Supporting Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kinesin Family Member 18B Regulates the Proliferation and Invasion Of
Wu et al. Cell Death and Disease (2021) 12:302 https://doi.org/10.1038/s41419-021-03582-2 Cell Death & Disease ARTICLE Open Access Kinesin family member 18B regulates the proliferation and invasion of human prostate cancer cells Yu-Peng Wu 1,Zhi-BinKe 1, Wen-Cai Zheng 1, Ye-Hui Chen 1,Jun-MingZhu 1,FeiLin 1,Xiao-DongLi 1, Shao-Hao Chen 1,HaiCai 1, Qing-Shui Zheng 1, Yong Wei 1, Xue-Yi Xue 1 and Ning Xu 1 Abstract Expression of kinesin family member 18B (KIF18B), an ATPase with key roles in cell division, is deregulated in many cancers, but its involvement in prostate cancer (PCa) is unclear. Here, we investigated the expression and function of KIF18B in human PCa specimens and cell lines using bioinformatics analyses, immunohistochemical and immunofluorescence microscopy, and RT-qPCR and western blot analyses. KIF18B was overexpressed in PCa specimens compared with paracancerous tissues and was associated with poorer disease-free survival. In vitro, KIF18B knockdown in PCa cell lines promoted cell proliferation, migration, and invasion, and inhibited cell apoptosis, while KIF18B overexpression had the opposite effects. In a mouse xenograft model, KIF18B overexpression accelerated and promoted the growth of PCa tumors. Bioinformatics analysis of control and KIF18B-overexpressing PCa cells showed that genes involved in the PI3K–AKT–mTOR signaling pathway were significantly enriched among the differentially expressed genes. Consistent with this observation, we found that KIF18B overexpression activates the PI3K–AKT–mTOR signaling pathway in PCa cells both in vitro and in vivo. Collectively, our results suggest that KIF18B plays a crucial role – – 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; in PCa via activation of the PI3K AKT mTOR signaling pathway, and raise the possibility that KIF18B could have utility as a novel biomarker for PCa. -
0.5) in Stat3∆/∆ Compared with Stat3flox/Flox
Supplemental Table 2 Genes down-regulated (<0.5) in Stat3∆/∆ compared with Stat3flox/flox Probe ID Gene Symbol Gene Description Entrez gene ID 1460599_at Ermp1 endoplasmic reticulum metallopeptidase 1 226090 1460463_at H60c histocompatibility 60c 670558 1460431_at Gcnt1 glucosaminyl (N-acetyl) transferase 1, core 2 14537 1459979_x_at Zfp68 zinc finger protein 68 24135 1459747_at --- --- --- 1459608_at --- --- --- 1459168_at --- --- --- 1458718_at --- --- --- 1458618_at --- --- --- 1458466_at Ctsa cathepsin A 19025 1458345_s_at Colec11 collectin sub-family member 11 71693 1458046_at --- --- --- 1457769_at H60a histocompatibility 60a 15101 1457680_a_at Tmem69 transmembrane protein 69 230657 1457644_s_at Cxcl1 chemokine (C-X-C motif) ligand 1 14825 1457639_at Atp6v1h ATPase, H+ transporting, lysosomal V1 subunit H 108664 1457260_at 5730409E04Rik RIKEN cDNA 5730409E04Rik gene 230757 1457070_at --- --- --- 1456893_at --- --- --- 1456823_at Gm70 predicted gene 70 210762 1456671_at Tbrg3 transforming growth factor beta regulated gene 3 21378 1456211_at Nlrp10 NLR family, pyrin domain containing 10 244202 1455881_at Ier5l immediate early response 5-like 72500 1455576_at Rinl Ras and Rab interactor-like 320435 1455304_at Unc13c unc-13 homolog C (C. elegans) 208898 1455241_at BC037703 cDNA sequence BC037703 242125 1454866_s_at Clic6 chloride intracellular channel 6 209195 1453906_at Med13l mediator complex subunit 13-like 76199 1453522_at 6530401N04Rik RIKEN cDNA 6530401N04 gene 328092 1453354_at Gm11602 predicted gene 11602 100380944 1453234_at -
Cellular and Molecular Signatures in the Disease Tissue of Early
Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of -
Levels of Interleukin-2, Interferon- , and Interleukin-4 In
