Uwaterloo Latex Thesis Template

Total Page:16

File Type:pdf, Size:1020Kb

Uwaterloo Latex Thesis Template View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Waterloo's Institutional Repository Geometry of Quantum States from Symmetric Informationally Complete Probabilities by Gelo Noel M. Tabia A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Physics - Quantum Information Waterloo, Ontario, Canada, 2013 c Gelo Noel M. Tabia 2013 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract It is usually taken for granted that the natural mathematical framework for quantum mechanics is the theory of Hilbert spaces, where pure states of a quantum system corre- spond to complex vectors of unit length. These vectors can be combined to create more general states expressed in terms of positive semidefinite matrices of unit trace called den- sity operators. A density operator tells us everything we know about a quantum system. In particular, it specifies a unique probability for any measurement outcome. Thus, to fully appreciate quantum mechanics as a statistical model for physical phenomena, it is necessary to understand the basic properties of its set of states. Studying the convex ge- ometry of quantum states provides important clues as to why the theory is expressed most naturally in terms of complex amplitudes. At the very least, it gives us a new perspective into thinking about structure of quantum mechanics. This thesis is concerned with the structure of quantum state space obtained from the geometry of the convex set of probability distributions for a special class of measurements called symmetric informationally complete (SIC) measurements. In this context, quantum mechanics is seen as a particular restriction of a regular simplex, where the state space is postulated to carry a symmetric set of states called SICs, which are associated with equian- gular lines in a complex vector space. The analysis applies specifically to 3-dimensional quantum systems or qutrits, which is the simplest nontrivial case to consider according to Gleason's theorem. It includes a full characterization of qutrit SICs and includes specific proposals for implementing them using linear optics. The infinitely many qutrit SICs are classified into inequivalent families according to the Clifford group, where equivalence is defined by geometrically invariant numbers called triple products. The multiplication of SIC projectors is also used to define structure coefficients, which are convenient for elu- cidating some additional structure possessed by SICs, such as the Lie algebra associated with the operator basis defined by SICs, and a linear dependency structure inherited from the Weyl-Heisenberg symmetry. After describing the general one-to-one correspondence between density operators and SIC probabilities, many interesting features of the set of qutrits are described, including an elegant formula for its pure states, which reveals a per- mutation symmetry related to the structure of a finite affine plane, the exact rotational equivalence of different SIC probability spaces, the shape of qutrit state space defined by the radial distance of the boundary from the maximally mixed state, and a comparison of the 2-dimensional cross-sections of SIC probabilities to known results. Towards the end, the representation of quantum states in terms of SICs is used to develop a method for reconstructing quantum theory from the postulate of maximal consistency, and a proce- dure for building up qutrit state space from a finite set of points corresponding to a Hesse configuration in Hilbert space is sketched briefly. iii Acknowledgements There is no one way the world is because the world is still in creation, still being hammered out. { Christopher A. Fuchs, letter to Howard Barnum and Tony Sudbury, August 18, 2003, quoted in Scientific American, Sept. 2004 I wish to express my sincerest gratitude to my advisor Chris Fuchs, for having provided me the opportunity and the privilege of working with him in my pursuit of a doctoral degree. I will always feel greatly indebted to him, since he was willing to take a chance on me four years ago when I had been looking for a supervisor for almost a year to no avail. Chris is an excellent advisor, who cares not just about how much work his students get done but also in their general well-being. I have personally benefitted from his valuable insights and sage advice on what problems to look at or what next steps to consider. His knowledge, guidance, patience and support have been invaluable to my research and studies. But I think just as important is his overall influence in my way of thinking and approach to physics and life. I feel some of the important lessons I have learned from him, which are worth mentioning here: (i) Do not be afraid to ask silly questions. True, they are usually a