Source Analysis of Multiplet Earthquakes (Two Case Studies in Iran)

Total Page:16

File Type:pdf, Size:1020Kb

Source Analysis of Multiplet Earthquakes (Two Case Studies in Iran) Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1918 Source analysis of multiplet earthquakes (two case studies in Iran) SAMAR AMINI ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0909-5 UPPSALA urn:nbn:se:uu:diva-407247 2020 Dissertation presented at Uppsala University to be publicly examined in Hambergsallen, Geocentrum, Villavägen 16, Uppsala, Friday, 12 June 2020 at 10:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Kuvvet Atakan (University of Bergen, Norway). Abstract Amini, S. 2020. Source analysis of multiplet earthquakes (two case studies in Iran). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1918. 45 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0909-5. Multiplet earthquakes are large earthquakes of similar magnitude which occur close in time in the same limited geographical area. They are not common but they considerably increase the potential hazard in the area in which they occur. This thesis studies source properties and triggering mechanisms of two sets of multiplet events in Iran, which both occurred in unexpected areas, but close to some major active fault systems. The first multiplet is an earthquake doublet (Mw 6.5 and Mw 6.4) which occurred in northwestern Iran and caused more than 300 fatalities and significant injuries. In paper I, a teleseismic body-waveform inversion was used to deduce the slip distribution pattern on the fault plane of the first mainshock. The estimated slip pattern was utilized to calculate the Coulomb stress changes on the second fault plane and on the following aftershocks. Based on this analysis, the ambiguity between the primary and auxiliary fault plane of the second mainshock could be resolved. The second set of events is a triplet (Mw 6.1 - 6.0) that occurred in eastern Iran, close to the Kerman province. In paper II, the rupture propagation patterns of the three mainshocks were analyzed using Empirical Green’s Function (EGF) deconvolution. Two different approaches were used: One, the analysis of the azimuthal variation of the apparent rupture duration based on the width of the observed relative source time functions, and the second, the analysis of along-strike rupture directivity by assessing azimuthal variations of the relative amplitude spectra. The second approach was also used to investigate the rupture directivity of the largest aftershocks in the sequence (Mw 5 - 5.5). A clear tendency for rupture propagation towards the northwest was observed for the sequence, which suggests that the regional stress field has a central role in controlling the rupture propagation direction. In paper III, the slip distribution patterns of the triplet earthquakes were analyzed using teleseismic body-waveform inversion, and the similarities and differences in the rupture processes of the three mainshocks were investigated. Using the Coulomb stress analyses, the stress interactions between the mainshocks were examined, leading to identification of the primary and auxiliary planes. Finally, we suggest that the hazard estimates in complex continental regions such as Iran need to consider the probability of multiplets, which might allow a reduction of the seismic risk associated to the occurrence of further large earthquakes subsequent to a devastating earthquake. Keywords: Multiplet earthquakes, slip inversion, Coulomb stress, rupture directivity Samar Amini, Department of Earth Sciences, Geophysics, Villav. 16, Uppsala University, SE-75236 Uppsala, Sweden. © Samar Amini 2020 ISSN 1651-6214 ISBN 978-91-513-0909-5 urn:nbn:se:uu:diva-407247 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-407247) Dedicated to those, who made this happen Supervisor Roland Roberts Proffessor at Department of Earth Sciences, Geophysics Uppsala University, Uppsala, Sweden Assistant Supervisor Björn Lund Associate Professor at Department of Earth Sciences, Geophysics Uppsala University, Uppsala, Sweden Assistant Supervisor Hossein Shomali Researcher at Department of Earth Sciences, Geophysics Uppsala University, Uppsala, Sweden Opponent Kuvvet Atakan Proffessor at Department of Earth Sciences University of Bergen, Bergen, Norway List of papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Amini, S., Roberts, R., Raeesi, M., Shomali, Z.H., Lund, B., Zarifi, Z. (2018) Fault slip and identification of the second fault plane in the Varzeghan earthquake doublet. Journal of Seismology, 22, 815-831 II Amini, S., Roberts, R., Lund, B.(2020) Directivity analysis of the 2017 December Kerman earthquakes in Eastern Iran. Journal of Seismology, DOI: 10.1007/s10950-020-09913-8 III Amini, S., Raeesi, M., Roberts, R. (2020) Fault slip and rupture properties of the December 2017 Hojedk triplet in Eastern Iran. submitted to Geophysical Journal International Reprints were made with permission from the publishers. An additional journal article, published during my Ph.D. studies, that is not included in the thesis is: Raeesi, M., Zarifi, Z., Nilfouroushan, F., Amini, S., Tiampo, K. (2017) Quantitative Analysis of Seismicity in Iran. Pure Appl. Geophys. 174, 793- 833 Contents 1 Introduction .................................................................................................. 9 2 Study area ................................................................................................... 12 2.1 Seismotectonic setting of northwestern Iran and the doublet on August 11, 2012 ............................................................................. 