Levels of Interleukin-2, Interferon-␥, and Interleukin-4 in Bronchoalveolar Lavage Fluid From Patients With Mycoplasma Pneumonia: Implication of Tendency Toward Increased Immunoglobulin E Production Young Yull Koh, MD*; Yang Park, MD*; Hoan Jong Lee, MD*; and Chang Keun Kim, MD‡ ABSTRACT. Objective. In connection with the possi- ABBREVIATIONS. IgE, immunoglobulin E; TH1, T helper type 1; ble relationship between Mycoplasma infection and the TH2, T helper type 2; IFN, interferon; IL, interleukin; BAL, bron- onset of asthma, several studies have shown not only a choalveolar lavage; FB, fiber-optic bronchoscopy; SD, standard high level of serum total immunoglobulin E (IgE) but deviation. also the production of IgE specific to Mycoplasma or common allergens during the course of Mycoplasma in- fection. It has been suggested that the balance of T helper esults of several studies over the past decade type 1 (TH1)/T helper type 2 (TH2) immune response have provided evidence linking Mycoplasma may regulate the synthesis of IgE. The objective of this Rinfection with asthma exacerbation and have study was to investigate the pattern of cytokine response raised the possibility that Mycoplasma infection is a (TH1 or TH2) during an episode of acute lower respira- factor in the pathogenesis of asthma. An acute exac- tory tract infection caused by Mycoplasma pneumoniae. erbation of wheezing in asthmatic participants in Study Design. Using a bronchoalveolar lavage (BAL) association with Mycoplasma infection has been well- with flexible bronchoscopy procedure, this study deter- 1,2 mined the levels of interleukin (IL)-2, interferon (IFN)-␥ documented. In addition, Mycoplasma pneumoniae (TH1), and IL-4 (TH2) in the supernatant of BAL fluid as has been found in the lower airways of chronic, well as the BAL cellular profiles of patients with Myco- stable asthmatics with a greater frequency than in -These results were com- control participants,3 suggesting a pathogenic mech .(14 ؍ plasma pneumonia (n pared with those of patients with pneumococcal pneu- anism in chronic asthma. -
Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs. -
Microrna-7-5P Mediates the Signaling of Hepatocyte Growth
www.nature.com/scientificreports OPEN MicroRNA-7-5p mediates the signaling of hepatocyte growth factor to suppress oncogenes in the Received: 30 August 2017 Accepted: 2 November 2017 MCF-10A mammary epithelial cell Published: xx xx xxxx Dawoon Jeong1, Juyeon Ham1, Sungbin Park1, Seungyeon Lee 1, Hyunkyung Lee1, Han-Sung Kang2 & Sun Jung Kim1 MicroRNA-7 (miR-7) is a non-coding RNA of 23-nucleotides that has been shown to act as a tumor suppressor in various cancers including breast cancer. Although there have been copious studies on the action mechanisms of miR-7, little is known about how the miR is controlled in the mammary cell. In this study, we performed a genome-wide expression analysis in miR-7-transfected MCF-10A breast cell line to explore the upstream regulators of miR-7. Analysis of the dysregulated target gene pool predicted hepatocyte growth factor (HGF) as the most plausible upstream regulator of miR-7. MiR-7 was upregulated in MCF-10A cells by HGF, and subsequently downregulated upon treatment with siRNA against HGF. However, the expression of HGF did not signifcantly change through either an upregulation or downregulation of miR-7 expression, suggesting that HGF acts upstream of miR-7. In addition, the target genes of miR-7, such as EGFR, KLF4, FAK, PAK1 and SET8, which are all known oncogenes, were downregulated in HGF-treated MCF-10A; in contrast, knocking down HGF recovered their expression. These results indicate that miR-7 mediates the activity of HGF to suppress oncogenic proteins, which inhibits the development of normal cells, at least MCF-10A, into cancerous cells. -
Modulation of the Inflammatory Response After Spinal Cord Injury