waste of other people's time but occasionally they turn out not to be silly at all. (ii) Be constructive, not just productive. Do not fall into the trap of busywork. (iii) When you obtain a result that is simpler than you expected, find out why. (iv) Do not be satisfied with vague claims based on intuition. Always demand precision and some rigorous mathematics. (v) But while mathematics is important, remember that often the most profound ideas in physics can be expressed meaningfully with a few, well-chosen words. It is my sincere hope that these lessons, taken to heart, bring me a few steps closer to the kind of physicist he is. I would like to extend my special thanks to Marcus Appleby, Asa˚ Ericsson, Hoan Dang, and Matthew Graydon, friends and comrade-in-arms in research topics related to SICs. To Marcus and Asa,˚ I am grateful for their willingness to discuss many of my ideas, most of which did not work, and for sharing their valuable insight into various problems that iv I have struggled with in my research. To Hoan and Matthew, I am grateful for all the time we spent as students of Chris, for all the enlightening and enjoyable conversations on both physics and non-physics matters alike, and for the tradition of attending APS March Meetings, which I hope continues for many more years. I would like to thank Norbert L¨utkenhaus, Kevin Resch, Joseph Emerson, and Andrew Childs for serving in my PhD committee and for always making sure I was always on track in fulfilling the requirements of my program. I would also like to thank Ingemar Bengtsson for acting as the external examiner for my thesis defense. His work on the geometry of quantum states has been a source of inspiration to my research and it is an honor and a privilege to have him evaluate my contributions to the field. Each of the following have in one way or another, influenced this thesis, sometimes directly in its content but even if only in little ways that affected its emphasis on certain ideas: Berge Englert, Zach Medendorp, Christoph Schaeff, Bill Wootters, Rob Spekkens, Lucien Hardy, Jeff Bub, John Watrous, Ben Reichardt, Frank Wilhelm, and Huangjun Zhu. I am grateful to the Perimeter Institute for providing a stimulating environment for research, and its staff in particular, for the numerous times they have assisted me on administrative matters. I would like to mention in particular my officemates Jeff Hnybida and Katja Reid, for many delightful and stimulating conversations about their own work and other things, which provide a short reprieve from the mostly tedious part of research that happens on my desk. Special thanks to Alfonso Cesar Albason, a companion from distance in my journey through my graduate studies. Getting a PhD is hard when you have many concerns and distractions beyond research and having a friend to talk to who understands the experience is both helpful and encouraging. My continuing education would not be possible without the unwavering support and understanding of my dearest family and closest friends, for the many times they have encouraged me to carry on when things became difficult, and for relieving some of the pressures of those hard and trying moments. Many thanks to them. v To the loving memory of my father, Angel Garrucha Tabia, Jr. vi Table of Contents List of Tables xi List of Figures xii 1 Introduction1 1.1 Historical background and motivation.....................2 1.2 Research scope and objectives.........................7 1.3 Roadmap for the thesis.............................9 1.4 List of specific contributions.......................... 10 2 Overview of quantum mechanics 11 2.1 Outline of the quantum formalism....................... 12 2.2 Qubits and the Bloch ball........................... 16 2.3 The set of density operators.......................... 17 3 SIC-POVMs and Weyl-Heisenberg qutrit SICs 22 3.1 Characterizing SIC-POVMs.......................... 23 3.1.1 Equiangular lines............................ 23 3.1.2 Complex projective design....................... 25 3.1.3 Maximal equiangular tight frame................... 26 3.2 Weyl-Heisenberg SICs and the Clifford group................. 28 vii 3.3 Classifying qutrit SICs into inequivalent families............... 30 3.4 Geometric invariants of qutrit SICs...................... 32 3.5 Linear dependency structure of qutrit SICs.................. 40 3.6 The Zauner subspace for qutrit SICs..................... 45 3.7 Lie algebraic properties of qutrit SICs..................... 47 4 Practical implementations of SIC-POVMs 53 4.1 Experimental SICs using optimal polarimetry................ 54 4.2 Implementing SICs by successive measurements............... 56 4.3 Storage loop SIC- POVM experiment with weak projections........ 59 4.4 Multiport scheme from Naimark dilation of SIC-POVMs.......... 62 4.4.1 Multiport Qubit SIC-POVM.....................
