Introduction to Quantum Information and Computation

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Quantum Information and Computation Introduction to Quantum Information and Computation Steven M. Girvin ⃝c 2019, 2020 [Compiled: May 2, 2020] Contents 1 Introduction 1 1.1 Two-Slit Experiment, Interference and Measurements . 2 1.2 Bits and Qubits . 3 1.3 Stern-Gerlach experiment: the first qubit . 8 2 Introduction to Hilbert Space 16 2.1 Linear Operators on Hilbert Space . 18 2.2 Dirac Notation for Operators . 24 2.3 Orthonormal bases for electron spin states . 25 2.4 Rotations in Hilbert Space . 29 2.5 Hilbert Space and Operators for Multiple Spins . 38 3 Two-Qubit Gates and Entanglement 43 3.1 Introduction . 43 3.2 The CNOT Gate . 44 3.3 Bell Inequalities . 51 3.4 Quantum Dense Coding . 55 3.5 No-Cloning Theorem Revisited . 59 3.6 Quantum Teleportation . 60 3.7 YET TO DO: . 61 4 Quantum Error Correction 63 4.1 An advanced topic for the experts . 68 5 Yet To Do 71 i Chapter 1 Introduction By 1895 there seemed to be nothing left to do in physics except fill out a few details. Maxwell had unified electriciy, magnetism and optics with his theory of electromagnetic waves. Thermodynamics was hugely successful well before there was any deep understanding about the properties of atoms (or even certainty about their existence!) could make accurate predictions about the efficiency of the steam engines powering the industrial revolution. By 1895, statistical mechanics was well on its way to providing a microscopic basis in terms of the random motions of atoms to explain the macroscopic predictions of thermodynamics. However over the next decade, a few careful observers (e.g. Planck and especially Einstein) began to realize that the very foundations were crum- bling. Maxwell correctly taught us that accelerating charges radiate away energy in the form of electromagnetic waves. Why then do electrons orbit- ing the positively charged nuclei in atoms not radiate away all their energy and fall into the nucleus? This doesn't happen, and in fact, physicists soon discovered that the lone electron in the hydrogen atom seems to have only a discrete set of allowed orbits corresponding to certain well-defined ener- gies. Electrons could in fact emit electromagnetic waves, but only in discrete lumps of energy (`quanta' known as `photons') that matched the change in energy as the electron spontaneously jumped from one allowed energy level to a lower allowed energy level. Once the electron reached the lowest allowed energy level (the `ground state'), it could fall no further despite the fact that it was still accelerating while orbiting the nucleus). Maxwell also taught us that the modes of the electromagnetic field are harmonic oscillators. Why then does electromagnetic radiation not obey the 1 CHAPTER 1. INTRODUCTION 2 laws of statistical mechanics developed for harmonic oscillators? Accord- ing to classical statistical mechanics, the average energy stored in the kinetic and potential energy of a harmonic oscillator is kBT , where kB is Boltzmann's constant and T is the absolute temperature. Since electromagnetic radiation comes in a wide range of frequencies running all the way up to infinity, clas- sical statistical mechanics predicts an `ultraviolet catastrophe,' in which the energy density of blackbody radiation (i.e. radiation in thermal equilibrium) should be kBT × 1. Even venerable thermodynamics, which makes predictions of a general nature independent of microscopic details, gave some hints of problems. The thermodynamic entropy (a measure of our ignorance of the microscopic de- tails of the state of the system; or equivalent a measure (the logarithm) of the number of different microscopic states that are consisten with the observed macroscopic properties) of a gas obeying the ideal gas law turns negative at low temperatures. In statistical physics, Josiah Willard Gibbs pointed out the now famous `Gibbs paradox.' He noted that if a partition is removed from a box allowing the gas atoms on each side to mix, the entropy should irreversibly increase, and yet nothing macroscopically observable actually happens. The classical way of counting up the number of different configu- rations of a bunch of atoms was somehow wrong. The Gibbs paradox could be resolved only if exchanging the positions of two particles (say particle 17 and particle 1,230) did not result in a new state{as if the atoms were not merely the same species but truly indistinguishable. 