Rational Normal Curves on Complete Intersections
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kernelization of the Subset General Position Problem in Geometry Jean-Daniel Boissonnat, Kunal Dutta, Arijit Ghosh, Sudeshna Kolay
Kernelization of the Subset General Position problem in Geometry Jean-Daniel Boissonnat, Kunal Dutta, Arijit Ghosh, Sudeshna Kolay To cite this version: Jean-Daniel Boissonnat, Kunal Dutta, Arijit Ghosh, Sudeshna Kolay. Kernelization of the Subset General Position problem in Geometry. MFCS 2017 - 42nd International Symposium on Mathematical Foundations of Computer Science, Aug 2017, Alborg, Denmark. 10.4230/LIPIcs.MFCS.2017.25. hal-01583101 HAL Id: hal-01583101 https://hal.inria.fr/hal-01583101 Submitted on 6 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Kernelization of the Subset General Position problem in Geometry Jean-Daniel Boissonnat1, Kunal Dutta1, Arijit Ghosh2, and Sudeshna Kolay3 1 INRIA Sophia Antipolis - Méditerranée, France 2 Indian Statistical Institute, Kolkata, India 3 Eindhoven University of Technology, Netherlands. Abstract In this paper, we consider variants of the Geometric Subset General Position problem. In defining this problem, a geometric subsystem is specified, like a subsystem of lines, hyperplanes or spheres. The input of the problem is a set of n points in Rd and a positive integer k. The objective is to find a subset of at least k input points such that this subset is in general position with respect to the specified subsystem. -
Ribbons and Their Canonical Embeddings
transactions of the american mathematical society Volume 347, Number 3, March 1995 RIBBONS AND THEIR CANONICAL EMBEDDINGS DAVE BAYER AND DAVID EISENBUD Abstract. We study double structures on the projective line and on certain other varieties, with a view to having a nice family of degenerations of curves and K3 surfaces of given genus and Clifford index. Our main interest is in the canonical embeddings of these objects, with a view toward Green's Conjecture on the free resolutions of canonical curves. We give the canonical embeddings explicitly, and exhibit an approach to determining a minimal free resolution. Introduction What is the limit of the canonical model of a smooth curve as the curve degenerates to a hyperelliptic curve? "A ribbon" — more precisely "a ribbon on P1 " — may be defined as the answer to this riddle. A ribbon on P1 is a double structure on the projective line. Such ribbons represent a little-studied degeneration of smooth curves that shows promise especially for dealing with questions about the Clifford indices of curves. The theory of ribbons is in some respects remarkably close to that of smooth curves, but ribbons are much easier to construct and work with. In this paper we discuss the classification of ribbons and their maps. In particular, we construct the "holomorphic differentials" — sections of the canonical bundle — of a ribbon, and study properties of the canonical embedding. Aside from the genus, the main invariant of a ribbon is a number we call the "Clifford index", although the definition for it that we give is completely different from the definition for smooth curves. -
The Geometry of Syzygies
The Geometry of Syzygies A second course in Commutative Algebra and Algebraic Geometry David Eisenbud University of California, Berkeley with the collaboration of Freddy Bonnin, Clement´ Caubel and Hel´ ene` Maugendre For a current version of this manuscript-in-progress, see www.msri.org/people/staff/de/ready.pdf Copyright David Eisenbud, 2002 ii Contents 0 Preface: Algebra and Geometry xi 0A What are syzygies? . xii 0B The Geometric Content of Syzygies . xiii 0C What does it mean to solve linear equations? . xiv 0D Experiment and Computation . xvi 0E What’s In This Book? . xvii 0F Prerequisites . xix 0G How did this book come about? . xix 0H Other Books . 1 0I Thanks . 1 0J Notation . 1 1 Free resolutions and Hilbert functions 3 1A Hilbert’s contributions . 3 1A.1 The generation of invariants . 3 1A.2 The study of syzygies . 5 1A.3 The Hilbert function becomes polynomial . 7 iii iv CONTENTS 1B Minimal free resolutions . 8 1B.1 Describing resolutions: Betti diagrams . 11 1B.2 Properties of the graded Betti numbers . 12 1B.3 The information in the Hilbert function . 13 1C Exercises . 14 2 First Examples of Free Resolutions 19 2A Monomial ideals and simplicial complexes . 19 2A.1 Syzygies of monomial ideals . 23 2A.2 Examples . 25 2A.3 Bounds on Betti numbers and proof of Hilbert’s Syzygy Theorem . 26 2B Geometry from syzygies: seven points in P3 .......... 29 2B.1 The Hilbert polynomial and function. 29 2B.2 . and other information in the resolution . 31 2C Exercises . 34 3 Points in P2 39 3A The ideal of a finite set of points . -
