Orthogonal Frequency Division Multiplexing and Its Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3 Characterization of Communication Signals and Systems
63 3 Characterization of Communication Signals and Systems 3.1 Representation of Bandpass Signals and Systems Narrowband communication signals are often transmitted using some type of carrier modulation. The resulting transmit signal s(t) has passband character, i.e., the bandwidth B of its spectrum S(f) = s(t) is much smaller F{ } than the carrier frequency fc. S(f) B f f f − c c We are interested in a representation for s(t) that is independent of the carrier frequency fc. This will lead us to the so–called equiv- alent (complex) baseband representation of signals and systems. Schober: Signal Detection and Estimation 64 3.1.1 Equivalent Complex Baseband Representation of Band- pass Signals Given: Real–valued bandpass signal s(t) with spectrum S(f) = s(t) F{ } Analytic Signal s+(t) In our quest to find the equivalent baseband representation of s(t), we first suppress all negative frequencies in S(f), since S(f) = S( f) is valid. − The spectrum S+(f) of the resulting so–called analytic signal s+(t) is defined as S (f) = s (t) =2 u(f)S(f), + F{ + } where u(f) is the unit step function 0, f < 0 u(f) = 1/2, f =0 . 1, f > 0 u(f) 1 1/2 f Schober: Signal Detection and Estimation 65 The analytic signal can be expressed as 1 s+(t) = − S+(f) F 1{ } = − 2 u(f)S(f) F 1{ } 1 = − 2 u(f) − S(f) F { } ∗ F { } 1 The inverse Fourier transform of − 2 u(f) is given by F { } 1 j − 2 u(f) = δ(t) + . -
Protection of Data Transmission Systems from the Influence of Intersymbol Interference of Signals
59 Protection of data transmission systems from the influence of intersymbol interference of signals © Volodymyr Yartsev 1 and © Dmitry Gololobov 2 1 State University of Telecommunications, Kyiv, Ukraine 2 Taras Shevchenko National University of Kyiv, Ukraine [email protected], [email protected] Abstract. The problems of creating a regenerator of an optical system for trans- mitting discrete messages with the aim of protecting against the influence of in- tersymbol interference of signals using the methods of statistical theory for a mixture of probability distributions are considered. A demodulator adaptation model that calculates the weighted sum of 4 samples of the input signal and com- pares the resulting sum with a threshold value has been created and studied. The main operations for adaptation of the regenerator during demodulation of signals distorted by intersymbol interference are assigned under certain transmission conditions, which are formulated as the task of evaluating some parameters of the probability distribution of the mixture. A block diagram of a regenerating optical signal in which an algorithm for digital processing of a mixture is imple- mented is proposed. The analysis is carried out and the requirements for the pa- rameters of the analog-to-digital converter used in the regenerator are deter- mined. The results of modeling digital processing of a discrete test message to verify the process of adaptation of the device to the influence of intersymbol dis- tortions of signals are presented. The block diagram of a digital processing device is substantiated, in which high-speed nodes that perform real-time processing are combined with a microprocessor, which implements an algorithm for adapting the regenerator to specific message transmission conditions. -
VHF and UHF Signal Characteristics Observed on a Long Knife-Edge Diffraction Path A
JOURNAL OF RESEARCH of the National Bureau of Standards- D. Radio Propagatior. Vol. 65D, No. 5, September- Odober 1961 VHF and UHF Signal Characteristics Observed on a Long Knife-Edge Diffraction Path A. P. Barsis and R. S. Kirby (R eceived April 6, 1961) Contribution from Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colo. During 1959 and 1960 long-term transmission loss measurements were performed over a 223 kilom eter path in Eastern Colorado using frequencies of 100 and 751 megacycles per second. This path intersects P ikes P eak which forms a knife-edge type obstacle visible from both terminals. The transmission loss measurements have been analyzed in terms of diurnal a nd seaso nal variations in hourly medians and in instan taneous levels. As expected, results show t hat the long-term fading range is substantially less t han expected for t ropospheric seatter paths of comparable length. T ransmission loss levels were in general agreem ent wi t h predicted k ni fe-edge d iffraction propagation when a ll owance is made for rounding of t he knife edge. A technique for est imatin g long-term fading ra nges is presented a nd t he res ults are in good agreement with observations. Short-term variations in some case resemble t he space-wave fadeo uts commonly observed on within- the-horizon paths, a lthough other phe nomena may contribute to t he fadin g. Since t he foreground telTain was rough there was no evidence of direct a nd grou nd-refl ected lobe structure. -
Pulse Shape Filtering in Wireless Communication-A Critical Analysis