1.1 Two-Slit Experiment, Interference and Measurements TO BE WRITTEN: Wave-like interference and Superposition Principle. Particle-like detection. Which path information and state collapse upon mea- surement. CHAPTER 1. INTRODUCTION 3 1.2 Bits and Qubits A bit is the smallest unit of information. The word `bit' is short for binary digit and can be represented by 0 or 1 in the binary numbering system (base 2 numbers). It is the amount of information contained in the answer to a yes/no or true/false question (assuming you have no prior knowledge of the answer and the two answers are equally likely as far as you know). If Alice gives Bob either a 0 or a 1 drawn randomly with equal probability, then Bob receives one bit of information.1 A register of N classical bits can be in one of 2N distinct states. For example 3 classical bits can be in 8 states: (000), (001), (010), (011), (100), (101), (110), (111), corresponding to the 8 binary numbers whose (base 10) values run from 0 to 7. This is a remarkably efficient encoding{with an `alphabet' of only two symbols (0 and 1) Alice can send Bob one of 232 = 4; 294; 967; 296 possible messages at a cost of only having to transmit 32 bits (or 4 `bytes'). In fact, if all the messages are equally likely to be chosen, this is provably the most efficient possible encoding. Information is physical and is stored in the state of a physical system. In an ordinary computer, bits are stored in the states of switches (typically these days transistors) which can be open/closed or on/off. Information can also be stored in small domains of magnetism in disk drives. Each magnetic domain acts like a small bar magnet whose magnetic moment (a vector quantity pointing in the direction running from the south pole to the north pole of the bar magnet) can pnly point up or down. Ordinarily a bar magnet can point in any direction in space, but the material properties of the disk drive are intentionally chosen to be anisotropic so that only two directions are possible. A quantum bit (`qubit') is information stored in a quantum system that can be in one of two possible states. Using a quantum state notation devel- oped by Paul A.M. Dirac, state j0i might denote an atom in its lowest energy state (the ground state) and state j1i might denote the first excited state of 1Information is `news'. If Bob knew ahead of time that Alice would chose 0 with probability p0 = 0:999, and 1 with probability p1 = 1 − p0, then he is not surprised when he receives a 0 because he already was pretty sure he `knew the answer to the question' ahead of time. The mathematical theory of information quantifies the information that Bob receives and shows that it is much less than one bit of information. Claude Shannon demonstrated that in this situation Bob receives information H = − [p0 ln2 p0 + p1 ln2 p1], 1 where ln2 means log base 2. H has a maximum value of 1 at p0 = p1 = 2 and approaches zero when either of the probabilities approaches unity. CHAPTER 1. INTRODUCTION 4 the atom (or some other selected excited state). However, quantum systems behave strangely{particles can act like waves and waves sometimes act like particles. Two-state systems have wave-like properties in the sense that can be in superposition states represented mathematically by j i = αj0i + βj1i (1.1) where α and β are (complex) probability amplitudes. If one measures whether the qubit has value 0 or 1, the answer is random. The measure- ment yields 0 with probability2 jαj2 and 1 with probability jβj2. Thus we have the important constraint that the probabilities must add up to unity jαj2 + jβj2 = 1: (1.2) We say that the state must be `normalized.' Furthermore, we see that an overall `global phase' of the form eiχj i = eiχαj0i + eiχβj1i (1.3) (where χ is an arbitrary real number) can have no measurable effect because the probabilities for different measurement results depend only on the magni- tude square of the state coefficients. Hence, without loss of generality we can choose the phase angle χ to make α real. The complex number β = a + ib is parametrized by two real numbers a and b. However the normalization constraint removes one of these degrees of freedom. In the end we are left with two real parameters to specify the state of a single qubit. A standard parametrization in terms of two angles θ and ' is the following θ θ j i = cos j1i + ei' sin j0i: (1.4) 2 2 The two angles θ and ϕ can be visualized as the polar and azimuthal angles of a vector pointing from the origin to the surface of the unit sphere as illus- tragted in Fig. 1.1. We will later describe the meaning of the unit vector on the Bloch sphere in relation to the properties of the corresponding quantum state and will also explain why half angles appear in the parametrization of the state in Eq. (1.4). We simply note here that the two states of a classical bit are represented by the Bloch sphere vectors corresponding to the north pole (0; 0; 1) and the south pole (0; 0; −1).