13 2.2 Seismotectonic setting of eastern Iran and the triplet on December 2017 .............................................................................. 13 3 Methodology .............................................................................................. 16 3.1 Waveform Modeling ...................................................................... 16 3.2 Coulomb stress ............................................................................... 19 3.3 Directivity analysis and Empirical Green’s Function .................. 20 4 Summary of papers .................................................................................... 23 4.1 Paper I: Fault slip and identification of the second fault plane in the Varzeghan earthquake doublet ................................................ 23 4.1.1 Motivation ........................................................................ 23 4.1.2 Results .............................................................................. 23 4.2 Paper II: Directivity analyses of the 2017 December Kerman earthquakes in Eastern Iran ........................................................... 27 4.2.1 Motivation ........................................................................ 27 4.2.2 Results .............................................................................. 27 4.3 Paper III: Investigations of rupture properties of the December 2017 Hojedk triplet in Eastern Iran .............................................. 31 4.3.1 Motivation ........................................................................ 31 4.3.2 Results .............................................................................. 31 5 Concluding remarks .................................................................................. 36 6 Sammanfattning på svenska ...................................................................... 39 7 Acknowledgements ................................................................................... 41 References ........................................................................................................ 43 Abbreviations 3D Three-dimensional EGF Empirical Green’s Function E-W East-West g-CMT Global Centroid Moment Tensor Hz Hertz km kilometer km/s kilometer per second Ml local Magnitude Mw moment Magnitude NE Northeast NW Northwest N-S North-South s second SE Southeast SW Southwest IRIS Incorporated Research Institutions for Seismology IRSC Iranian Seismological Center RSTF Relative-source-time-function STF Source-time-function 1. Introduction Throughout human history some areas have been repeatedly devastated by earthquakes, the origins of which remained a mystery. As civilization and human constructions developed, understanding and mitigating the effects of these destructive events became ever more important. A major step towards the development of our understanding of earthquakes occurred in 1668 when Hooke introduced the theory of elasticity, explaining the deformation of solid objects due to external forces. Hooke’s law was extensively used to explain various aspects of the mechanical behavior of material and physical phenom- ena including earthquakes. Two and a half centuries later, the faulting the- ory of earthquakes was presented by Reid (1910) whose analysis was based on investigations of the San Andreas fault and the 1906 San Francisco earth- quakes. Reid’s concept, known as the elastic rebound theory, explains earth- quakes as the sudden release of strain energy which has been accumulated slowly on two sides of a fault plane over an extended period of time. The theory was a major conceptual development in understanding the mechanisms of earthquakes. Further important developments towards understanding the large scale geological processes causing earthquakes came in the mid-1960’s after the installation of the World Wide Standardized
Recommended publications
  • Coulomb Stresses Imparted by the 25 March
    LETTER Earth Planets Space, 60, 1041–1046, 2008 Coulomb stresses imparted by the 25 March 2007 Mw=6.6 Noto-Hanto, Japan, earthquake explain its ‘butterfly’ distribution of aftershocks and suggest a heightened seismic hazard Shinji Toda Active Fault Research Center, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), site 7, 1-1-1 Higashi Tsukuba, Ibaraki 305-8567, Japan (Received June 26, 2007; Revised November 17, 2007; Accepted November 22, 2007; Online published November 7, 2008) The well-recorded aftershocks and well-determined source model of the Noto Hanto earthquake provide an excellent opportunity to examine earthquake triggering associated with a blind thrust event. The aftershock zone rapidly expanded into a ‘butterfly pattern’ predicted by static Coulomb stress transfer associated with thrust faulting. We found that abundant aftershocks occurred where the static Coulomb stress increased by more than 0.5 bars, while few shocks occurred in the stress shadow calculated to extend northwest and southeast of the Noto Hanto rupture. To explore the three-dimensional distribution of the observed aftershocks and the calculated stress imparted by the mainshock, we further resolved Coulomb stress changes on the nodal planes of all aftershocks for which focal mechanisms are available. About 75% of the possible faults associated with the moderate-sized aftershocks were calculated to have been brought closer to failure by the mainshock, with the correlation best for low apparent fault friction. Our interpretation is that most of the aftershocks struck on the steeply dipping source fault and on a conjugate northwest-dipping reverse fault contiguous with the source fault.