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en MODULATION OF THE INFLAMMATORY RESPONSE AFTER SPINAL CORD INJURY Presented by Jesús Amo Aparicio ACADEMIC DISSERTATION To obtain the degree of PhD in Neuroscience by the Universitat Autònoma de Barcelona 2019 Directed by Dr. Rubèn López Vales Tutorized by Dr. Xavier Navarro Acebes INDEX SUMMARY Page 7 INTRODUCTION Page 13 - Spinal cord Page 15 - Spinal cord injury Page 17 - Incidence and causes Page 18 - Types of SCI Page 18 - Biological events after SCI Page 20 - Studying SCI Page 24 - Animal models Page 24 - Lesion models Page 24 - Current therapies for SCI Page 25 - Basic principles of the immune system Page 27 - Innate immune response Page 27 - Adaptive immune response Page 28 - Inflammatory response Page 29 - Inflammatory response after SCI Page 30 - Modulation of injury environment Page 36 - Interleukin 1 Page 36 - Interleukin 37 Page 40 - Interleukin 13 Page 44 OBJECTIVES Page 47 MATERIALS AND METHODS Page 51 -
IL-1Β Induces the Rapid Secretion of the Antimicrobial Protein IL-26 From
Published June 24, 2019, doi:10.4049/jimmunol.1900318 The Journal of Immunology IL-1b Induces the Rapid Secretion of the Antimicrobial Protein IL-26 from Th17 Cells David I. Weiss,*,† Feiyang Ma,†,‡ Alexander A. Merleev,x Emanual Maverakis,x Michel Gilliet,{ Samuel J. Balin,* Bryan D. Bryson,‖ Maria Teresa Ochoa,# Matteo Pellegrini,*,‡ Barry R. Bloom,** and Robert L. Modlin*,†† Th17 cells play a critical role in the adaptive immune response against extracellular bacteria, and the possible mechanisms by which they can protect against infection are of particular interest. In this study, we describe, to our knowledge, a novel IL-1b dependent pathway for secretion of the antimicrobial peptide IL-26 from human Th17 cells that is independent of and more rapid than classical TCR activation. We find that IL-26 is secreted 3 hours after treating PBMCs with Mycobacterium leprae as compared with 48 hours for IFN-g and IL-17A. IL-1b was required for microbial ligand induction of IL-26 and was sufficient to stimulate IL-26 release from Th17 cells. Only IL-1RI+ Th17 cells responded to IL-1b, inducing an NF-kB–regulated transcriptome. Finally, supernatants from IL-1b–treated memory T cells killed Escherichia coli in an IL-26–dependent manner. These results identify a mechanism by which human IL-1RI+ “antimicrobial Th17 cells” can be rapidly activated by IL-1b as part of the innate immune response to produce IL-26 to kill extracellular bacteria. The Journal of Immunology, 2019, 203: 000–000. cells are crucial for effective host defense against a wide and neutrophils. -
The Cross-Talk Between Neurons and Microglia Through Interleukin-4 After Ischemic Injury
The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2018 The Cross-Talk Between Neurons and Microglia Through Interleukin-4 After Ischemic Injury Shun-Ming Ting Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Medicine and Health Sciences Commons Recommended Citation Ting, Shun-Ming, "The Cross-Talk Between Neurons and Microglia Through Interleukin-4 After Ischemic Injury" (2018). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 892. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/892 This Thesis (MS) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. THE CROSS-TALK BETWEEN NEURONS AND MICROGLIA THROUGH INTERLEUKIN-4 AFTER ISCHEMIC INJURY by Shun-Ming Ting, M.S. APPROVED: ______________________________ Jaroslaw Aronowski, Ph.D. Advisory -
Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W
