI (Per dubtes: [email protected]). 5 de febrer de 2018 Nom del congrés Acrònim AAAI Conference on Artificial Intelligence AAAI ACM Conference on Computer and Communications Security CCS ACM Conference on Human Factors in Computing Systems CHI ACM European Conference on Computer Systems EuroSys ACM Great Lakes Symposium on VLSI GLSVLSI ACM International Conference on Information and Knowledge Management CIKM ACM International Conference on Measurement and Modelling of Computer Systems SIGMETRICS ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems MSWiN ACM International Conference on Multimedia ACMMM ACM International Symposium on Mobile AdHoc Networking and Computing ACM MOBIHOC ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems MSWiM ACM International Symposium on Physical Design ISPD ACM Object-Oriented Programming, Systems, Languages & Applications OOPSLA ACM Principles of Programming Languages POPL ACM SIGCOMM Special Interest Group on Data Communications SIGCOMM ACM SIGMOD Conference ACM SIGMOD ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation PLDI ACM Symposium on Applied Computing SAC ACM Symposium on Operating Systems Principles SOSP ACM Symposium on Parallel Algorithms and Architectures SPAA ACM Symposium on Principles of Database Systems PODS ACM Symposium on Principles of Distributed Computing PODC ACM Symposium on -
Annual Report
ANNUAL REPORT 2019FISCAL YEAR ACM, the Association for Computing Machinery, is an international scientific and educational organization dedicated to advancing the arts, sciences, and applications of information technology. Letter from the President It’s been quite an eventful year and challenges posed by evolving technology. for ACM. While this annual Education has always been at the foundation of exercise allows us a moment ACM, as reflected in two recent curriculum efforts. First, “ACM’s mission to celebrate some of the many the ACM Task Force on Data Science issued “Comput- hinges on successes and achievements ing Competencies for Undergraduate Data Science Cur- creating a the Association has realized ricula.” The guidelines lay out the computing-specific over the past year, it is also an competencies that should be included when other community that opportunity to focus on new academic departments offer programs in data science encompasses and innovative ways to ensure at the undergraduate level. Second, building on the all who work in ACM remains a vibrant global success of our recent guidelines for 4-year cybersecu- the computing resource for the computing community. rity curricula, the ACM Committee for Computing Edu- ACM’s mission hinges on creating a community cation in Community Colleges created a related cur- and technology that encompasses all who work in the computing and riculum targeted at two-year programs, “Cybersecurity arena” technology arena. This year, ACM established a new Di- Curricular Guidance for Associate-Degree Programs.” versity and Inclusion Council to identify ways to create The following pages offer a sampling of the many environments that are welcoming to new perspectives ACM events and accomplishments that occurred over and will attract an even broader membership from the past fiscal year, none of which would have been around the world. -
About Technews About SIG Newsletters
PRINT AND ONLINE ADVERTISING OPPORTUNITIES About TechNews About SIG Newsletters TechNews is an email digest of computing and technology ACM’s 37 Special Interest Groups (SIGs) represent news gathered from leading sources; distributed Monday, the major disciplines of the dynamic computing fi eld. Wednesday, and Friday to a circulation of over 105,000 ACM’s SIGs are invested in advancing the skills of their subscribers. Its concise summaries are perfect for busy members, keeping them abreast of emerging trends and professionals who need and want to keep up with the driving innovation across a broad spectrum of computing latest industry developments. disciplines. TechNews is regularly cited as one of ACM’s most valued As a member benefit, many ACM SIGs provide its members benefits and is one of the best ways to communicate with with a print or online newsletter covering news and events ACM members. within the realm of their fields. Circulation SIGACCESS: ACM SIGACCESS Newsletter* SIGACT: SIGACT News Listserv 105,000 SIGAda: Ada Letters SIGAI: AI Matters* Online Advertising Opportunities SIGAPP: Applied Computing Review* Right-hand sidebar position SIGBED: SIGBED Review* Size Dimensions Rates SIGBio: ACM SIGBio Record* Top Banner 468 x 60 IMU $6500/Month* SIGCAS: Computers & Society Newsletter* Skyscraper 160 x 600 IMU $6000/Month* SIGCOMM: Computer Communication Review* Square Ad 160 x 160 IMU $2500/Month* SIGCSE: SIGCSE Bulletin* SIGDOC: Communication Design Quarterly* * 12 Transmissions SIGecom: ACM SIGecom Exchanges* Maximum File Size: -
