Data Imprecision in Computational Geometry Typeset in LATEX

Total Page:16

File Type:pdf, Size:1020Kb

Data Imprecision in Computational Geometry Typeset in LATEX Data Imprecision in Computational Geometry Typeset in LATEX. Cover and figures designed using the Ipe extensible drawing editor. Printed by BOX Press, Oisterwijk, the Netherlands. www.proefschriftmaken.nl Copyright c 2009 Maarten Loffler.¨ All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of Maarten Loffler.¨ ISBN 978-90-8891-121-7 Data Imprecision in Computational Geometry Data-Imprecisie in de Computationele Meetkunde (met een samenvatting in het Nederlands) PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. J.C. Stoof, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 19 oktober 2009 des middags te 4.15 uur door Maarten Loffler¨ geboren op 14 augustus 1982 te Amsterdam Promotor: Prof.dr. R.C. Veltkamp Co-promotor: Dr. M.J. van Kreveld Chapter Preface It seems that my PhD thesis is finished. It feels strange to realise this fact: I actually put together a more or less coherent book of more than 200 pages, most of which even have content that makes sense. Before starting with those, though, let me briefly look back at how this came to be. When I was in primary school, arithmetic was easily my least favourite subject. I remember that each year there was a new book, its pages filled with countless additions, multiplications, divisions, and similar operations, neatly aligned in rows and columns. Each equation would look something like “108 29 =” or “7 31 =”. I believe the idea was that I had to copy these equations to my− exercise book,× and then write down a number behind each “=” sign, to make the equation true. I could never see the point in doing this, and have spent a lot of time staring at these pages, wondering why we couldn’t be spending that time doing something fun like handenarbeid1 instead. I remember that in the eighth year, the children who finished their arithmetic work within the assigned time were allowed to play a game on the school computer. However, this was never an option for me because I was still working in the book of year six. When I was twelve years old, though, everything changed. I advanced to secondary school, and there we did not learn arithmetic, but mathematics. Suddenly a door was opened for me into the wondrous world of logic, of abstract thoughts, relations and riddles, of algebra and number theory, and, not unimportantly, of geometry. I was instantly hooked. I first learnt to program about four years later. We did have a computer at home as well, and when my sister and I were small children, my father had been experimenting with computer programming, and made a few games for us to play. Of course, at the time I never guessed that he had made them himself. Then, one day he decided to 1Literally, “handenarbeid” translates to “hand labour” or “manual labour”, but the kind taught at Dutch elementary schools is more about being creative with carton and glue than about, say, cutting down trees. vi PREFACE teach me the basics of a computer language called “BASIC”. Computers were already fairly common in those days, and I had been working (or rather, playing) with them all my life, but the idea that I could make a computer do virtually anything I wanted it to, by simply typing in a few words, had never really crossed my mind. After this introduction, though, I soon had balls flying around the screen, and in no time at all I had written elaborate interactive stories, and implemented several intricate strategic games. Looking back at them now, I must admit that these products of my creativity were not all that impressive, but I clearly remember the excitement with which I laboured on those projects at the time. It was the discovery of computer programming that made me doubt my implicit decision to study mathematics after school for the first time. Fortunately, by the time I had to choose the Direction of my Future, a programme called “TWINFO” (TWIN WIskunde and INFOrmatica) was being offered by the university of Utrecht, which promised to combine both studies in a single curriculum. This turned out to be the case only during the first year, after which it was left to my own creativity and organisational skills to complete the remaining four years of both studies; but, it was enough to lure me in. Though I encountered some very different branches of mathematics during my studies that I liked, somehow the courses that involved geometry in some form always specifically interested me. Visual drawings could directly transfer an idea to my mind, and I found them more appealing than formulae involving endless strings of these funny RRR symbols, that require significant staring at before they start making anything resembling sense. The computer science programme, though, did not offer many courses that were supplied with nice pictures. Instead, I was led astray by the intricacies of compiler construction, and at the end of my third year, I wrote what was the equivalent of my Bachelor thesis about generating error messages in a compiler for the functional programming language “Haskell”. However, in my fourth year, the university was just in the process of introducing the Bachelor/Master system, and I had