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 2, No.3, March 2011 Pulse Shape Filtering in Wireless Communication-A Critical Analysis A. S Kang Vishal Sharma Assistant Professor, Deptt of Electronics and Assistant Professor, Deptt of Electronics and Communication Engg Communication Engg SSG Panjab University Regional Centre University Institute of Engineering and Technology Hoshiarpur, Punjab, INDIA Panjab University Chandigarh - 160014, INDIA [email protected] [email protected] Abstract—The goal for the Third Generation (3G) of mobile networks. The standard that has emerged is based on ETSI's communications system is to seamlessly integrate a wide variety Universal Mobile Telecommunication System (UMTS) and is of communication services. The rapidly increasing popularity of commonly known as UMTS Terrestrial Radio Access (UTRA) mobile radio services has created a series of technological [1]. The access scheme for UTRA is Direct Sequence Code challenges. One of this is the need for power and spectrally Division Multiple Access (DSCDMA). The information is efficient modulation schemes to meet the spectral requirements of spread over a band of approximately 5 MHz. This wide mobile communications. Pulse shaping plays a crucial role in bandwidth has given rise to the name Wideband CDMA or spectral shaping in the modern wireless communication to reduce WCDMA.[8-9] the spectral bandwidth. Pulse shaping is a spectral processing technique by which fractional out of band power is reduced for The future mobile systems should support multimedia low cost, reliable , power and spectrally efficient mobile radio services. WCDMA systems have higher capacity, better communication systems. It is clear that the pulse shaping filter properties for combating multipath fading, and greater not only reduces inter-symbol interference (ISI), but it also flexibility in providing multimedia services with defferent reduces adjacent channel interference. -
Capacity of Flat and Freq.-Selective Fading Channels Linear Digital Modulation Review
Lecture 8 - EE 359: Wireless Communications - Winter 2020 Capacity of Flat and Freq.-Selective Fading Channels Linear Digital Modulation Review Lecture Outline • Channel Inversion with Fixed Rate Transmission • Comparison of Fading Channel Capacity under Different Schemes • Capacity of Frequency Selective Fading Channels • Review of Linear Digital Modulation • Performance of Linear Modulation in AWGN 1. Channel Inversion with Fixed Rate Transmission • Suboptimal transmission strategy where fading is inverted to maintain constant re- ceived SNR. • Simplifies system design and is used in CDMA systems for power control. • Capacity with channel inversion greatly reduced over that with optimal adaptation (capacity equals zero in Rayleigh fading). • Truncated inversion: performance greatly improved by inverting above a cutoff γ0. 2. Comparison of Fading Channel Capacity under Different Schemes: • Fading generally decreases channel capacity. • Rate/power adaptation have similar capacity as rate adaptation alone. • Rate adaptation alone has same capacity as no adaptation (RX CSI only) but rate adaptation is more practical due to complexity of ML decoding over long blocklengths that experience all fading values. This ML decoding is necesssary to achieve capacity in the RX CSI only case. • Truncated channel inversion is more practical than rate adaptation, with significant capacity gain over full channel inversion, which has zero capacity in Rayleigh fading. 3. Capacity of Frequency Selective Fading Channels • Capacity for time-invariant frequency-selective fading channels is a \water-filling” of power over frequency. • For time-varying ISI channels, capacity is unknown in general. Approximate by di- viding up the bandwidth subbands of width equal to the coherence bandwidth (same premise as multicarrier modulation) with independent fading in each subband. -
7.3.7 Video Cassette Recorders (VCR) 7.3.8 Video Disk Recorders
/7 7.3.5 Fiber-Optic Cables (FO) 7.3.6 Telephone Company Unes (TELCO) 7.3.7 Video Cassette Recorders (VCR) 7.3.8 Video Disk Recorders 7.4 Transmission Security 8. Consumer Equipment Issues 8.1 Complexity of Receivers 8.2 Receiver Input/Output Characteristics 8.2.1 RF Interface 8.2.2 Baseband Video Interface 8.2.3 Baseband Audio Interface 8.2.4 Interfacing with Ancillary Signals 8.2.5 Receiver Antenna Systems Requirements 8.3 Compatibility with Existing NTSC Consumer Equipment 8.3.1 RF Compatibility 8.3.2 Baseband Video Compatibility 8.3.3 Baseband Audio Compatibility 8.3.4 IDTV Receiver Compatibility 8.4 Allows Multi-Standard Display Devices 9. Other Considerations 9.1 Practicality of Near-Term Technological Implementation 9.2 Long-Term Viability/Rate of Obsolescence 9.3 Upgradability/Extendability 9.4 Studio/Plant Compatibility Section B: EXPLANATORY NOTES OF ATTRIBUTES/SYSTEMS MATRIX Items on the Attributes/System Matrix for which no explanatory note is provided were deemed to be self-explanatory. I. General Description (Proponent) section I shall be used by a system proponent to define the features of the system being proposed. The features shall be defined and organized under the headings ot the following subsections 1 through 4. section I. General Description (Proponent) shall consist of a description of the proponent system in narrative form, which covers all of the features and characteris tics of the system which the proponent wishe. to be included in the public record, and which will be used by various groups to analyze and understand the system proposed, and to compare with other propo.ed systems. -
Baseband Harmonic Distortions in Single Sideband Transmitter and Receiver System