Recommended publications
  • Quantum Information
    Quantum Information J. A. Jones Michaelmas Term 2010 Contents 1 Dirac Notation 3 1.1 Hilbert Space . 3 1.2 Dirac notation . 4 1.3 Operators . 5 1.4 Vectors and matrices . 6 1.5 Eigenvalues and eigenvectors . 8 1.6 Hermitian operators . 9 1.7 Commutators . 10 1.8 Unitary operators . 11 1.9 Operator exponentials . 11 1.10 Physical systems . 12 1.11 Time-dependent Hamiltonians . 13 1.12 Global phases . 13 2 Quantum bits and quantum gates 15 2.1 The Bloch sphere . 16 2.2 Density matrices . 16 2.3 Propagators and Pauli matrices . 18 2.4 Quantum logic gates . 18 2.5 Gate notation . 21 2.6 Quantum networks . 21 2.7 Initialization and measurement . 23 2.8 Experimental methods . 24 3 An atom in a laser field 25 3.1 Time-dependent systems . 25 3.2 Sudden jumps . 26 3.3 Oscillating fields . 27 3.4 Time-dependent perturbation theory . 29 3.5 Rabi flopping and Fermi's Golden Rule . 30 3.6 Raman transitions . 32 3.7 Rabi flopping as a quantum gate . 32 3.8 Ramsey fringes . 33 3.9 Measurement and initialisation . 34 1 CONTENTS 2 4 Spins in magnetic fields 35 4.1 The nuclear spin Hamiltonian . 35 4.2 The rotating frame . 36 4.3 On-resonance excitation . 38 4.4 Excitation phases . 38 4.5 Off-resonance excitation . 39 4.6 Practicalities . 40 4.7 The vector model . 40 4.8 Spin echoes . 41 4.9 Measurement and initialisation . 42 5 Photon techniques 43 5.1 Spatial encoding .
    [Show full text]
  • Lecture Notes: Qubit Representations and Rotations
    Phys 711 Topics in Particles & Fields | Spring 2013 | Lecture 1 | v0.3 Lecture notes: Qubit representations and rotations Jeffrey Yepez Department of Physics and Astronomy University of Hawai`i at Manoa Watanabe Hall, 2505 Correa Road Honolulu, Hawai`i 96822 E-mail: [email protected] www.phys.hawaii.edu/∼yepez (Dated: January 9, 2013) Contents mathematical object (an abstraction of a two-state quan- tum object) with a \one" state and a \zero" state: I. What is a qubit? 1 1 0 II. Time-dependent qubits states 2 jqi = αj0i + βj1i = α + β ; (1) 0 1 III. Qubit representations 2 A. Hilbert space representation 2 where α and β are complex numbers. These complex B. SU(2) and O(3) representations 2 numbers are called amplitudes. The basis states are or- IV. Rotation by similarity transformation 3 thonormal V. Rotation transformation in exponential form 5 h0j0i = h1j1i = 1 (2a) VI. Composition of qubit rotations 7 h0j1i = h1j0i = 0: (2b) A. Special case of equal angles 7 In general, the qubit jqi in (1) is said to be in a superpo- VII. Example composite rotation 7 sition state of the two logical basis states j0i and j1i. If References 9 α and β are complex, it would seem that a qubit should have four free real-valued parameters (two magnitudes and two phases): I. WHAT IS A QUBIT? iθ0 α φ0 e jqi = = iθ1 : (3) Let us begin by introducing some notation: β φ1 e 1 state (called \minus" on the Bloch sphere) Yet, for a qubit to contain only one classical bit of infor- 0 mation, the qubit need only be unimodular (normalized j1i = the alternate symbol is |−i 1 to unity) α∗α + β∗β = 1: (4) 0 state (called \plus" on the Bloch sphere) 1 Hence it lives on the complex unit circle, depicted on the j0i = the alternate symbol is j+i: 0 top of Figure 1.