Homology Stratifications and Intersection Homology 1 Introduction
ISSN 1464-8997 (on line) 1464-8989 (printed) 455 Geometry & Topology Monographs Volume 2: Proceedings of the Kirbyfest Pages 455–472 Homology stratifications and intersection homology Colin Rourke Brian Sanderson Abstract A homology stratification is a filtered space with local ho- mology groups constant on strata. Despite being used by Goresky and MacPherson [3] in their proof of topological invariance of intersection ho- mology, homology stratifications do not appear to have been studied in any detail and their properties remain obscure. Here we use them to present a simplified version of the Goresky–MacPherson proof valid for PL spaces, and we ask a number of questions. The proof uses a new technique, homology general position, which sheds light on the (open) problem of defining generalised intersection homology. AMS Classification 55N33, 57Q25, 57Q65; 18G35, 18G60, 54E20, 55N10, 57N80, 57P05 Keywords Permutation homology, intersection homology, homology stratification, homology general position Rob Kirby has been a great source of encouragement. His help in founding the new electronic journal Geometry & Topology has been invaluable. It is a great pleasure to dedicate this paper to him. 1 Introduction Homology stratifications are filtered spaces with local homology groups constant on strata; they include stratified sets as special cases. Despite being used by Goresky and MacPherson [3] in their proof of topological invariance of intersec- tion homology, they do not appear to have been studied in any detail and their properties remain obscure. It is the purpose of this paper is to publicise these neglected but powerful tools. The main result is that the intersection homology groups of a PL homology stratification are given by singular cycles meeting the strata with appropriate dimension restrictions. -
Canonical Bundle Formulae for a Family of Lc-Trivial Fibrations
CANONICAL BUNDLE FORMULAE FOR A FAMILY OF LC-TRIVIAL FIBRATIONS Abstract. We give a sufficient condition for divisorial and fiber space adjunc- tion to commute. We generalize the log canonical bundle formula of Fujino and Mori to the relative case. Contents 1. Introduction 1 2. Preliminaries 2 3. Lc-trivial fibrations 3 4. Proofs 6 References 6 1. Introduction A lc-trivial fibration consists of a (sub-)pair (X; B), and a contraction f : X −! Z, such that KZ + B ∼Q;Z 0, and (X; B) is (sub) lc over the generic point of Z. Lc-trivial fibrations appear naturally in higher dimensional algebraic geometry: the Minimal Model Program and the Abundance Conjecture predict that any log canonical pair (X; B), such that KX + B is pseudo-effective, has a birational model with a naturally defined lc-trivial fibration. Intuitively, one can think of (X; B) as being constructed from the base Z and a general fiber (Xz;Bz). This relation is made more precise by the canonical bundle formula ∗ KX + B ∼Q f (KZ + MZ + BZ ) a result first proven by Kodaira for minimal elliptic surfaces [11, 12], and then gen- eralized by the work of Ambro, Fujino-Mori and Kawamata [1, 2, 6, 10]. Here, BZ measures the singularities of the fibers, while MZ measures, at least conjecturally, the variation in moduli of the general fiber. It is then possible to relate the singu- larities of the total space with those of the base: for example, [5, Proposition 4.16] shows that (X; B) and (Z; MZ + BZ ) are in the same class of singularities. -
Foundations of Algebraic Geometry Class 46
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 46 RAVI VAKIL CONTENTS 1. Curves of genus 4 and 5 1 2. Curves of genus 1: the beginning 3 1. CURVES OF GENUS 4 AND 5 We begin with two exercises in general genus, and then go back to genus 4. 1.A. EXERCISE. Suppose C is a genus g curve. Show that if C is not hyperelliptic, then the canonical bundle gives a closed immersion C ,! Pg-1. (In the hyperelliptic case, we have already seen that the canonical bundle gives us a double cover of a rational normal curve.) Hint: follow the genus 3 case. Such a curve is called a canonical curve, and this closed immersion is called the canonical embedding of C. 1.B. EXERCISE. Suppose C is a curve of genus g > 1, over a field k that is not algebraically closed. Show that C has a closed point of degree at most 2g - 2 over the base field. (For comparison: if g = 1, it turns out that there is no such bound independent of k!) We next consider nonhyperelliptic curves C of genus 4. Note that deg K = 6 and h0(C; K) = 4, so the canonical map expresses C as a sextic curve in P3. We shall see that all such C are complete intersections of quadric surfaces and cubic surfaces, and con- versely all nonsingular complete intersections of quadrics and cubics are genus 4 non- hyperelliptic curves, canonically embedded. By Riemann-Roch, h0(C; K⊗2) = deg K⊗2 - g + 1 = 12 - 4 + 1 = 9: 0 P3 O ! 0 K⊗2 2 K 4+1 We have the restriction map H ( ; (2)) H (C; ), and dim Sym Γ(C; ) = 2 = 10. -
