Quantum Entanglement and Teleportation Brent R. Yates Physics 555B Spring 2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantum Computing a New Paradigm in Science and Technology
Quantum computing a new paradigm in science and technology Part Ib: Quantum computing. General documentary. A stroll in an incompletely explored and known world.1 Dumitru Dragoş Cioclov 3. Quantum Computer and its Architecture It is fair to assert that the exact mechanism of quantum entanglement is, nowadays explained on the base of elusive A quantum computer is a machine conceived to use quantum conjectures, already evoked in the previous sections, but mechanics effects to perform computation and simulation this state-of- art it has not impeded to illuminate ideas and of behavior of matter, in the context of natural or man-made imaginative experiments in quantum information theory. On this interactions. The drive of the quantum computers are the line, is worth to mention the teleportation concept/effect, deeply implemented quantum algorithms. Although large scale general- purpose quantum computers do not exist in a sense of classical involved in modern cryptography, prone to transmit quantum digital electronic computers, the theory of quantum computers information, accurately, in principle, over very large distances. and associated algorithms has been studied intensely in the last Summarizing, quantum effects, like interference and three decades. entanglement, obviously involve three states, assessable by The basic logic unit in contemporary computers is a bit. It is zero, one and both indices, similarly like a numerical base the fundamental unit of information, quantified, digitally, by the two (see, e.g. West Jacob (2003). These features, at quantum, numbers 0 or 1. In this format bits are implemented in computers level prompted the basic idea underlying the hole quantum (hardware), by a physic effect generated by a macroscopic computation paradigm. -
Many Physicists Believe That Entanglement Is The
NEWS FEATURE SPACE. TIME. ENTANGLEMENT. n early 2009, determined to make the most annual essay contest run by the Gravity Many physicists believe of his first sabbatical from teaching, Mark Research Foundation in Wellesley, Massachu- Van Raamsdonk decided to tackle one of setts. Not only did he win first prize, but he also that entanglement is Ithe deepest mysteries in physics: the relation- got to savour a particularly satisfying irony: the the essence of quantum ship between quantum mechanics and gravity. honour included guaranteed publication in After a year of work and consultation with col- General Relativity and Gravitation. The journal PICTURES PARAMOUNT weirdness — and some now leagues, he submitted a paper on the topic to published the shorter essay1 in June 2010. suspect that it may also be the Journal of High Energy Physics. Still, the editors had good reason to be BROS. ENTERTAINMENT/ WARNER In April 2010, the journal sent him a rejec- cautious. A successful unification of quantum the essence of space-time. tion — with a referee’s report implying that mechanics and gravity has eluded physicists Van Raamsdonk, a physicist at the University of for nearly a century. Quantum mechanics gov- British Columbia in Vancouver, was a crackpot. erns the world of the small — the weird realm His next submission, to General Relativity in which an atom or particle can be in many BY RON COWEN and Gravitation, fared little better: the referee’s places at the same time, and can simultaneously report was scathing, and the journal’s editor spin both clockwise and anticlockwise. Gravity asked for a complete rewrite. -
Unconditional Quantum Teleportation
R ESEARCH A RTICLES our experiment achieves Fexp 5 0.58 6 0.02 for the field emerging from Bob’s station, thus Unconditional Quantum demonstrating the nonclassical character of this experimental implementation. Teleportation To describe the infinite-dimensional states of optical fields, it is convenient to introduce a A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, pair (x, p) of continuous variables of the electric H. J. Kimble,* E. S. Polzik field, called the quadrature-phase amplitudes (QAs), that are analogous to the canonically Quantum teleportation of optical coherent states was demonstrated experi- conjugate variables of position and momentum mentally using squeezed-state entanglement. The quantum nature of the of a massive particle (15). In terms of this achieved teleportation was verified by the experimentally determined fidelity analogy, the entangled beams shared by Alice Fexp 5 0.58 6 0.02, which describes the match between input and output states. and Bob have nonlocal correlations similar to A fidelity greater than 0.5 is not possible for coherent states without the use those first described by Einstein et al.(16). The of entanglement. This is the first realization of unconditional quantum tele- requisite EPR state is efficiently generated via portation where every state entering the device is actually teleported. the nonlinear optical process of parametric down-conversion previously demonstrated in Quantum teleportation is the disembodied subsystems of infinite-dimensional systems (17). The resulting state corresponds to a transport of an unknown quantum state from where the above advantages can be put to use. squeezed two-mode optical field. -