to choose a Master programme, even though technically I was still a student in the old Propedeuse/Doctoraal system. Although I had enjoyed my two months of work in the software technology lab, I was intrigued by a programme called “GIVE” (Geometry, Imaging and Virtual Environments). I decided to take this direction, and as the name suggested it included several computer science courses that were rather more visual in nature than any I had seen so far. I particularly enjoyed a course on “geometric algorithms”, which nicely combined the two main directions that my interest had taken. I decided that I wanted to write my Master thesis on some topic in this field. Probably due to the fashion of the moment, I ended up studying the effects of data imprecision on the computation of the convex hull, a topic which turned out to be conceiling many intriguing puzzles for me to unveil and solve. In fact, one of the results from that thesis is repeated in this one, in Chapter 4. After I finished my studies, I was offered the option to continue for a PhD on the same topic, on the “GOGO” (Geometric Optimisation with Geometric cOnstrants) project. During this time, I was able to get to know the subject better, and it has always provided me with more than enough nice, challenging, and perhaps vii most importantly, unsolved problems. And that is how I ended up writing a PhD thesis about data imprecision in computa- tional geometry. For those who do not immediately appreciate the implications of the last sentence, I would like to point ahead to Chapter 1, where the topic is discussed in some detail. When I had finished my Master thesis about imprecision in convex hulls, of course I proudly showed it to many of my friends, family, and other acquaintances. Most of them would, after the obligatory praising words, invariably ask the same question in the end: “What is it about?” Since they would not be satisfied with the obvious answer, “imprecision in convex hulls”, I thought it was nice to make things a little more concrete by explaining the elastic band analogy: the convex hull of a set of points is what you get when releasing an elastic band around a bunch of nails sticking out of a flat surface. I then proceeded to describe the problems that arise when the locations of the nails are unknown, but this is where I usually lost my audience. Since then, there have been persistent rumours in certain circles that everything I do all day long at my work is put nails into every available flat surface, and wrap elastic bands around them. I want to use this opportunity to stress that this is really not the case, and that there are still several undamaged flat surfaces left in my office. I hope you enjoy reading this thesis. Maarten Loffler¨ Wageningen, September 2, 2009 viii PREFACE Chapter Contents Preface v Contents ix PART I Introduction 1 Introduction 3 1.1 Computational Geometry 3 1.2 Imprecision 9 1.3 Imprecision and Computational Geometry 14 1.4 Contribution of this Thesis 15 2 Modelling Imprecise Data 17 2.1 Imprecision in Input and Output 17 2.2 Imprecise Points Modelled as Regions 22 2.3 Other Models for Imprecise Points 26 2.4 Imprecision in Other Types of Input 29 2.5 Closing Remarks 33 x CONTENTS PART II Bounds on Output Imprecision 3 Bounds on Shape Fitting 37 3.1 Axis-Aligned Bounding Box 38 3.2 Smallest Enclosing Circle 43 3.3 Width 45 3.4 Closing Remarks 50 4 Bounds on the Convex Hull Area 51 4.1 Largest Convex Hull of Parallel Line Segments 52 4.2 Largest Convex Hull of Squares 53 4.3 Smallest Convex Hull 57 4.4 Disks 64 4.5 Closing Remarks 65 5 Approximate Largest Convex Hull 67 5.1 Preliminaries 68 5.2 Approximating the Largest Convex Hull 69 5.3 Squares 70 5.4 Disks 73 5.5 Closing Remarks 77 6 Bounds on the Diameter 79 6.1 Largest Possible Diameter 80 6.2 Smallest Possible Diameter 82 6.3 Smallest Diameter for Squares 84 6.4 Smallest Diameter for Disks 89 6.5 Closing Remarks 91 CONTENTS xi PART III Preprocessing Imprecise Points 7 Preprocessing for Triangulation 95 7.1 Triangulations 97 7.2 Splitting a Triangulation 98 7.3 Triangulating Imprecise Points 104 7.4 Extensions 106 7.5 Closing Remarks 107 8 Preprocessing for Delaunay Triangulation
Recommended publications
  • Sylvester-Gallai-Like Theorems for Polygons in the Plane
    RC25263 (W1201-047) January 24, 2012 Mathematics IBM Research Report Sylvester-Gallai-like Theorems for Polygons in the Plane Jonathan Lenchner IBM Research Division Thomas J. Watson Research Center P.O. Box 704 Yorktown Heights, NY 10598 Research Division Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218, Yorktown Heights, NY 10598 USA (email: [email protected]). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home . Sylvester-Gallai-like Theorems for Polygons in the Plane Jonathan Lenchner¤ Abstract Given an arrangement of lines in the plane, an ordinary point is a point of intersection of precisely two of the lines. Motivated by a desire to understand the fine structure of ordinary points in line arrangements, we consider the following problem: given a polygon P in the plane and a family of lines passing into the interior of P, how many ordinary intersection points must there be on or inside of P? We answer this question for a variety of different types of polygons.