    [Show full text]
  • Intraplate Earthquakes in North China
    5 Intraplate earthquakes in North China mian liu, hui wang, jiyang ye, and cheng jia Abstract North China, or geologically the North China Block (NCB), is one of the most active intracontinental seismic regions in the world. More than 100 large (M > 6) earthquakes have occurred here since 23 BC, including the 1556 Huax- ian earthquake (M 8.3), the deadliest one in human history with a death toll of 830,000, and the 1976 Tangshan earthquake (M 7.8) which killed 250,000 people. The cause of active crustal deformation and earthquakes in North China remains uncertain. The NCB is part of the Archean Sino-Korean craton; ther- mal rejuvenation of the craton during the Mesozoic and early Cenozoic caused widespread extension and volcanism in the eastern part of the NCB. Today, this region is characterized by a thin lithosphere, low seismic velocity in the upper mantle, and a low and flat topography. The western part of the NCB consists of the Ordos Plateau, a relic of the craton with a thick lithosphere and little inter- nal deformation and seismicity, and the surrounding rift zones of concentrated earthquakes. The spatial pattern of the present-day crustal strain rates based on GPS data is comparable to that of the total seismic moment release over the past 2,000 years, but the comparison breaks down when using shorter time windows for seismic moment release. The Chinese catalog shows long-distance roaming of large earthquakes between widespread fault systems, such that no M ࣙ 7.0 events ruptured twice on the same fault segment during the past 2,000 years.
    [Show full text]
  • Seismic Rate Variations Prior to the 2010 Maule, Chile MW 8.8 Giant Megathrust Earthquake
    www.nature.com/scientificreports OPEN Seismic rate variations prior to the 2010 Maule, Chile MW 8.8 giant megathrust earthquake Benoit Derode1*, Raúl Madariaga1,2 & Jaime Campos1 The MW 8.8 Maule earthquake is the largest well-recorded megathrust earthquake reported in South America. It is known to have had very few foreshocks due to its locking degree, and a strong aftershock activity. We analyze seismic activity in the area of the 27 February 2010, MW 8.8 Maule earthquake at diferent time scales from 2000 to 2019. We diferentiate the seismicity located inside the coseismic rupture zone of the main shock from that located in the areas surrounding the rupture zone. Using an original spatial and temporal method of seismic comparison, we fnd that after a period of seismic activity, the rupture zone at the plate interface experienced a long-term seismic quiescence before the main shock. Furthermore, a few days before the main shock, a set of seismic bursts of foreshocks located within the highest coseismic displacement area is observed. We show that after the main shock, the seismic rate decelerates during a period of 3 years, until reaching its initial interseismic value. We conclude that this megathrust earthquake is the consequence of various preparation stages increasing the locking degree at the plate interface and following an irregular pattern of seismic activity at large and short time scales. Giant subduction earthquakes are the result of a long-term stress localization due to the relative movement of two adjacent plates. Before a large earthquake, the interface between plates is locked and concentrates the exter- nal forces, until the rock strength becomes insufcient, initiating the sudden rupture along the plate interface.
    [Show full text]
  • Foreshock Sequences and Short-Term Earthquake Predictability on East Pacific Rise Transform Faults
    NATURE 3377—9/3/2005—VBICKNELL—137936 articles Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults Jeffrey J. McGuire1, Margaret S. Boettcher2 & Thomas H. Jordan3 1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, and 2MIT-Woods Hole Oceanographic Institution Joint Program, Woods Hole, Massachusetts 02543-1541, USA 3Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-7042, USA ........................................................................................................................................................................................................................... East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominately aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion. On average, before large earthquakes occur, local seismicity rates support the inference of slow slip transients, but the subject remains show a significant increase1. In continental regions, where dense controversial23.