Hyperbolic Monopoles and Rational Normal Curves
HYPERBOLIC MONOPOLES AND RATIONAL NORMAL CURVES Nigel Hitchin (Oxford) Edinburgh April 20th 2009 204 Research Notes A NOTE ON THE TANGENTS OF A TWISTED CUBIC B Y M. F. ATIYAH Communicated by J. A. TODD Received 8 May 1951 1. Consider a rational normal cubic C3. In the Klein representation of the lines of $3 by points of a quadric Q in Ss, the tangents of C3 are represented by the points of a rational normal quartic O4. It is the object of this note to examine some of the consequences of this correspondence, in terms of the geometry associated with the two curves. 2. C4 lies on a Veronese surface V, which represents the congruence of chords of O3(l). Also C4 determines a 4-space 2 meeting D. in Qx, say; and since the surface of tangents of O3 is a developable, consecutive tangents intersect, and therefore the tangents to C4 lie on Q, and so on £lv Hence Qx, containing the sextic surface of tangents to C4, must be the quadric threefold / associated with C4, i.e. the quadric determining the same polarity as C4 (2). We note also that the tangents to C4 correspond in #3 to the plane pencils with vertices on O3, and lying in the corresponding osculating planes. 3. We shall prove that the surface U, which is the locus of points of intersection of pairs of osculating planes of C4, is the projection of the Veronese surface V from L, the pole of 2, on to 2. Let P denote a point of C3, and t, n the tangent line and osculating plane at P, and let T, T, w denote the same for the corresponding point of C4. -
Interpolation
Current Developments in Algebraic Geometry MSRI Publications Volume 59, 2011 Interpolation JOE HARRIS This is an overview of interpolation problems: when, and how, do zero- dimensional schemes in projective space fail to impose independent conditions on hypersurfaces? 1. The interpolation problem 165 2. Reduced schemes 167 3. Fat points 170 4. Recasting the problem 174 References 175 1. The interpolation problem We give an overview of the exciting class of problems in algebraic geometry known as interpolation problems: basically, when points (or more generally zero-dimensional schemes) in projective space may fail to impose independent conditions on polynomials of a given degree, and by how much. We work over an arbitrary field K . Our starting point is this elementary theorem: Theorem 1.1. Given any z1;::: zdC1 2 K and a1;::: adC1 2 K , there is a unique f 2 K TzU of degree at most d such that f .zi / D ai ; i D 1;:::; d C 1: More generally: Theorem 1.2. Given any z1;:::; zk 2 K , natural numbers m1;:::; mk 2 N with P mi D d C 1, and ai; j 2 K; 1 ≤ i ≤ kI 0 ≤ j ≤ mi − 1; there is a unique f 2 K TzU of degree at most d such that . j/ f .zi / D ai; j for all i; j: The problem we’ll address here is simple: What can we say along the same lines for polynomials in several variables? 165 166 JOE HARRIS First, introduce some language/notation. The “starting point” statement Theorem 1.1 says that the evaluation map 0 ! L H .ᏻP1 .d// K pi is surjective; or, equivalently, 1 D h .Ᏽfp1;:::;peg.d// 0 1 for any distinct points p1;:::; pe 2 P whenever e ≤ d C 1. -
Algebraic Curves and Surfaces
Notes for Curves and Surfaces Instructor: Robert Freidman Henry Liu April 25, 2017 Abstract These are my live-texed notes for the Spring 2017 offering of MATH GR8293 Algebraic Curves & Surfaces . Let me know when you find errors or typos. I'm sure there are plenty. 1 Curves on a surface 1 1.1 Topological invariants . 1 1.2 Holomorphic invariants . 2 1.3 Divisors . 3 1.4 Algebraic intersection theory . 4 1.5 Arithmetic genus . 6 1.6 Riemann{Roch formula . 7 1.7 Hodge index theorem . 7 1.8 Ample and nef divisors . 8 1.9 Ample cone and its closure . 11 1.10 Closure of the ample cone . 13 1.11 Div and Num as functors . 15 2 Birational geometry 17 2.1 Blowing up and down . 17 2.2 Numerical invariants of X~ ...................................... 18 2.3 Embedded resolutions for curves on a surface . 19 2.4 Minimal models of surfaces . 23 2.5 More general contractions . 24 2.6 Rational singularities . 26 2.7 Fundamental cycles . 28 2.8 Surface singularities . 31 2.9 Gorenstein condition for normal surface singularities . 33 3 Examples of surfaces 36 3.1 Rational ruled surfaces . 36 3.2 More general ruled surfaces . 39 3.3 Numerical invariants . 41 3.4 The invariant e(V ).......................................... 42 3.5 Ample and nef cones . 44 3.6 del Pezzo surfaces . 44 3.7 Lines on a cubic and del Pezzos . 47 3.8 Characterization of del Pezzo surfaces . 50 3.9 K3 surfaces . 51 3.10 Period map . 54 a 3.11 Elliptic surfaces . -