UPDATE ON GENE COMPLETIONS AND ANNOTATIONS Evolutionary divergence and functions of the human interleukin (IL) gene family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W. Nebert3* and Vasilis Vasiliou1 1Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA 2Department of Clinical Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA 3Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267–0056, USA *Correspondence to: Tel: þ1 513 821 4664; Fax: þ1 513 558 0925; E-mail: [email protected]; [email protected] Date received (in revised form): 22nd September 2010 Abstract Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term ‘interleukin’ (IL) has been used to describe a group of cytokines with complex immunomodulatory functions — including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host’s immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type. -
Interleukin 13, a T-Cell-Derived Cytokine That Regulates Human Monocyte and B-Cell Function A
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 3735-3739, April 1993 Immunology Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function A. N. J. MCKENZIE*, J. A. CULPEPPER*, R. DE WAAL MALEFYTt, F. BRItREt, J. PUNNONENt, G. AVERSAt, A. SATO*, W. DANG*, B. G. COCKSt, S. MENON*, J. E. DE VRIESt, J. BANCHEREAUt, AND G. ZURAWSKI*§ Departments of *Molecular Biology and tHuman Immunology, DNAX Research Institute of Molecular and Cellular Biology, 901 California Avenue, Palo Alto, CA 94304-1104; and tSchering-Plough, Laboratory for Immunological Research, 27 chemin des peupliers, B.P.11, 69572 Dardilly, France Communicated by Avram Goldstein, December 28, 1992 (received for review November 2, 1992) ABSTRACT We have isolated the human cDNA homo- Tonsillar B cells were prepared as described (5). Flow logue of a mouse helper T-cell-specific cDNA sequence, called cytometric analysis following staining with fluorescein- P600, from an activated human T-cell cDNA library. The labeled anti-CD19, -CD20, -CD14 (Becton Dickinson), -CD2, human cDNA encodes a secreted, mainly unglycosylated, pro- and -CD3 (Immunotech, Luminy, France) showed that the tein with a relative molecular mass of -10,000. We show that purity of this B-cell population was >95%. the human and mouse proteins cause extensive morphological Splenic B cells were purified from a normal human spleen, changes to human monocytes with an associated up-regulation obtained from a transplant donor, by negative fluorescence- of major histocompatibility complex class II antigens and the activated cell sorting (FACStar Plus, Becton Dickinson); low-affinity receptor for immunoglobulin E (FcERII or CD23). -
Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance Alyssa Lea MacMillan University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Virology Commons Recommended Citation MacMillan, Alyssa Lea, "Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance" (2013). Publicly Accessible Penn Dissertations. 894. https://repository.upenn.edu/edissertations/894 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/894 For more information, please contact [email protected]. Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance Abstract APOBEC3 proteins are important for antiretroviral defense in mammals. The activity of these factors has been well characterized in vitro, identifying cytidine deamination as an active source of viral restriction leading to hypermutation of viral DNA synthesized during reverse transcription. These mutations can result in viral lethality via disruption of critical genes, but in some cases is insufficiento t completely obstruct viral replication. This sublethal level of mutagenesis could aid in viral evolution. A cytidine deaminase-independent mechanism of restriction has also been identified, as catalytically inactive proteins are still able to inhibit infection in vitro. Murine retroviruses do not exhibit characteristics of hypermutation by mouse APOBEC3 in vivo. However, human APOBEC3G protein expressed in transgenic mice maintains antiviral restriction and actively deaminates viral genomes. The mechanism by which endogenous APOBEC3 proteins function is unclear. The mouse provides a system amenable to studying the interaction of APOBEC3 and retroviral targets in vivo.