Baseband Harmonic Distortions in Single Sideband Transmitter and Receiver System Kang Hsia Abstract: Telecommunications industry has widely adopted single sideband (SSB or complex quadrature) transmitter and receiver system, and one popular implementation for SSB system is to achieve image rejection through quadrature component image cancellation. Typically, during the SSB system characterization, the baseband fundamental tone and also the harmonic distortion products are important parameters besides image and LO feedthrough leakage. To ensure accurate characterization, the actual frequency locations of the harmonic distortion products are critical. While system designers may be tempted to assume that the harmonic distortion products are simply up-converted in the same fashion as the baseband fundamental frequency component, the actual distortion products may have surprising results and show up on the different side of spectrum. This paper discusses the theory of SSB system and the actual location of the baseband harmonic distortion products. Introduction Communications engineers have utilized SSB transmitter and receiver system because it offers better bandwidth utilization than double sideband (DSB) transmitter system. The primary cause of bandwidth overhead for the double sideband system is due to the image component during the mixing process. Given data transmission bandwidth of B, the former requires minimum bandwidth of B whereas the latter requires minimum bandwidth of 2B. While the filtering of the image component is one type of SSB implementation, another type of SSB system is to create a quadrature component of the signal and ideally cancels out the image through phase cancellation. M(t) M(t) COS(2πFct) Baseband Message Signal (BB) Modulated Signal (RF) COS(2πFct) Local Oscillator (LO) Signal Figure 1. -
Distortion Exponent of Parallel Fading Channels
Distortion Exponent of Parallel Fading Channels Deniz Gunduz, Elza Erkip Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 11201, USA [email protected], [email protected] Abstract— We consider the end-to-end distortion achieved by the fading process. Lack of channel state information at the transmitting a continuous amplitude source over M parallel, transmitter prevents the design of a channel code that achieves independent quasi-static fading channels. We analyze the high the instantaneous channel capacity and requires a code that SNR expected distortion behavior characterized by the distortion exponent. We first give an upper bound for the distortion performs well on the average. We aim to design a joint source- exponent in terms of the bandwidth ratio between the channel channel code that achieves the minimum expected end-to-end and the source assuming the availability of the channel state distortion. Our main focus is the high SNR behavior of this information at the transmitter. Then we propose joint source- expected distortion (ED). This behavior is characterized by the channel coding schemes based on layered source coding and distortion exponent denoted by ¢ and defined as multiple rate channel coding. We show that the upper bound is tight for large and small bandwidth ratios. For the rest, we log ED provide the best known distortion exponents in the literature. ¢ = ¡ lim : (1) SNR!1 log SNR By suitably scaling the bandwidth ratio, our results would also apply to block fading channels. When we consider digital transmission strategies that first compress the source and then transmit over the channel at I. -
EVOLUTION and CONVERGENCE in TELECOMMUNICATIONS 2002 2Nd Edition 2005
the united nations 11 abdus salam educational, scientific and cultural international organization ISBN 92-95003-16-0 centre for theoretical international atomic physics energy agency lecture notes EVOLUTION AND CONVERGENCE IN TELECOMMUNICATIONS 2002 2nd Edition 2005 editors S. Radicella D. Grilli ICTP Lecture Notes EVOLUTION AND CONVERGENCE IN TELECOMMUNICATIONS 11 February - 1 March 2002 Editors S. Radicella The Abdus Salam ICTP, Trieste, Italy D. Grilli The Abdus Salam ICTP, Trieste, Italy EVOLUTION AND CONVERGENCE IN TELECOMMUNICATIONS - First edition Copyright © 2002 by The Abdus Salam International Centre for Theoretical Physics The Abdus Salam ICTP has the irrevocable and indefinite authorization to reproduce and dissem• inate these Lecture Notes, in printed and/or computer readable form, from each author. ISBN 92-95003-16-0 Printed in Trieste by The Abdus Salam ICTP Publications & Printing Section iii PREFACE One of the main missions of the Abdus Salam International Centre for Theoretical Physics in Trieste, Italy, founded in 1964 by Abdus Salam, is to foster the growth of advanced studies and research in developing countries. To this aim, the Centre organizes a large number of schools and workshops in a great variety of physical and mathematical disciplines. Since unpublished material presented at the meetings might prove of great interest also to scientists who did not take part in the schools the Centre has decided to make it available through a new publication titled ICTP Lecture Note Series. It is hoped that this formally structured pedagogical material in advanced topics will be helpful to young students and researchers, in particular to those working under less favourable conditions. -
On Routing in Random Rayleigh Fading Networks Martin Haenggi, Senior Member, IEEE