Recommended publications
  • A Tutorial Introduction to Quantum Circuit Programming in Dependently Typed Proto-Quipper
    A tutorial introduction to quantum circuit programming in dependently typed Proto-Quipper Peng Fu1, Kohei Kishida2, Neil J. Ross1, and Peter Selinger1 1 Dalhousie University, Halifax, NS, Canada ffrank-fu,neil.jr.ross,[email protected] 2 University of Illinois, Urbana-Champaign, IL, U.S.A. [email protected] Abstract. We introduce dependently typed Proto-Quipper, or Proto- Quipper-D for short, an experimental quantum circuit programming lan- guage with linear dependent types. We give several examples to illustrate how linear dependent types can help in the construction of correct quan- tum circuits. Specifically, we show how dependent types enable program- ming families of circuits, and how dependent types solve the problem of type-safe uncomputation of garbage qubits. We also discuss other lan- guage features along the way. Keywords: Quantum programming languages · Linear dependent types · Proto-Quipper-D 1 Introduction Quantum computers can in principle outperform conventional computers at cer- tain crucial tasks that underlie modern computing infrastructures. Experimental quantum computing is in its early stages and existing devices are not yet suitable for practical computing. However, several groups of researchers, in both academia and industry, are now building quantum computers (see, e.g., [2,11,16]). Quan- tum computing also raises many challenging questions for the programming lan- guage community [17]: How should we design programming languages for quan- tum computation? How should we compile and optimize quantum programs? How should we test and verify quantum programs? How should we understand the semantics of quantum programming languages? In this paper, we focus on quantum circuit programming using the linear dependently typed functional language Proto-Quipper-D.
    [Show full text]
  • Quantum Information
    Quantum Information J. A. Jones Michaelmas Term 2010 Contents 1 Dirac Notation 3 1.1 Hilbert Space . 3 1.2 Dirac notation . 4 1.3 Operators . 5 1.4 Vectors and matrices . 6 1.5 Eigenvalues and eigenvectors . 8 1.6 Hermitian operators . 9 1.7 Commutators . 10 1.8 Unitary operators . 11 1.9 Operator exponentials . 11 1.10 Physical systems . 12 1.11 Time-dependent Hamiltonians . 13 1.12 Global phases . 13 2 Quantum bits and quantum gates 15 2.1 The Bloch sphere . 16 2.2 Density matrices . 16 2.3 Propagators and Pauli matrices . 18 2.4 Quantum logic gates . 18 2.5 Gate notation . 21 2.6 Quantum networks . 21 2.7 Initialization and measurement . 23 2.8 Experimental methods . 24 3 An atom in a laser field 25 3.1 Time-dependent systems . 25 3.2 Sudden jumps . 26 3.3 Oscillating fields . 27 3.4 Time-dependent perturbation theory . 29 3.5 Rabi flopping and Fermi's Golden Rule . 30 3.6 Raman transitions . 32 3.7 Rabi flopping as a quantum gate . 32 3.8 Ramsey fringes . 33 3.9 Measurement and initialisation . 34 1 CONTENTS 2 4 Spins in magnetic fields 35 4.1 The nuclear spin Hamiltonian . 35 4.2 The rotating frame . 36 4.3 On-resonance excitation . 38 4.4 Excitation phases . 38 4.5 Off-resonance excitation . 39 4.6 Practicalities . 40 4.7 The vector model . 40 4.8 Spin echoes . 41 4.9 Measurement and initialisation . 42 5 Photon techniques 43 5.1 Spatial encoding .