Joel Sommers
JOEL SOMMERS Department of Computer Science, Colgate University 306 McGregory Hall 13 Oak Drive Hamilton, NY 13346 315-228-7587 [email protected], http://cs.colgate.edu/~jsommers/ EDUCATION University of Wisconsin-Madison, Madison, WI, 2001-2007. Ph.D. in Computer Science, August 2007. Dissertation title: Calibrated network measurement. Adviser: Paul Barford Ph.D. minor in science and technology studies (distributed option). Worcester Polytechnic Institute, Worcester, MA, 1995-1997. M.S. in Computer Science, May 1997. Thesis title: Merging client and server profiles on the world-wide web. Adviser: Craig Wills Atlantic Union College, South Lancaster, MA, 1990-1995. B.S. in Computer Science, May 1995. B.S. in Mathematics, May 1995. ACADEMIC EXPERIENCE Associate Professor, Department of Computer Science, Colgate University, Hamilton, NY, 2013-present. Visiting Associate Professor, School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand, October 2016-March 2017. Assistant Professor, Department of Computer Science, Colgate University, Hamilton, NY, 2007-2012. Research Assistant, Computer Sciences Department, University of Wisconsin, Madison, WI, 2001-2007. Projects included the Harpoon network traffic generator, the BADABING loss measurement methodology, and compliance measurement of service level agreements (SLAs). Teaching Assistant, Computer networking (CS640), University of Wisconsin, 2001. Prepared and graded programming projects, held office hours, graded papers and exams. Research Assistant, Computer Science Department, Worcester Polytechnic Institute, 1996-1997. Studied performance and security aspects of electronic commerce systems. Laboratory Instructor, Stanborough Secondary School, Watford, England, 1992-1993. Prepared and administered biology, chemistry, and physics labs for secondary school students. PROFESSIONAL EXPERIENCE Lead Developer, First Options of Chicago, Subsidiary of Goldman Sachs, Chicago, IL, 2000-2001. -
SIGPLAN FY '05 Annual Report
SIGPLAN FY '05 Annual Report July 2004—June 2005 Submitted by Jack W. Davidson, SIGPLAN Chair This year ACM SIGPLAN has continued its active sponsorship of many conferences and workshops as well as its two newsletters. SIGPLAN's present financial situation is strong, and our fund balance grew in FY 2005 after three consec- utive years of losses. Our fund balance comfortably exceeds the required minimum. Our conferences overall incurred financial gains, including OOPSLA, our largest conference, which had incurred a significant financial loss for each of the three preceding years. We were more selective with funding worthwhile projects such as student travel, funding these at about one half the level of recent years. A good resource for monitoring our activities is our web page, found at http://www.acm.org/sigplan/. 1. Conferences We sponsored seven annual conferences last year, GPCE (with SIGSOFT), ICFP, LCTES (with SIGBED), OOP- SLA, PLDI, POPL (with SIGACT), and PPDP. We also sponsored PPoPP and ISMM, which are held approxi- mately biannually. Of these conferences, PLDI, POPL and PPoPP appear in the Citeseer top 15 of more than 1200 Computer Science publication venues, based on their citation rates. We sponsored numerous workshops, including AADEBUG, BUGS, CUFP, Erlang, FOOL, Haskell, IVME, MSP, PLAN-X, Scheme, TLDI, and PEPM. Financial results for our conferences were positive. Conference attendance has been holding steady, with a dramatic increase in student participation. Conferences continue to receive far more submissions than we can accept, and our major conferences continue to be extremely selective. We have separate steering committees for all of our conferences. -
SIGLOG: Special Interest Group on Logic and Computation a Proposal