General Introduction to K3 Surfaces
General introduction to K3 surfaces Svetlana Makarova MIT Mathematics Contents 1 Algebraic K3 surfaces 1 1.1 Definition of K3 surfaces . .1 1.2 Classical invariants . .3 2 Complex K3 surfaces 9 2.1 Complex K3 surfaces . .9 2.2 Hodge structures . 11 2.3 Period map . 12 References 16 1 Algebraic K3 surfaces 1.1 Definition of K3 surfaces Let K be an arbitrary field. Here, a variety over K will mean a separated, geometrically integral scheme of finite type over K.A surface is a variety of dimension two. If X is a variety over of dimension n, then ! will denote its canonical class, that is ! =∼ Ωn . K X X X=K For a sheaf F on a scheme X, I will write H• (F) for H• (X; F), unless that leads to ambiguity. Definition 1.1.1. A K3 surface over K is a complete non-singular surface X such that ∼ 1 !X = OX and H (X; OX ) = 0. Corollary 1.1.1. One can observe several simple facts for a K3 surface: ∼ 1.Ω X = TX ; 2 ∼ 0 2.H (OX ) = H (OX ); 3. χ(OX ) = 2 dim Γ(OX ) = 2. 1 Fact 1.1.2. Any smooth complete surface over an algebraically closed field is projective. This fact is an immediate corollary of the Zariski{Goodman theorem which states that for any open affine U in a smooth complete surface X (over an algebraically closed field), the closed subset X nU is connected and of pure codimension one in X, and moreover supports an ample effective divisor. -
256B Algebraic Geometry
256B Algebraic Geometry David Nadler Notes by Qiaochu Yuan Spring 2013 1 Vector bundles on the projective line This semester we will be focusing on coherent sheaves on smooth projective complex varieties. The organizing framework for this class will be a 2-dimensional topological field theory called the B-model. Topics will include 1. Vector bundles and coherent sheaves 2. Cohomology, derived categories, and derived functors (in the differential graded setting) 3. Grothendieck-Serre duality 4. Reconstruction theorems (Bondal-Orlov, Tannaka, Gabriel) 5. Hochschild homology, Chern classes, Grothendieck-Riemann-Roch For now we'll introduce enough background to talk about vector bundles on P1. We'll regard varieties as subsets of PN for some N. Projective will mean that we look at closed subsets (with respect to the Zariski topology). The reason is that if p : X ! pt is the unique map from such a subset X to a point, then we can (derived) push forward a bounded complex of coherent sheaves M on X to a bounded complex of coherent sheaves on a point Rp∗(M). Smooth will mean the following. If x 2 X is a point, then locally x is cut out by 2 a maximal ideal mx of functions vanishing on x. Smooth means that dim mx=mx = dim X. (In general it may be bigger.) Intuitively it means that locally at x the variety X looks like a manifold, and one way to make this precise is that the completion of the local ring at x is isomorphic to a power series ring C[[x1; :::xn]]; this is the ring where Taylor series expansions live. -
Counting Bitangents with Stable Maps David Ayalaa, Renzo Cavalierib,∗ Adepartment of Mathematics, Stanford University, 450 Serra Mall, Bldg
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Expo. Math. 24 (2006) 307–335 www.elsevier.de/exmath Counting bitangents with stable maps David Ayalaa, Renzo Cavalierib,∗ aDepartment of Mathematics, Stanford University, 450 Serra Mall, Bldg. 380, Stanford, CA 94305-2125, USA bDepartment of Mathematics, University of Utah, 155 South 1400 East, Room 233, Salt Lake City, UT 84112-0090, USA Received 9 May 2005; received in revised form 13 December 2005 Abstract This paper is an elementary introduction to the theory of moduli spaces of curves and maps. As an application to enumerative geometry, we show how to count the number of bitangent lines to a projective plane curve of degree d by doing intersection theory on moduli spaces. ᭧ 2006 Elsevier GmbH. All rights reserved. MSC 2000: 14N35; 14H10; 14C17 Keywords: Moduli spaces; Rational stable curves; Rational stable maps; Bitangent lines 1. Introduction 1.1. Philosophy and motivation The most apparent goal of this paper is to answer the following enumerative question: What is the number NB(d) of bitangent lines to a generic projective plane curve Z of degree d? This is a very classical question, that has been successfully solved with fairly elementary methods (see for example [1, p. 277]). Here, we propose to approach it from a very modern ∗ Corresponding author. E-mail addresses: [email protected] (D. Ayala), [email protected] (R. Cavalieri). 0723-0869/$ - see front matter ᭧ 2006 Elsevier GmbH. All rights reserved. doi:10.1016/j.exmath.2006.01.003 308 D.