    [Show full text]
  • Lecture Notes: Qubit Representations and Rotations
    Phys 711 Topics in Particles & Fields | Spring 2013 | Lecture 1 | v0.3 Lecture notes: Qubit representations and rotations Jeffrey Yepez Department of Physics and Astronomy University of Hawai`i at Manoa Watanabe Hall, 2505 Correa Road Honolulu, Hawai`i 96822 E-mail: [email protected] www.phys.hawaii.edu/∼yepez (Dated: January 9, 2013) Contents mathematical object (an abstraction of a two-state quan- tum object) with a \one" state and a \zero" state: I. What is a qubit? 1 1 0 II. Time-dependent qubits states 2 jqi = αj0i + βj1i = α + β ; (1) 0 1 III. Qubit representations 2 A. Hilbert space representation 2 where α and β are complex numbers. These complex B. SU(2) and O(3) representations 2 numbers are called amplitudes. The basis states are or- IV. Rotation by similarity transformation 3 thonormal V. Rotation transformation in exponential form 5 h0j0i = h1j1i = 1 (2a) VI. Composition of qubit rotations 7 h0j1i = h1j0i = 0: (2b) A. Special case of equal angles 7 In general, the qubit jqi in (1) is said to be in a superpo- VII. Example composite rotation 7 sition state of the two logical basis states j0i and j1i. If References 9 α and β are complex, it would seem that a qubit should have four free real-valued parameters (two magnitudes and two phases): I. WHAT IS A QUBIT? iθ0 α φ0 e jqi = = iθ1 : (3) Let us begin by introducing some notation: β φ1 e 1 state (called \minus" on the Bloch sphere) Yet, for a qubit to contain only one classical bit of infor- 0 mation, the qubit need only be unimodular (normalized j1i = the alternate symbol is |−i 1 to unity) α∗α + β∗β = 1: (4) 0 state (called \plus" on the Bloch sphere) 1 Hence it lives on the complex unit circle, depicted on the j0i = the alternate symbol is j+i: 0 top of Figure 1.
    [Show full text]
  • Arxiv:Quant-Ph/0504183V1 25 Apr 2005 † ∗ Elsae 1,1,1] Oee,I H Rcs Fmea- Is of Above the Process the Vandalized
    Deterministic Bell State Discrimination Manu Gupta1∗ and Prasanta K. Panigrahi2† 1 Jaypee Institute of Information Technology, Noida, 201 307, India 2 Physical Research Laboratory, Navrangpura, Ahmedabad, 380 009, India We make use of local operations with two ancilla bits to deterministically distinguish all the four Bell states, without affecting the quantum channel containing these Bell states. Entangled states play a key role in the transmission and processing of quantum information [1, 2]. Using en- tangled channel, an unknown state can be teleported [3] with local unitary operations, appropriate measurement and classical communication; one can achieve entangle- ment swapping through joint measurement on two en- tangled pairs [4]. Entanglement leads to increase in the capacity of the quantum information channel, known as quantum dense coding [5]. The bipartite, maximally en- FIG. 1: Diagram depicting the circuit for Bell state discrimi- tangled Bell states provide the most transparent illustra- nator. tion of these aspects, although three particle entangled states like GHZ and W states are beginning to be em- ployed for various purposes [6, 7]. satisfactory, where the Bell state is not required further Making use of single qubit operations and the in the quantum network. Controlled-NOT gates, one can produce various entan- We present in this letter, a scheme which discriminates gled states in a quantum network [1]. It may be of inter- all the four Bell states deterministically and is able to pre- est to know the type of entangled state that is present in serve these states for further use. As LOCC alone is in- a quantum network, at various stages of quantum compu- sufficient for this purpose, we will make use of two ancilla tation and cryptographic operations, without disturbing bits, along with the entangled channels.
    [Show full text]
  • Timelike Curves Can Increase Entanglement with LOCC Subhayan Roy Moulick & Prasanta K
    www.nature.com/scientificreports OPEN Timelike curves can increase entanglement with LOCC Subhayan Roy Moulick & Prasanta K. Panigrahi We study the nature of entanglement in presence of Deutschian closed timelike curves (D-CTCs) and Received: 10 March 2016 open timelike curves (OTCs) and find that existence of such physical systems in nature would allow us to Accepted: 05 October 2016 increase entanglement using local operations and classical communication (LOCC). This is otherwise in Published: 29 November 2016 direct contradiction with the fundamental definition of entanglement. We study this problem from the perspective of Bell state discrimination, and show how D-CTCs and OTCs can unambiguously distinguish between four Bell states with LOCC, that is otherwise known to be impossible. Entanglement and Closed Timelike Curves (CTC) are perhaps the most exclusive features in quantum mechanics and general theory of relativity (GTR) respectively. Interestingly, both theories, advocate nonlocality through them. While the existence of CTCs1 is still debated upon, there is no reason for them, to not exist according to GTR2,3. CTCs come as a solution to Einstein’s field equations, which is a classical theory itself. Seminal works due to Deutsch4, Lloyd et al.5, and Allen6 have successfully ported these solutions into the framework of quantum mechanics. The formulation due to Lloyd et al., through post-selected teleportation (P-CTCs) have been also experimentally verified7. The existence of CTCs has been disturbing to some physicists, due to the paradoxes, like the grandfather par- adox or the unproven theorem paradox, that arise due to them. Deutsch resolved such paradoxes by presenting a method for finding self-consistent solutions of CTC interactions.