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 4, JULY 2005 1553 On Routing in Random Rayleigh Fading Networks Martin Haenggi, Senior Member, IEEE Abstract—This paper addresses the routing problem for large loss probabilities increase with the number of hops (unless the wireless networks of randomly distributed nodes with Rayleigh transmit power is adapted). fading channels. First, we establish that the distances between To overcome some of these limitations of the “disk model,” neighboring nodes in a Poisson point process follow a generalized Rayleigh distribution. Based on this result, it is then shown that, we employ a simple Rayleigh fading link model that relates given an end-to-end packet delivery probability (as a quality of transmit power, large-scale path loss, and the success of a service requirement), the energy benefits of routing over many transmission. The end-to-end packet delivery probability over short hops are significantly smaller than for deterministic network a multihop route is the product of the link-level reception models that are based on the geometric disk abstraction. If the probabilities. permissible delay for short-hop routing and long-hop routing is the same, it turns out that routing over fewer but longer hops may While fading has been considered in the context of packet even outperform nearest-neighbor routing, in particular for high networks [16], [17], its impact on the network (and higher) end-to-end delivery probabilities. layers is largely an open problem. This paper attempts to shed Index Terms—Ad hoc networks, communication systems, fading some light on this cross-layer issue by analyzing the perfor- channels, Poisson processes, probability, routing. -
Baseband Video Testing with Digital Phosphor Oscilloscopes
Application Note Baseband Video Testing With Digital Phosphor Oscilloscopes Video signals are complex pose instrument that can pro- This application note demon- waveforms comprised of sig- vide accurate information – strates the use of a Tektronix nals representing a picture as quickly and easily. Finally, to TDS 700D-series Digital well as the timing informa- display all of the video wave- Phosphor Oscilloscope to tion needed to display the form details, a fast acquisi- make a variety of common picture. To capture and mea- tion technology teamed with baseband video measure- sure these complex signals, an intensity-graded display ments and examines some of you need powerful instru- give the confidence and the critical measurement ments tailored for this appli- insight needed to detect and issues. cation. But, because of the diagnose problems with the variety of video standards, signal. you also need a general-pur- Copyright © 1998 Tektronix, Inc. All rights reserved. Video Basics Video signals come from a for SMPTE systems, etc. The active portion of the video number of sources, including three derived component sig- signal. Finally, the synchro- cameras, scanners, and nals can then be distributed nization information is graphics terminals. Typically, for processing. added. Although complex, the baseband video signal Processing this composite signal is a sin- begins as three component gle signal that can be carried analog or digital signals rep- In the processing stage, video on a single coaxial cable. resenting the three primary component signals may be combined to form a single Component Video Signals. color elements – the Red, Component signals have an Green, and Blue (RGB) com- composite video signal (as in NTSC or PAL systems), advantage of simplicity in ponent signals. -
Digital Baseband Modulation Outline • Later Baseband & Bandpass Waveforms Baseband & Bandpass Waveforms, Modulation
Digital Baseband Modulation Outline • Later Baseband & Bandpass Waveforms Baseband & Bandpass Waveforms, Modulation A Communication System Dig. Baseband Modulators (Line Coders) • Sequence of bits are modulated into waveforms before transmission • à Digital transmission system consists of: • The modulator is based on: • The symbol mapper takes bits and converts them into symbols an) – this is done based on a given table • Pulse Shaping Filter generates the Gaussian pulse or waveform ready to be transmitted (Baseband signal) Waveform; Sampled at T Pulse Amplitude Modulation (PAM) Example: Binary PAM Example: Quaternary PAN PAM Randomness • Since the amplitude level is uniquely determined by k bits of random data it represents, the pulse amplitude during the nth symbol interval (an) is a discrete random variable • s(t) is a random process because pulse amplitudes {an} are discrete random variables assuming values from the set AM • The bit period Tb is the time required to send a single data bit • Rb = 1/ Tb is the equivalent bit rate of the system PAM T= Symbol period D= Symbol or pulse rate Example • Amplitude pulse modulation • If binary signaling & pulse rate is 9600 find bit rate • If quaternary signaling & pulse rate is 9600 find bit rate Example • Amplitude pulse modulation • If binary signaling & pulse rate is 9600 find bit rate M=2à k=1à bite rate Rb=1/Tb=k.D = 9600 • If quaternary signaling & pulse rate is 9600 find bit rate M=2à k=1à bite rate Rb=1/Tb=k.D = 9600 Binary Line Coding Techniques • Line coding - Mapping of binary information sequence into the digital signal that enters the baseband channel • Symbol mapping – Unipolar - Binary 1 is represented by +A volts pulse and binary 0 by no pulse during a bit period – Polar - Binary 1 is represented by +A volts pulse and binary 0 by –A volts pulse.