SIGLOG: Special Interest Group on Logic and Computation A Proposal Natarajan Shankar Computer Science Laboratory SRI International Menlo Park, CA Mar 21, 2014 SIGLOG: Executive Summary Logic is, and will continue to be, a central topic in computing. ACM has a core constituency with an interest in Logic and Computation (L&C), witnessed by 1 The many Turing Awards for work centrally in L&C 2 The ACM journal Transactions on Computational Logic 3 Several long-running conferences like LICS, CADE, CAV, ICLP, RTA, CSL, TACAS, and MFPS, and super-conferences like FLoC and ETAPS SIGLOG explores the connections between logic and computing covering theory, semantics, analysis, and synthesis. SIGLOG delivers value to its membership through the coordination of conferences, journals, newsletters, awards, and educational programs. SIGLOG enjoys significant synergies with several existing SIGs. Natarajan Shankar SIGLOG 2/9 Logic and Computation: Early Foundations Logicians like Alonzo Church, Kurt G¨odel, Alan Turing, John von Neumann, and Stephen Kleene have played a pioneering role in laying the foundation of computing. In the last 65 years, logic has become the calculus of computing underpinning the foundations of many diverse sub-fields. Natarajan Shankar SIGLOG 3/9 Logic and Computation: Turing Awardees Turing awardees for logic-related work include John McCarthy, Edsger Dijkstra, Dana Scott Michael Rabin, Tony Hoare Steve Cook, Robin Milner Amir Pnueli, Ed Clarke Allen Emerson Joseph Sifakis Leslie Lamport Natarajan Shankar SIGLOG 4/9 Interaction between SIGLOG and other SIGs Logic interacts in a significant way with AI (SIGAI), theory of computation (SIGACT), databases (SIGMOD) and knowledge bases (SIGKDD), programming languages (SIGPLAN), software engineering (SIGSOFT), computational biology (SIGBio), symbolic computing (SIGSAM), semantic web (SIGWEB), and hardware design (SIGDA and SIGARCH). -
© in This Web Service Cambridge University Press
Cambridge University Press 978-1-107-03903-2 - Modern Computer Algebra: Third Edition Joachim Von Zur Gathen and Jürgen Gerhard Index More information Index A page number is underlined (for example: 667) when it represents the definition or the main source of information about the index entry. For several key words that appear frequently only ranges of pages or the most important occurrences are indexed. AAECC ......................................... 21 analytic number theory . 508, 523, 532, 533, 652 Abbott,John .............................. 465, 734 AnalyticalEngine ............................... 312 Abel,NielsHenrik .............................. 373 Andrews, George Eyre . 644, 697, 729, 735 Abeliangroup ................................... 704 QueenAnne .................................... 219 Abramov, Serge˘ı Aleksandrovich (Abramov annihilating polynomial ......................... 341 SergeiAleksandroviq) 7, 641, 671, 675, annihilator, Ann( ) .............................. 343 734, 735 annusconfusionis· ................................ 83 Abramson, Michael . 738 Antoniou,Andreas ........................ 353, 735 Achilles ......................................... 162 Antoniszoon, Adrian (Metius) .................... 82 ACM . see Association for Computing Machinery Aoki,Kazumaro .......................... 542, 751 active attack . 580 Apéry, Roger . 671, 684, 697, 761 Adam,Charles .................................. 729 number ....................................... 684 Adams,DouglasNoël ..................... 729, 796 Apollonius of -
2021 ACM Awards Call for Nominations
Turing Award The A. M. Turing Award is ACM's oldest and most prestigious award. It is presented annually to an individual or a group of individuals who have made lasting contributions of a technical nature to the computing community. The long-term influence of a candidate’s work is taken into consideration, but there should be a singular outstanding and trend-setting technical achievement that constitutes the claim of the award. The award is presented each June at the ACM Awards Banquet and is accompanied by a prize of $1,000,000 plus travel expenses to the banquet. Financial support for the award is provided by Google Inc. ACM Prize in Computing The ACM Prize in Computing recognizes an early to mid-career fundamental and innovative contribution in computing theory or practice that through, its impact, and broad implications, exemplifies the greatest achievements of the discipline. The candidate’s contribution should be relatively recent (typically within the last decade), but enough time should have passed to evaluate impact. While there are no specific requirements as to age or time since last degree requirements, the candidate typically would be approaching mid-career. The Prize carries a prize of $250,000. Financial support for the award is provided by Infosys Ltd. ACM Frances E. Allen Award for Outstanding Mentoring The Frances E. Allen Award for Outstanding Mentoring will be presented for the first time in 2021. This award will recognize individuals who have exemplified excellence and/or innovation in mentoring with particular attention to individuals who have shown outstanding leadership in promoting diversity, equity, and inclusion in computing.