    [Show full text]
  • Studies in the Geometry of Quantum Measurements
    Irina Dumitru Studies in the Geometry of Quantum Measurements Studies in the Geometry of Quantum Measurements Studies in Irina Dumitru Irina Dumitru is a PhD student at the department of Physics at Stockholm University. She has carried out research in the field of quantum information, focusing on the geometry of Hilbert spaces. ISBN 978-91-7911-218-9 Department of Physics Doctoral Thesis in Theoretical Physics at Stockholm University, Sweden 2020 Studies in the Geometry of Quantum Measurements Irina Dumitru Academic dissertation for the Degree of Doctor of Philosophy in Theoretical Physics at Stockholm University to be publicly defended on Thursday 10 September 2020 at 13.00 in sal C5:1007, AlbaNova universitetscentrum, Roslagstullsbacken 21, and digitally via video conference (Zoom). Public link will be made available at www.fysik.su.se in connection with the nailing of the thesis. Abstract Quantum information studies quantum systems from the perspective of information theory: how much information can be stored in them, how much the information can be compressed, how it can be transmitted. Symmetric informationally- Complete POVMs are measurements that are well-suited for reading out the information in a system; they can be used to reconstruct the state of a quantum system without ambiguity and with minimum redundancy. It is not known whether such measurements can be constructed for systems of any finite dimension. Here, dimension refers to the dimension of the Hilbert space where the state of the system belongs. This thesis introduces the notion of alignment, a relation between a symmetric informationally-complete POVM in dimension d and one in dimension d(d-2), thus contributing towards the search for these measurements.
    [Show full text]
  • A Principle Explanation of Bell State Entanglement: Conservation Per No Preferred Reference Frame
    A Principle Explanation of Bell State Entanglement: Conservation per No Preferred Reference Frame W.M. Stuckey∗ and Michael Silbersteiny z 26 September 2020 Abstract Many in quantum foundations seek a principle explanation of Bell state entanglement. While reconstructions of quantum mechanics (QM) have been produced, the community does not find them compelling. Herein we offer a principle explanation for Bell state entanglement, i.e., conser- vation per no preferred reference frame (NPRF), such that NPRF unifies Bell state entanglement with length contraction and time dilation from special relativity (SR). What makes this a principle explanation is that it's grounded directly in phenomenology, it is an adynamical and acausal explanation that involves adynamical global constraints as opposed to dy- namical laws or causal mechanisms, and it's unifying with respect to QM and SR. 1 Introduction Many physicists in quantum information theory (QIT) are calling for \clear physical principles" [Fuchs and Stacey, 2016] to account for quantum mechanics (QM). As [Hardy, 2016] points out, \The standard axioms of [quantum theory] are rather ad hoc. Where does this structure come from?" Fuchs points to the postulates of special relativity (SR) as an example of what QIT seeks for QM [Fuchs and Stacey, 2016] and SR is a principle theory [Felline, 2011]. That is, the postulates of SR are constraints offered without a corresponding constructive explanation. In what follows, [Einstein, 1919] explains the difference between the two: We can distinguish various kinds of theories in physics. Most of them are constructive. They attempt to build up a picture of the more complex phenomena out of the materials of a relatively simple ∗Department of Physics, Elizabethtown College, Elizabethtown, PA 17022, USA yDepartment of Philosophy, Elizabethtown College, Elizabethtown, PA 17022, USA zDepartment of Philosophy, University of Maryland, College Park, MD 20742, USA 1 formal scheme from which they start out.