A Live Alternative to Quantum Spooks
International Journal of Quantum Foundations 6 (2020) 1-8 Original Paper A live alternative to quantum spooks Huw Price1;∗ and Ken Wharton2 1. Trinity College, Cambridge CB2 1TQ, UK 2. Department of Physics and Astronomy, San José State University, San José, CA 95192-0106, USA * Author to whom correspondence should be addressed; E-mail:[email protected] Received: 14 December 2019 / Accepted: 21 December 2019 / Published: 31 December 2019 Abstract: Quantum weirdness has been in the news recently, thanks to an ingenious new experiment by a team led by Roland Hanson, at the Delft University of Technology. Much of the coverage presents the experiment as good (even conclusive) news for spooky action-at-a-distance, and bad news for local realism. We point out that this interpretation ignores an alternative, namely that the quantum world is retrocausal. We conjecture that this loophole is missed because it is confused for superdeterminism on one side, or action-at-a-distance itself on the other. We explain why it is different from these options, and why it has clear advantages, in both cases. Keywords: Quantum Entanglement; Retrocausality; Superdeterminism Quantum weirdness has been getting a lot of attention recently, thanks to a clever new experiment by a team led by Roland Hanson, at the Delft University of Technology.[1] Much of the coverage has presented the experiment as good news for spooky action-at-a-distance, and bad news for Einstein: “The most rigorous test of quantum theory ever carried out has confirmed that the ‘spooky action-at-a-distance’ that [Einstein] famously hated . -
Quantum Error Modelling and Correction in Long Distance Teleportation Using Singlet States by Joe Aung
Quantum Error Modelling and Correction in Long Distance Teleportation using Singlet States by Joe Aung Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2002 @ Massachusetts Institute of Technology 2002. All rights reserved. Author ................... " Department of Electrical Engineering and Computer Science May 21, 2002 72-1 14 Certified by.................. .V. ..... ..'P . .. ........ Jeffrey H. Shapiro Ju us . tn Professor of Electrical Engineering Director, Research Laboratory for Electronics Thesis Supervisor Accepted by................I................... ................... Arthur C. Smith Chairman, Department Committee on Graduate Students BARKER MASSACHUSE1TS INSTITUTE OF TECHNOLOGY JUL 3 1 2002 LIBRARIES 2 Quantum Error Modelling and Correction in Long Distance Teleportation using Singlet States by Joe Aung Submitted to the Department of Electrical Engineering and Computer Science on May 21, 2002, in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science Abstract Under a multidisciplinary university research initiative (MURI) program, researchers at the Massachusetts Institute of Technology (MIT) and Northwestern University (NU) are devel- oping a long-distance, high-fidelity quantum teleportation system. This system uses a novel ultrabright source of entangled photon pairs and trapped-atom quantum memories. This thesis will investigate the potential teleportation errors involved in the MIT/NU system. A single-photon, Bell-diagonal error model is developed that allows us to restrict possible errors to just four distinct events. The effects of these errors on teleportation, as well as their probabilities of occurrence, are determined. -
Bidirectional Quantum Controlled Teleportation by Using Five-Qubit Entangled State As a Quantum Channel
Bidirectional Quantum Controlled Teleportation by Using Five-qubit Entangled State as a Quantum Channel Moein Sarvaghad-Moghaddam1,*, Ahmed Farouk2, Hussein Abulkasim3 to each other simultaneously. Unfortunately, the proposed Abstract— In this paper, a novel protocol is proposed for protocol required additional quantum and classical resources so implementing BQCT by using five-qubit entangled states as a that the users required two-qubit measurements and applying quantum channel which in the same time, the communicated users global unitary operations. There are many approaches and can teleport each one-qubit state to each other under permission prototypes for the exploitation of quantum principles to secure of controller. The proposed protocol depends on the Controlled- the communication between two parties and multi-parties [18, NOT operation, proper single-qubit unitary operations and single- 19, 20, 21, 22]. While these approaches used different qubit measurement in the Z-basis and X-basis. The results showed that the protocol is more efficient from the perspective such as techniques for achieving a private communication among lower shared qubits and, single qubit measurements compared to authorized users, but most of them depend on the generation of the previous work. Furthermore, the probability of obtaining secret random keys [23, 2]. In this paper, a novel protocol is Charlie’s qubit by eavesdropper is reduced, and supervisor can proposed for implementing BQCT by using five-qubit control one of the users or every two users. Also, we present a new entanglement state as a quantum channel. In this protocol, users method for transmitting n and m-qubits entangled states between may transmit an unknown one-qubit quantum state to each other Alice and Bob using proposed protocol. -