    [Show full text]
  • Tafoni Phenomena in the Kerman Province of Iran: Short Description and Pictures
    Geo-Eco-Trop., 2014, 38, 2 : 289-304 Tafoni phenomena in the Kerman Province of Iran: Short description and pictures Brève description avec illustrations photographiques de phénomènes Tafoni dans la province de Kerman en Iran Iradj ESCHGHI (*) Résumé : La formation de tafoni dans la province de Kerman en Iran est présentée pour la première fois dans la note brève ci-après avec une galerie de photos illustrative. Les tafoni représentés se développent en plusieurs endroits dans différents matériaux rocheux: du basalte dans le désert de Lut, un champ volcanique du Plateau de Gandom Beryan, de l’andésite dans la grotte d’Ayub près de la ville de Dehaj, du tuf volcanique dans le village de Marj et du grès près de la ville de Hojedk. Mots-clés: Iran, Province de Kerman, Formation de Tafoni, Différents matériaux rocheux Abstract: Tafoni formation in the Kerman province of Iran is described for the first time in this paper illustrated by a pictures gallery. Tafoni develop in lots of areas in different rock types such as: basalt in the Lut desert, volcanic field of the Gandom Beryan Plateau , andesite in the Ayub cave near the town of Dehaj , tuff near the village of Marj and sandstone near the town of Hojedk Keywords: Iran, Kerman province, Tafoni formation, Various rock types INTRODUCTION Because of thermal changes, mineral decomposition, water and wind action, and salt weathering, natural cavities called Tafoni develop in various (granular) rock types. These cavities are of different forms: spherical, ellipsoidal, kidney-shaped, pan to bowl shaped… The origin of the word tafoni is uncertain; maybe it is derived from the Corsican dialect “tafone” and is synonymous with window (KLAER 1956).
    [Show full text]
  • Characteristics of 2017 Hojedk Earthquake Sequence in Kerman Province, Southeast Iran
    Revista Geoaraguaia ISSN:2236-9716 Barra do Garças – MT v.10, n. esp. Geologia e Pedologia p.187-201. Dez-2020 CHARACTERISTICS OF 2017 HOJEDK EARTHQUAKE SEQUENCE IN KERMAN PROVINCE, SOUTHEAST IRAN CARACTERÍSTICAS DA SEQUÊNCIA DE TERREMOTO HOJEDK 2017 NA PROVÍNCIA DE KERMAN, SUDESTE DO IRÃ Nassim Mahdavi-Omran1 Mohammad-Reza Gheitanchi2 ABSTRACT Kerman province in southeast Iran, has experienced historical and instrumentally recorded earthquakes. In December 2017, three destructive earthquakes have occurred around Hojedk, in Kerman within 11 days. In this study, first the regional seismotectonics and seismicity is presented. Then, the source mechanisms of main shocks are modeled and the results are compared with the active faults and seismicity pattern is discussed. Moment tensor inversion in time domain is used to obtain the source mechanism of earthquakes. The results indicate that the mechanisms of main shocks and aftershocks are mainly reverse and are in agreement with the trend of tectonic forces as well as the mechanisms of other earthquakes. The epicentral distribution of aftershocks indicates two clusters. The spatial distributions of clusters are in agreement with the epicentral distribution of main shocks. The cluster around the first earthquake in EW cross section has a length 15-20 Km, while the cluster around the second and third has a length about 20-25 Km. The Hojedk earthquakes occurred along the northern extension of previous earthquakes where a kind of seismic gap could be observed and still exists. In 1972, within five days four earthquakes with magnitudes 5.5 to 6.2 occurred in Sefidabeh region in eastern edge of Lut block.