    [Show full text]
  • Introduction to Quantum Information and Computation
    Introduction to Quantum Information and Computation Steven M. Girvin ⃝c 2019, 2020 [Compiled: May 2, 2020] Contents 1 Introduction 1 1.1 Two-Slit Experiment, Interference and Measurements . 2 1.2 Bits and Qubits . 3 1.3 Stern-Gerlach experiment: the first qubit . 8 2 Introduction to Hilbert Space 16 2.1 Linear Operators on Hilbert Space . 18 2.2 Dirac Notation for Operators . 24 2.3 Orthonormal bases for electron spin states . 25 2.4 Rotations in Hilbert Space . 29 2.5 Hilbert Space and Operators for Multiple Spins . 38 3 Two-Qubit Gates and Entanglement 43 3.1 Introduction . 43 3.2 The CNOT Gate . 44 3.3 Bell Inequalities . 51 3.4 Quantum Dense Coding . 55 3.5 No-Cloning Theorem Revisited . 59 3.6 Quantum Teleportation . 60 3.7 YET TO DO: . 61 4 Quantum Error Correction 63 4.1 An advanced topic for the experts . 68 5 Yet To Do 71 i Chapter 1 Introduction By 1895 there seemed to be nothing left to do in physics except fill out a few details. Maxwell had unified electriciy, magnetism and optics with his theory of electromagnetic waves. Thermodynamics was hugely successful well before there was any deep understanding about the properties of atoms (or even certainty about their existence!) could make accurate predictions about the efficiency of the steam engines powering the industrial revolution. By 1895, statistical mechanics was well on its way to providing a microscopic basis in terms of the random motions of atoms to explain the macroscopic predictions of thermodynamics. However over the next decade, a few careful observers (e.g.
    [Show full text]
  • Quantum Computing a New Paradigm in Science and Technology
    Quantum computing a new paradigm in science and technology Part Ib: Quantum computing. General documentary. A stroll in an incompletely explored and known world.1 Dumitru Dragoş Cioclov 3. Quantum Computer and its Architecture It is fair to assert that the exact mechanism of quantum entanglement is, nowadays explained on the base of elusive A quantum computer is a machine conceived to use quantum conjectures, already evoked in the previous sections, but mechanics effects to perform computation and simulation this state-of- art it has not impeded to illuminate ideas and of behavior of matter, in the context of natural or man-made imaginative experiments in quantum information theory. On this interactions. The drive of the quantum computers are the line, is worth to mention the teleportation concept/effect, deeply implemented quantum algorithms. Although large scale general- purpose quantum computers do not exist in a sense of classical involved in modern cryptography, prone to transmit quantum digital electronic computers, the theory of quantum computers information, accurately, in principle, over very large distances. and associated algorithms has been studied intensely in the last Summarizing, quantum effects, like interference and three decades. entanglement, obviously involve three states, assessable by The basic logic unit in contemporary computers is a bit. It is zero, one and both indices, similarly like a numerical base the fundamental unit of information, quantified, digitally, by the two (see, e.g. West Jacob (2003). These features, at quantum, numbers 0 or 1. In this format bits are implemented in computers level prompted the basic idea underlying the hole quantum (hardware), by a physic effect generated by a macroscopic computation paradigm.