Quantum Entanglement and Bell's Inequality
Quantum Entanglement and Bell’s Inequality Christopher Marsh, Graham Jensen, and Samantha To University of Rochester, Rochester, NY Abstract – Christopher Marsh: Entanglement is a phenomenon where two particles are linked by some sort of characteristic. A particle such as an electron can be entangled by its spin. Photons can be entangled through its polarization. The aim of this lab is to generate and detect photon entanglement. This was accomplished by subjecting an incident beam to spontaneous parametric down conversion, a process where one photon produces two daughter polarization entangled photons. Entangled photons were sent to polarizers which were placed in front of two avalanche photodiodes; by changing the angles of these polarizers we observed how the orientation of the polarizers was linked to the number of photons coincident on the photodiodes. We dabbled into how aligning and misaligning a phase correcting quartz plate affected data. We also set the polarizers to specific angles to have the maximum S value for the Clauser-Horne-Shimony-Holt inequality. This inequality states that S is no greater than 2 for a system obeying classical physics. In our experiment a S value of 2.5 ± 0.1 was calculated and therefore in violation of classical mechanics. 1. Introduction – Graham Jensen We report on an effort to verify quantum nonlocality through a violation of Bell’s inequality using polarization-entangled photons. When light is directed through a type 1 Beta Barium Borate (BBO) crystal, a small fraction of the incident photons (on the order of ) undergo spontaneous parametric downconversion. In spontaneous parametric downconversion, a single pump photon is split into two new photons called the signal and idler photons. -
Arxiv:2009.07590V2 [Quant-Ph] 9 Dec 2020
Emulating quantum teleportation of a Majorana zero mode qubit He-Liang Huang,1, 2, 3 Marek Naro˙zniak,4, 5 Futian Liang,1, 2, 3 Youwei Zhao,1, 2, 3 Anthony D. Castellano,1, 2, 3 Ming Gong,1, 2, 3 Yulin Wu,1, 2, 3 Shiyu Wang,1, 2, 3 Jin Lin,1, 2, 3 Yu Xu,1, 2, 3 Hui Deng,1, 2, 3 Hao Rong,1, 2, 3 6, 7, 8 1, 2, 3 4, 8, 9, 5 1, 2, 3, 1, 2, 3 Jonathan P. Dowling ∗, Cheng-Zhi Peng, Tim Byrnes, Xiaobo Zhu, † and Jian-Wei Pan 1Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China 2Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China 3Shanghai Research Center for Quantum Sciences, Shanghai 201315, China 4New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China 5Department of Physics, New York University, New York, NY 10003, USA 6Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA 7Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China 8NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China 9State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences, East China Normal University, Shanghai 200062, China (Dated: December 10, 2020) Topological quantum computation based on anyons is a promising approach to achieve fault- tolerant quantum computing. -
Relational Quantum Mechanics Relational Quantum Mechanics A
Provisional chapter Chapter 16 Relational Quantum Mechanics Relational Quantum Mechanics A. Nicolaidis A.Additional Nicolaidis information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54892 1. Introduction Quantum mechanics (QM) stands out as the theory of the 20th century, shaping the most diverse phenomena, from subatomic physics to cosmology. All quantum predictions have been crowned with full success and utmost accuracy. Yet, the admiration we feel towards QM is mixed with surprise and uneasiness. QM defies common sense and common logic. Various paradoxes, including Schrodinger’s cat and EPR paradox, exemplify the lurking conflict. The reality of the problem is confirmed by the Bell’s inequalities and the GHZ equalities. We are thus led to revisit a number of old interlocked oppositions: operator – operand, discrete – continuous, finite –infinite, hardware – software, local – global, particular – universal, syntax – semantics, ontological – epistemological. The logic of a physical theory reflects the structure of the propositions describing the physical system under study. The propositional logic of classical mechanics is Boolean logic, which is based on set theory. A set theory is deprived of any structure, being a plurality of structure-less individuals, qualified only by membership (or non-membership). Accordingly a set-theoretic enterprise is analytic, atomistic, arithmetic. It was noticed as early as 1936 by Neumann and Birkhoff that the quantum real needs a non-Boolean logical structure. On numerous cases the need for a novel system of logical syntax is evident. Quantum measurement bypasses the old disjunctions subject-object, observer-observed. -
What Can Bouncing Oil Droplets Tell Us About Quantum Mechanics?