    [Show full text]
  • Interseismic Slip-Rate of the Kuhbanan-Lakar Kuh Faults System: Using Insar Technique
    EH-09260582 INTERSEISMIC SLIP-RATE OF THE KUHBANAN-LAKAR KUH FAULTS SYSTEM: USING INSAR TECHNIQUE Sajjad MOLAVI VARDANJANI M.Sc. Student, Graduate University of Advanced Technology, Kerman, Iran [email protected] Majid SHAHPASANDZADEH Associate Professor, Graduate University of Advanced Technology, Kerman, Iran [email protected] Ali ESMAEILY Assistant Professor, Dept. of Surveying Eng., Graduate University of Advanced Technology, Kerman, Iran [email protected] Mohammad Reza SEPAHVAND Assistant Professor, Graduate University of Advanced Technology, Kerman, Iran [email protected] Saeede KESHAVARZ Assistant Professor, Graduate University of Advanced Technology, Kerman, Iran [email protected] Keywords: Interseismic deformation, Geodetic fault slip-rate, InSAR, Kerman, Kuhbanan-Lakar Kuh fault system The Kuhbanan fault with ~ 300 km length, one of the largest seismogenic faults in the southeast of Iran, has caused st st several catastrophic earthquakes with Ms 5-6.2 in 20 -21 centuries (Table 1). Moreover, the corresponding cross-thrusts were also associated with at least five clusters of medium-magnitude earthquakes. The Lakar Kuh fault with ~160 km length run parallel to the Nayband fault (Figure 1). The slip-rate of faults and also the spatio-temporal distribution of large-magnitude shallow-depth earthquakes on the Kuhbanan-Lakar Kuh fault system, attain broad concern for seismic hazard assessment (Figure 1). The horizontal slip-rate of the Kuhbanan fault is estimated ~1–2 mm/yr (Walker et al., 2012). Furthermore, the total horizontal displacement of the fault is reported ~5–7 km, as determined by the offset geological markers (Table 2). Table 1.
    [Show full text]
  • A Tectono-Stratigraphic Record of an Extensional Basin: the Lower Jurassic Ab-Haji Formation of East-Central Iran
    Swiss J Geosci (2018) 111:51–78 https://doi.org/10.1007/s00015-017-0283-2 A tectono-stratigraphic record of an extensional basin: the Lower Jurassic Ab-Haji Formation of east-central Iran 1 2 2 Mohammad Ali Salehi • Reza Moussavi-Harami • Asadollah Mahboubi • 3 4 5 Franz Theodor Fu¨rsich • Markus Wilmsen • Christoph Heubeck Received: 15 December 2016 / Accepted: 3 September 2017 / Published online: 17 October 2017 Ó Swiss Geological Society 2017 Abstract The Lower Jurassic Ab-Haji Formation consists Lut blocks, we locate the fault-bounded Yazd Block in the of siliciclastic strata which are widespread and superbly west and the Shotori Swell at the eastern edge of the Tabas exposed across the Tabas and Lut blocks of east-central Iran. Block as provenance regions. The pattern of thickness The formation records the geodynamic history of central variations, rapid east–west facies changes, and provenance Iran during the Early Jurassic in the aftermath of the main is best explained by a tectonic model invoking large tilted Cimmerian event (near the Triassic–Jurassic boundary) fault blocks in an extensional basin. The basal unit shows through its sedimentary facies and stratigraphic architecture distinct increase in grain size at the base of the Ab-Haji and allows palaeogeographic and palaeoenvironmental Formation, similar to the Shemshak Group of the Alborz reconstructions. We measured and studied three well-ex- Mountains (the base of the Alasht Formation) and the non- posed outcrop sections and identified lithofacies and facies marine time-equivalent succession of the Binalud Moun- associations (fluvial plain, delta plain, delta front, prodelta, tains of northeastern Iran.