    [Show full text]
  • The Statistical Interpretation of Entangled States B
    The Statistical Interpretation of Entangled States B. C. Sanctuary Department of Chemistry, McGill University 801 Sherbrooke Street W Montreal, PQ, H3A 2K6, Canada Abstract Entangled EPR spin pairs can be treated using the statistical ensemble interpretation of quantum mechanics. As such the singlet state results from an ensemble of spin pairs each with an arbitrary axis of quantization. This axis acts as a quantum mechanical hidden variable. If the spins lose coherence they disentangle into a mixed state. Whether or not the EPR spin pairs retain entanglement or disentangle, however, the statistical ensemble interpretation resolves the EPR paradox and gives a mechanism for quantum “teleportation” without the need for instantaneous action-at-a-distance. Keywords: Statistical ensemble, entanglement, disentanglement, quantum correlations, EPR paradox, Bell’s inequalities, quantum non-locality and locality, coincidence detection 1. Introduction The fundamental questions of quantum mechanics (QM) are rooted in the philosophical interpretation of the wave function1. At the time these were first debated, covering the fifty or so years following the formulation of QM, the arguments were based primarily on gedanken experiments2. Today the situation has changed with numerous experiments now possible that can guide us in our search for the true nature of the microscopic world, and how The Infamous Boundary3 to the macroscopic world is breached. The current view is based upon pivotal experiments, performed by Aspect4 showing that quantum mechanics is correct and Bell’s inequalities5 are violated. From this the non-local nature of QM became firmly entrenched in physics leading to other experiments, notably those demonstrating that non-locally is fundamental to quantum “teleportation”.
    [Show full text]
  • The Bloch Equations a Quick Review of Spin- 1 Conventions and Notation
    Ph195a lecture notes, 11/21/01 The Bloch Equations 1 A quick review of spin- 2 conventions and notation 1 The quantum state of a spin- 2 particle is represented by a vector in a two-dimensional complex Hilbert space H2. Let | +z 〉 and | −z 〉 be eigenstates of the operator corresponding to component of spin along the z coordinate axis, ℏ S | + 〉 =+ | + 〉, z z 2 z ℏ S | − 〉 = − | − 〉. 1 z z 2 z In this basis, the operators corresponding to spin components projected along the z,y,x coordinate axes may be represented by the following matrices: ℏ ℏ 10 Sz = σz = , 2 2 0 −1 ℏ ℏ 01 Sx = σx = , 2 2 10 ℏ ℏ 0 −i Sy = σy = . 2 2 2 i 0 We commonly use | ±x 〉 to denote eigenstates of Sx, and similarly for Sy. The dimensionless matrices σx,σy,σz are known as the Pauli matrices, and satisfy the following commutation relations: σx,σy = 2iσz, σy,σz = 2iσx, σz,σx = 2iσy. 3 In addition, Trσiσj = 2δij, 4 and 2 2 2 σx = σy = σz = 1. 5 The Pauli matrices are both Hermitian and unitary. 1 An arbitrary state for an isolated spin- 2 particle may be written θ ϕ θ ϕ |Ψ 〉 = cos exp −i | + 〉 + sin exp i | − 〉, 6 2 2 z 2 2 z where θ and ϕ are real parameters that may be chosen in the ranges 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. Note that there should really be four real degrees of freedom for a vector in a 1 two-dimensional complex Hilbert space, but one is removed by normalization and another because we don’t care about the overall phase of the state of an isolated quantum system.