    [Show full text]
  • Studies in the Geometry of Quantum Measurements
    Irina Dumitru Studies in the Geometry of Quantum Measurements Studies in the Geometry of Quantum Measurements Studies in Irina Dumitru Irina Dumitru is a PhD student at the department of Physics at Stockholm University. She has carried out research in the field of quantum information, focusing on the geometry of Hilbert spaces. ISBN 978-91-7911-218-9 Department of Physics Doctoral Thesis in Theoretical Physics at Stockholm University, Sweden 2020 Studies in the Geometry of Quantum Measurements Irina Dumitru Academic dissertation for the Degree of Doctor of Philosophy in Theoretical Physics at Stockholm University to be publicly defended on Thursday 10 September 2020 at 13.00 in sal C5:1007, AlbaNova universitetscentrum, Roslagstullsbacken 21, and digitally via video conference (Zoom). Public link will be made available at www.fysik.su.se in connection with the nailing of the thesis. Abstract Quantum information studies quantum systems from the perspective of information theory: how much information can be stored in them, how much the information can be compressed, how it can be transmitted. Symmetric informationally- Complete POVMs are measurements that are well-suited for reading out the information in a system; they can be used to reconstruct the state of a quantum system without ambiguity and with minimum redundancy. It is not known whether such measurements can be constructed for systems of any finite dimension. Here, dimension refers to the dimension of the Hilbert space where the state of the system belongs. This thesis introduces the notion of alignment, a relation between a symmetric informationally-complete POVM in dimension d and one in dimension d(d-2), thus contributing towards the search for these measurements.
    [Show full text]
  • The Bloch Equations a Quick Review of Spin- 1 Conventions and Notation
    Ph195a lecture notes, 11/21/01 The Bloch Equations 1 A quick review of spin- 2 conventions and notation 1 The quantum state of a spin- 2 particle is represented by a vector in a two-dimensional complex Hilbert space H2. Let | +z 〉 and | −z 〉 be eigenstates of the operator corresponding to component of spin along the z coordinate axis, ℏ S | + 〉 =+ | + 〉, z z 2 z ℏ S | − 〉 = − | − 〉. 1 z z 2 z In this basis, the operators corresponding to spin components projected along the z,y,x coordinate axes may be represented by the following matrices: ℏ ℏ 10 Sz = σz = , 2 2 0 −1 ℏ ℏ 01 Sx = σx = , 2 2 10 ℏ ℏ 0 −i Sy = σy = . 2 2 2 i 0 We commonly use | ±x 〉 to denote eigenstates of Sx, and similarly for Sy. The dimensionless matrices σx,σy,σz are known as the Pauli matrices, and satisfy the following commutation relations: σx,σy = 2iσz, σy,σz = 2iσx, σz,σx = 2iσy. 3 In addition, Trσiσj = 2δij, 4 and 2 2 2 σx = σy = σz = 1. 5 The Pauli matrices are both Hermitian and unitary. 1 An arbitrary state for an isolated spin- 2 particle may be written θ ϕ θ ϕ |Ψ 〉 = cos exp −i | + 〉 + sin exp i | − 〉, 6 2 2 z 2 2 z where θ and ϕ are real parameters that may be chosen in the ranges 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. Note that there should really be four real degrees of freedom for a vector in a 1 two-dimensional complex Hilbert space, but one is removed by normalization and another because we don’t care about the overall phase of the state of an isolated quantum system.
    [Show full text]
  • Topological Complexity for Quantum Information
    Topological Complexity for Quantum Information Zhengwei Liu Tsinghua University Joint with Arthur Jaffe, Xun Gao, Yunxiang Ren and Shengtao Wang Seminar at Dublin IAS, Oct 14, 2020 Z. Liu (Tsinghua University) Topological Complexity for QI Oct 14, 2020 1 / 31 Topological Complexity: The complexity of computing matrix products or contractions of tensors may grows exponentially using the state sum over the basis. Using topological ideas, such as knot-theoretical isotopy, one could compute the tensors in a more efficient way. Fractionalization: We open the \black box" in tensor network and explore \internal pictorial relations" using the 3D quon language, a fractionalization of tensor network. (Euler's formula, Yang-Baxter equation/relation, star-triangle equation, Kramer-Wannier duality, Jordan-Wigner transformation etc.) Applications: We show that two well-known efficiently classically simulable families, Clifford gates and matchgates, correspond to two kinds of topological complexities. Besides the two simulable families, we introduce a new method to design efficiently classically simulable tensor networks and new families of exactly solvable models. Z. Liu (Tsinghua University) Topological Complexity for QI Oct 14, 2020 2 / 31 Qubits and Gates 2 A qubit is a vector state in C . 2 n An n-qubit is a vector state jφi in (C ) . 2 n A n-qubit gate is a unitary on (C ) . Z. Liu (Tsinghua University) Topological Complexity for QI Oct 14, 2020 3 / 31 Quantum Simulation Feynman and Manin both proposed Quantum Simulation in 1980. Simulate a quantum process by local interactions on qubits. Present an n-qubit gate as a composition of 1-qubit gates and adjacent 2-qubits gates.