    [Show full text]
  • Hypocenter and Focal Mechanism Determination of the August 23, 2011 Virginia Earthquake Aftershock Sequence: Collaborative Research with VA Tech and Boston College
    Final Technical Report Award Numbers G13AP00044, G13AP00043 Hypocenter and Focal Mechanism Determination of the August 23, 2011 Virginia Earthquake Aftershock Sequence: Collaborative Research with VA Tech and Boston College Martin Chapman, John Ebel, Qimin Wu and Stephen Hilfiker Department of Geosciences Virginia Polytechnic Institute and State University 4044 Derring Hall Blacksburg, Virginia, 24061 (MC, QW) Department of Earth and Environmental Sciences Boston College Devlin Hall 213 140 Commonwealth Avenue Chestnut Hill, Massachusetts 02467 (JE, SH) Phone (Chapman): (540) 231-5036 Fax (Chapman): (540) 231-3386 Phone (Ebel): (617) 552-8300 Fax (Ebel): (617) 552-8388 Email: [email protected] (Chapman), [email protected] (Ebel), [email protected] (Wu), [email protected] (Hilfiker) Project Period: July 2013 - December, 2014 1 Abstract The aftershocks of the Mw 5.7, August 23, 2011 Mineral, Virginia, earthquake were recorded by 36 temporary stations installed by several institutions. We located 3,960 aftershocks from August 25, 2011 through December 31, 2011. A subset of 1,666 aftershocks resolves details of the hypocenter distribution. We determined 393 focal mechanism solutions. Aftershocks near the mainshock define a previously recognized tabular cluster with orientation similar to a mainshock nodal plane; other aftershocks occurred 10-20 kilometers to the northeast. Detailed relocation of events in the main tabular cluster, and hundreds of focal mechanisms, indicate that it is not a single extensive fault, but instead is comprised of at least three and probably many more faults with variable orientation. A large percentage of the aftershocks occurred in regions of positive Coulomb static stress change and approximately 80% of the focal mechanism nodal planes were brought closer to failure.
    [Show full text]
  • Kerman Province
    In TheGod Name of Kerman Ganjali khan water reservoir / Contents: Subject page Kerman Province/11 Mount Hezar / 11 Mount joopar/11 Kerman city / 11 Ganjalikhan square / 11 Ganjalikhan bazaar/11 Ganjalikhan public bath /12 Ganjalikhan Mint house/12 Ganjalikhan School/12 Ganjalikhan Mosque /13 Ganjalikhan Cross market place /13 Alimardan Khan water reservoir /13 Ibrahimkhan complex/ 13 Ibrahimkhan Bazaar/14 Ibrahimkhan School /14 Ibrahimkhan bath/14 Vakil Complex/14 Vakil public bath / 14 Vakil Bazaar / 16 Vakil Caravansary / 16 Hajagha Ali complex / 16 Hajagha Ali mosque / 17 Hajagha Ali bazaar / 17 Hajagha Ali reservoir / 17 Bazaar Complex / 17 Arg- Square bazaar / 18 Kerman Throughout bazaar / 18 North Copper Smithing bazaar / 18 Arg bazaar / 18 West coppersmithing bazaar / 18 Ekhteyari bazaar / 18 Mozaffari bazaar / 19 Indian Caravansary / 19 Golshan house / 19 Mozaffari grand mosque / 19 Imam mosque / 20 Moshtaghieh / 20 Green Dome / 20 Jebalieh Dome / 21 Shah Namatollah threshold / 21 Khaje Etabak tomb / 23 Imam zadeh shahzadeh Hossien tomb / 23 Imam zadeh shahzadeh Mohammad / 23 Qaleh Dokhtar / 23 Kerman fire temple / 24 Moaidi Ice house / 24 Kerman national library / 25 Gholibig throne palace / 25 Fathabad Garden / 25 Shotor Galoo / 25 Shah zadeh garden / 26 Harandi garden / 26 Arg-e Rayen / 26 Ganjalikhan anthropology museum / 27 Coin museum / 27 Harandi museum garden / 27 Sanatti museum / 28 Zoroasterian museum / 28 Shahid Bahonar museum / 28 Holy defense museum / 28 Jebalieh museum / 29 Shah Namatollah dome museum / 29 Ghaem wooden