    [Show full text]
  • Topological Complexity for Quantum Information
    Topological Complexity for Quantum Information Zhengwei Liu Tsinghua University Joint with Arthur Jaffe, Xun Gao, Yunxiang Ren and Shengtao Wang Seminar at Dublin IAS, Oct 14, 2020 Z. Liu (Tsinghua University) Topological Complexity for QI Oct 14, 2020 1 / 31 Topological Complexity: The complexity of computing matrix products or contractions of tensors may grows exponentially using the state sum over the basis. Using topological ideas, such as knot-theoretical isotopy, one could compute the tensors in a more efficient way. Fractionalization: We open the \black box" in tensor network and explore \internal pictorial relations" using the 3D quon language, a fractionalization of tensor network. (Euler's formula, Yang-Baxter equation/relation, star-triangle equation, Kramer-Wannier duality, Jordan-Wigner transformation etc.) Applications: We show that two well-known efficiently classically simulable families, Clifford gates and matchgates, correspond to two kinds of topological complexities. Besides the two simulable families, we introduce a new method to design efficiently classically simulable tensor networks and new families of exactly solvable models. Z. Liu (Tsinghua University) Topological Complexity for QI Oct 14, 2020 2 / 31 Qubits and Gates 2 A qubit is a vector state in C . 2 n An n-qubit is a vector state jφi in (C ) . 2 n A n-qubit gate is a unitary on (C ) . Z. Liu (Tsinghua University) Topological Complexity for QI Oct 14, 2020 3 / 31 Quantum Simulation Feynman and Manin both proposed Quantum Simulation in 1980. Simulate a quantum process by local interactions on qubits. Present an n-qubit gate as a composition of 1-qubit gates and adjacent 2-qubits gates.
    [Show full text]
  • Quantum and Classical Correlations in Bell Three and Four Qubits, Related to Hilbert-Schmidt Decompositions
    Quantum and classical correlations in Bell three and four qubits, related to Hilbert-Schmidt decompositions Y. Ben-Aryeh Physics Department Technion-Israel Institute of Technology, Haifa, 32000, Israel E-mail: [email protected] ABSTRACT The present work studies quantum and classical correlations in 3-qubits and 4-qubits general Bell states, produced by operating with Bn Braid operators on the computational basis of states. The analogies between the general 3- qubits and 4-qubits Bell states and that of 2-qubits Bell states are discussed. The general Bell states are shown to be maximal entangled, i.e., with quantum correlations which are lost by tracing these states over one qubit, remaining only with classical correlations. The Hilbert–Schmidt (HS) decompositions for 3-qubits general Bell states are explored by using 63 parameters. The results are in agreement with concurrence and Peres-Horodecki criterion for the special cases of bipartite system. We show that by tracing 4-qubits general Bell state, which has quantum correlations, over one qubit we get a mixed state with only classical correlations. OCIS codes: (270.0270 ) Quantum Optics; 270.5585; Quantum information; 270.5565 (Quantum communications) 1. INTRODUCTION In the present paper we use a special representation for the group Bn introduced by Artin. 1,2 We develop n-qubits states in time by the Braid operators, operating on the pairs (1,2),(2,3),(3,4) etc., consequently in time. Each pair interaction is given by the R matrix satisfying also the Yang-Baxter equation. By performing such unitary interactions on a computational -basis of n-qubits states, 3,4 we will get n-qubits entangled orthonormal general Bell basis of states.
    [Show full text]
  • Quantum Computing : a Gentle Introduction / Eleanor Rieffel and Wolfgang Polak
    QUANTUM COMPUTING A Gentle Introduction Eleanor Rieffel and Wolfgang Polak The MIT Press Cambridge, Massachusetts London, England ©2011 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. For information about special quantity discounts, please email [email protected] This book was set in Syntax and Times Roman by Westchester Book Group. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Rieffel, Eleanor, 1965– Quantum computing : a gentle introduction / Eleanor Rieffel and Wolfgang Polak. p. cm.—(Scientific and engineering computation) Includes bibliographical references and index. ISBN 978-0-262-01506-6 (hardcover : alk. paper) 1. Quantum computers. 2. Quantum theory. I. Polak, Wolfgang, 1950– II. Title. QA76.889.R54 2011 004.1—dc22 2010022682 10987654321 Contents Preface xi 1 Introduction 1 I QUANTUM BUILDING BLOCKS 7 2 Single-Qubit Quantum Systems 9 2.1 The Quantum Mechanics of Photon Polarization 9 2.1.1 A Simple Experiment 10 2.1.2 A Quantum Explanation 11 2.2 Single Quantum Bits 13 2.3 Single-Qubit Measurement 16 2.4 A Quantum Key Distribution Protocol 18 2.5 The State Space of a Single-Qubit System 21 2.5.1 Relative Phases versus Global Phases 21 2.5.2 Geometric Views of the State Space of a Single Qubit 23 2.5.3 Comments on General Quantum State Spaces
    [Show full text]