    [Show full text]
  • ZX-Calculus for the Working Quantum Computer Scientist
    ZX-calculus for the working quantum computer scientist John van de Wetering1,2 1Radboud Universiteit Nijmegen 2Oxford University December 29, 2020 The ZX-calculus is a graphical language for reasoning about quantum com- putation that has recently seen an increased usage in a variety of areas such as quantum circuit optimisation, surface codes and lattice surgery, measurement- based quantum computation, and quantum foundations. The first half of this review gives a gentle introduction to the ZX-calculus suitable for those fa- miliar with the basics of quantum computing. The aim here is to make the reader comfortable enough with the ZX-calculus that they could use it in their daily work for small computations on quantum circuits and states. The lat- ter sections give a condensed overview of the literature on the ZX-calculus. We discuss Clifford computation and graphically prove the Gottesman-Knill theorem, we discuss a recently introduced extension of the ZX-calculus that allows for convenient reasoning about Toffoli gates, and we discuss the recent completeness theorems for the ZX-calculus that show that, in principle, all reasoning about quantum computation can be done using ZX-diagrams. Ad- ditionally, we discuss the categorical and algebraic origins of the ZX-calculus and we discuss several extensions of the language which can represent mixed states, measurement, classical control and higher-dimensional qudits. Contents 1 Introduction3 1.1 Overview of the paper . 4 1.2 Tools and resources . 5 2 Quantum circuits vs ZX-diagrams6 2.1 From quantum circuits to ZX-diagrams . 6 2.2 States in the ZX-calculus .
    [Show full text]
  • Chapter 2 Quantum Gates
    Chapter 2 Quantum Gates “When we get to the very, very small world—say circuits of seven atoms—we have a lot of new things that would happen that represent completely new opportunities for design. Atoms on a small scale behave like nothing on a large scale, for they satisfy the laws of quantum mechanics. So, as we go down and fiddle around with the atoms down there, we are working with different laws, and we can expect to do different things. We can manufacture in different ways. We can use, not just circuits, but some system involving the quantized energy levels, or the interactions of quantized spins.” – Richard P. Feynman1 Currently, the circuit model of a computer is the most useful abstraction of the computing process and is widely used in the computer industry in the design and construction of practical computing hardware. In the circuit model, computer scien- tists regard any computation as being equivalent to the action of a circuit built out of a handful of different types of Boolean logic gates acting on some binary (i.e., bit string) input. Each logic gate transforms its input bits into one or more output bits in some deterministic fashion according to the definition of the gate. By compos- ing the gates in a graph such that the outputs from earlier gates feed into the inputs of later gates, computer scientists can prove that any feasible computation can be performed. In this chapter we will look at the types of logic gates used within circuits and how the notions of logic gates need to be modified in the quantum context.