    [Show full text]
  • Mayors for Peace Member Cities 2021/10/01 平和首長会議 加盟都市リスト
    Mayors for Peace Member Cities 2021/10/01 平和首長会議 加盟都市リスト ● Asia 4 Bangladesh 7 China アジア バングラデシュ 中国 1 Afghanistan 9 Khulna 6 Hangzhou アフガニスタン クルナ 杭州(ハンチォウ) 1 Herat 10 Kotwalipara 7 Wuhan ヘラート コタリパラ 武漢(ウハン) 2 Kabul 11 Meherpur 8 Cyprus カブール メヘルプール キプロス 3 Nili 12 Moulvibazar 1 Aglantzia ニリ モウロビバザール アグランツィア 2 Armenia 13 Narayanganj 2 Ammochostos (Famagusta) アルメニア ナラヤンガンジ アモコストス(ファマグスタ) 1 Yerevan 14 Narsingdi 3 Kyrenia エレバン ナールシンジ キレニア 3 Azerbaijan 15 Noapara 4 Kythrea アゼルバイジャン ノアパラ キシレア 1 Agdam 16 Patuakhali 5 Morphou アグダム(県) パトゥアカリ モルフー 2 Fuzuli 17 Rajshahi 9 Georgia フュズリ(県) ラージシャヒ ジョージア 3 Gubadli 18 Rangpur 1 Kutaisi クバドリ(県) ラングプール クタイシ 4 Jabrail Region 19 Swarupkati 2 Tbilisi ジャブライル(県) サルプカティ トビリシ 5 Kalbajar 20 Sylhet 10 India カルバジャル(県) シルヘット インド 6 Khocali 21 Tangail 1 Ahmedabad ホジャリ(県) タンガイル アーメダバード 7 Khojavend 22 Tongi 2 Bhopal ホジャヴェンド(県) トンギ ボパール 8 Lachin 5 Bhutan 3 Chandernagore ラチン(県) ブータン チャンダルナゴール 9 Shusha Region 1 Thimphu 4 Chandigarh シュシャ(県) ティンプー チャンディーガル 10 Zangilan Region 6 Cambodia 5 Chennai ザンギラン(県) カンボジア チェンナイ 4 Bangladesh 1 Ba Phnom 6 Cochin バングラデシュ バプノム コーチ(コーチン) 1 Bera 2 Phnom Penh 7 Delhi ベラ プノンペン デリー 2 Chapai Nawabganj 3 Siem Reap Province 8 Imphal チャパイ・ナワブガンジ シェムリアップ州 インパール 3 Chittagong 7 China 9 Kolkata チッタゴン 中国 コルカタ 4 Comilla 1 Beijing 10 Lucknow コミラ 北京(ペイチン) ラクノウ 5 Cox's Bazar 2 Chengdu 11 Mallappuzhassery コックスバザール 成都(チォントゥ) マラパザーサリー 6 Dhaka 3 Chongqing 12 Meerut ダッカ 重慶(チョンチン) メーラト 7 Gazipur 4 Dalian 13 Mumbai (Bombay) ガジプール 大連(タァリィェン) ムンバイ(旧ボンベイ) 8 Gopalpur 5 Fuzhou 14 Nagpur ゴパルプール 福州(フゥチォウ) ナーグプル 1/108 Pages
    [Show full text]
  • Qt88c3k67v.Pdf
    UC Berkeley UC Berkeley Previously Published Works Title Early aftershocks and afterslip surrounding the 2015 Mw 8.4 Illapel rupture Permalink https://escholarship.org/uc/item/88c3k67v Authors Huang, H Xu, W Meng, L et al. Publication Date 2017 DOI 10.1016/j.epsl.2016.09.055 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Early aftershocks and afterslip surrounding the 2015 Mw 8.4 Illapel rupture Author links open overlay panel HuiHuang a WenbinXu bc LingsenMeng a RolandBürgmann b Juan CarlosBaez d Show more https://doi.org/10.1016/j.epsl.2016.09.055 Get rights and content Highlights • Missing early aftershocks and repeaters are recovered by the matched- filtermethod. • Differential southward and northward expansion of early aftershocks are observed. • Repeaters and geodetic data reveal afterslip around the Illapel mainshock rupture. Abstract On 16 September 2015, the Mw 8.4 Illapel earthquake ruptured a section of the subduction thrust on the west coast of central Chile. The mainshock was followed by numerous aftershocks including some normal-faulting events near the trench. We apply a template matching approach to improve the completeness of early aftershocks within one month of the mainshock. To constrain the distribution of afterslip, we utilize repeating earthquakes among the aftershocks and perform a joint slip inversion of postseismic GPS and InSAR data. The results show that the aftershock zone abruptly expands to the south ∼14 h after the mainshock while growing relatively continuously to the north within the first day. The repeating earthquakes accompanying the early expansion suggest that aseismic afterslip on the subduction thrust surrounding the coseismic rupture is an important triggering mechanism of aftershocks in addition to stress transfer or poroelastic effects.
    [Show full text]