What can bouncing oil droplets tell us about quantum mechanics? Peter W. Evans∗1 and Karim P. Y. Th´ebault†2 1School of Historical and Philosophical Inquiry, University of Queensland 2Department of Philosophy, University of Bristol June 16, 2020 Abstract A recent series of experiments have demonstrated that a classical fluid mechanical system, constituted by an oil droplet bouncing on a vibrating fluid surface, can be in- duced to display a number of behaviours previously considered to be distinctly quantum. To explain this correspondence it has been suggested that the fluid mechanical system provides a single-particle classical model of de Broglie’s idiosyncratic ‘double solution’ pilot wave theory of quantum mechanics. In this paper we assess the epistemic function of the bouncing oil droplet experiments in relation to quantum mechanics. We find that the bouncing oil droplets are best conceived as an analogue illustration of quantum phe- nomena, rather than an analogue simulation, and, furthermore, that their epistemic value should be understood in terms of how-possibly explanation, rather than confirmation. Analogue illustration, unlike analogue simulation, is not a form of ‘material surrogacy’, in which source empirical phenomena in a system of one kind can be understood as ‘stand- ing in for’ target phenomena in a system of another kind. Rather, analogue illustration leverages a correspondence between certain empirical phenomena displayed by a source system and aspects of the ontology of a target system. On the one hand, this limits the potential inferential power of analogue illustrations, but, on the other, it widens their potential inferential scope. In particular, through analogue illustration we can learn, in the sense of gaining how-possibly understanding, about the putative ontology of a target system via an experiment. -
Quantum Technology: Advances and Trends
American Journal of Engineering and Applied Sciences Review Quantum Technology: Advances and Trends 1Lidong Wang and 2Cheryl Ann Alexander 1Institute for Systems Engineering Research, Mississippi State University, Vicksburg, Mississippi, USA 2Institute for IT innovation and Smart Health, Vicksburg, Mississippi, USA Article history Abstract: Quantum science and quantum technology have become Received: 30-03-2020 significant areas that have the potential to bring up revolutions in various Revised: 23-04-2020 branches or applications including aeronautics and astronautics, military Accepted: 13-05-2020 and defense, meteorology, brain science, healthcare, advanced manufacturing, cybersecurity, artificial intelligence, etc. In this study, we Corresponding Author: Cheryl Ann Alexander present the advances and trends of quantum technology. Specifically, the Institute for IT innovation and advances and trends cover quantum computers and Quantum Processing Smart Health, Vicksburg, Units (QPUs), quantum computation and quantum machine learning, Mississippi, USA quantum network, Quantum Key Distribution (QKD), quantum Email: [email protected] teleportation and quantum satellites, quantum measurement and quantum sensing, and post-quantum blockchain and quantum blockchain. Some challenges are also introduced. Keywords: Quantum Computer, Quantum Machine Learning, Quantum Network, Quantum Key Distribution, Quantum Teleportation, Quantum Satellite, Quantum Blockchain Introduction information and the computation that is executed throughout a transaction (Humble, 2018). The Tokyo QKD metropolitan area network was There have been advances in developing quantum established in Japan in 2015 through intercontinental equipment, which has been indicated by the number of cooperation. A 650 km QKD network was established successful QKD demonstrations. However, many problems between Washington and Ohio in the USA in 2016; a still need to be fixed though achievements of QKD have plan of a 10000 km QKD backbone network was been showcased. -
Disentangling the Quantum World
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Entropy 2015, 17, 7752-7767; doi:10.3390/e17117752 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Disentangling the Quantum World Huw Price 1;y;* and Ken Wharton 2;y 1 Trinity College, Cambridge CB2 1TQ, UK 2 San José State University, San José, CA 95192-0106, USA; E-Mail: [email protected] y These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-12-2333-2987. Academic Editors: Gregg Jaeger and Andrei Khrennikov Received: 22 September 2015 / Accepted: 6 November 2015 / Published: 16 November 2015 Abstract: Correlations related to quantum entanglement have convinced many physicists that there must be some at-a-distance connection between separated events, at the quantum level. In the late 1940s, however, O. Costa de Beauregard proposed that such correlations can be explained without action at a distance, so long as the influence takes a zigzag path, via the intersecting past lightcones of the events in question. Costa de Beauregard’s proposal is related to what has come to be called the retrocausal loophole in Bell’s Theorem, but—like that loophole—it receives little attention, and remains poorly understood. Here we propose a new way to explain and motivate the idea. We exploit some simple symmetries to show how Costa de Beauregard’s zigzag needs to work, to explain the correlations at the core of Bell’s Theorem. As a bonus, the explanation shows how entanglement might be a much simpler matter than the orthodox view assumes—not a puzzling feature of quantum reality itself, but an entirely unpuzzling feature of our knowledge of reality, once zigzags are in play.