    [Show full text]
  • The SIC Question: History and State of Play
    axioms Review The SIC Question: History and State of Play Christopher A. Fuchs 1,*, Michael C. Hoang 2 and Blake C. Stacey 1 1 Physics Department, University of Massachusetts Boston, Boston, MA 02125, USA; [email protected] 2 Computer Science Department, University of Massachusetts Boston, Boston, MA 02125, USA; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +1-617-287-3317 Academic Editor: Palle Jorgensen Received: 30 June 2017 ; Accepted: 15 July 2017; Published: 18 July 2017 Abstract: Recent years have seen significant advances in the study of symmetric informationally complete (SIC) quantum measurements, also known as maximal sets of complex equiangular lines. Previously, the published record contained solutions up to dimension 67, and was with high confidence complete up through dimension 50. Computer calculations have now furnished solutions in all dimensions up to 151, and in several cases beyond that, as large as dimension 844. These new solutions exhibit an additional type of symmetry beyond the basic definition of a SIC, and so verify a conjecture of Zauner in many new cases. The solutions in dimensions 68 through 121 were obtained by Andrew Scott, and his catalogue of distinct solutions is, with high confidence, complete up to dimension 90. Additional results in dimensions 122 through 151 were calculated by the authors using Scott’s code. We recap the history of the problem, outline how the numerical searches were done, and pose some conjectures on how the search technique could be improved. In order to facilitate communication across disciplinary boundaries, we also present a comprehensive bibliography of SIC research.
    [Show full text]
  • Geometry of the Generalized Bloch Sphere for Qutrits 2
    Geometry of the generalized Bloch sphere for qutrits 1 2 3 Sandeep K. Goyal ∗, B. Neethi Simon , Rajeev Singh † & Sudhavathani Simon4 1Institute for Quantum Science and Technology, University of Calgary, Alberta T2N 1N4, Canada 2Department of Mechanical Engineering, SSN College of Engineering, SSN Nagar, OMR, Chennai 603 110, India 3The Institute of Mathematical Sciences, Tharamani, Chennai 600 113 4Department of Computer Science, Women’s Christian College, Chennai 600 006, India E-mail: ∗[email protected], †[email protected] 22 March 2016 Abstract. The geometry of the generalized Bloch sphere Ω3, the state space of a qutrit, is studied. Closed form expressions for Ω3, its boundary ∂Ω3, and the set of ext extremals Ω3 are obtained by use of an elementary observation. These expressions and analytic methods are used to classify the 28 two-sections and the 56 three-sections of Ω3 into unitary equivalence classes, completing the works of earlier authors. It is shown, in particular, that there are families of two-sections and of three-sections which are equivalent geometrically but not unitarily, a feature that does not appear to have been appreciated earlier. A family of three-sections of obese-tetrahedral shape whose symmetry corresponds to the 24-element tetrahedral point group Td is examined in detail. This symmetry is traced to the natural reduction of the adjoint representation of SU(3), the symmetry underlying Ω3, into direct sum of the two-dimensional and the two (inequivalent) three-dimensional irreducible representations of Td. arXiv:1111.4427v2 [quant-ph] 21 Mar 2016 PACS numbers: 03.65.-w, 03.65.Ta, 03.65.Fd, 03.63.Vf Geometry of the generalized Bloch sphere for qutrits 2 1.
    [Show full text]
  • Information Is Quantum
    Information is Quantum: What weird physical phenomena discovered a century ago have taught us about information and information processing Charles H. Bennett (IBM Research Yorktown) Imaginado o Futuro Rio de Janeiro 9 May 2018 Like other parts of mathematics, the theory of information processing originated as an abstraction from everyday experience Calculation = manipulation of pebbles Digit = a finger or a toe Today’s digital information revolution is based on these abstractions, as crystallized by Turing, Shannon, and von Neumann in the mid 20th century. But now these notions are known to be too narrow. Quantum theory, developed by physicists in the early 1900’s, and spectacularly successful in its own field, also provides a more complete and natural arena for developing concepts of communication and computation. Conventionally, information carriers have been viewed as what a physicist would call classical systems: • Their states in principle are reliably distinguishable, and can be observed without disturbing the system • To specify the joint state of two or more systems, it is sufficient to specify the state of each one separately. But for quantum systems like atoms or photons: • Attempting to observe a particle’s state in general disturbs it, while obtaining only partial information about the state (uncertainty principle). • Two particles can exist in an entangled state, causing them to behave in ways that cannot be explained by supposing that each particle has some state of its own. For most of the 20th century, quantum effects in information processing were regarded mainly as a nuisance, because the uncertainty principle makes quantum devices behave less reliably than the classical ideal.
    [Show full text]