    [Show full text]
  • Stony Brook University
    SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Combinatorics and Complexity in Geometric Visibility Problems A Dissertation Presented by Justin G. Iwerks to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Applied Mathematics and Statistics (Operations Research) Stony Brook University August 2012 Stony Brook University The Graduate School Justin G. Iwerks We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Joseph S. B. Mitchell - Dissertation Advisor Professor, Department of Applied Mathematics and Statistics Esther M. Arkin - Chairperson of Defense Professor, Department of Applied Mathematics and Statistics Steven Skiena Distinguished Teaching Professor, Department of Computer Science Jie Gao - Outside Member Associate Professor, Department of Computer Science Charles Taber Interim Dean of the Graduate School ii Abstract of the Dissertation Combinatorics and Complexity in Geometric Visibility Problems by Justin G. Iwerks Doctor of Philosophy in Applied Mathematics and Statistics (Operations Research) Stony Brook University 2012 Geometric visibility is fundamental to computational geometry and its ap- plications in areas such as robotics, sensor networks, CAD, and motion plan- ning. We explore combinatorial and computational complexity problems aris- ing in a collection of settings that depend on various notions of visibility. We first consider a generalized version of the classical art gallery problem in which the input specifies the number of reflex vertices r and convex vertices c of the simple polygon (n = r + c).
    [Show full text]
  • Preprocessing Imprecise Points and Splitting Triangulations
    Preprocessing Imprecise Points and Splitting Triangulations Marc van Kreveld Maarten L¨offler Joseph S.B. Mitchell Technical Report UU-CS-2009-007 March 2009 Department of Information and Computing Sciences Utrecht University, Utrecht, The Netherlands www.cs.uu.nl ISSN: 0924-3275 Department of Information and Computing Sciences Utrecht University P.O. Box 80.089 3508 TB Utrecht The Netherlands Preprocessing Imprecise Points and Splitting Triangulations∗ Marc van Kreveld Maarten L¨offler Joseph S.B. Mitchell [email protected] [email protected] [email protected] Abstract Traditional algorithms in computational geometry assume that the input points are given precisely. In practice, data is usually imprecise, but information about the imprecision is often available. In this context, we investigate what the value of this information is. We show here how to preprocess a set of disjoint regions in the plane of total complexity n in O(n log n) time so that if one point per set is specified with precise coordinates, a triangulation of the points can be computed in linear time. In our solution, we solve another problem which we believe to be of independent interest. Given a triangulation with red and blue vertices, we show how to compute a triangulation of only the blue vertices in linear time. 1 Introduction Computational geometry deals with computing structure in 2-dimensional space (or higher). The most popular input is a set of points, on which something useful is then computed, for example, a triangulation. Algorithms for these tasks have been developed many years ago, and are provably fast and correct.
    [Show full text]
  • Computational Geometry Lecture Notes1 HS 2012
    Computational Geometry Lecture Notes1 HS 2012 Bernd Gärtner <[email protected]> Michael Hoffmann <[email protected]> Tuesday 15th January, 2013 1Some parts are based on material provided by Gabriel Nivasch and Emo Welzl. We also thank Tobias Christ, Anna Gundert, and May Szedlák for pointing out errors in preceding versions. Contents 1 Fundamentals 7 1.1 ModelsofComputation ............................ 7 1.2 BasicGeometricObjects. 8 2 Polygons 11 2.1 ClassesofPolygons............................... 11 2.2 PolygonTriangulation . 15 2.3 TheArtGalleryProblem ........................... 19 3 Convex Hull 23 3.1 Convexity.................................... 24 3.2 PlanarConvexHull .............................. 27 3.3 Trivialalgorithms ............................... 29 3.4 Jarvis’Wrap .................................. 29 3.5 GrahamScan(SuccessiveLocalRepair) . .... 31 3.6 LowerBound .................................. 33 3.7 Chan’sAlgorithm................................ 33 4 Line Sweep 37 4.1 IntervalIntersections . ... 38 4.2 SegmentIntersections . 38 4.3 Improvements.................................. 42 4.4 Algebraic degree of geometric primitives . ....... 42 4.5 Red-BlueIntersections . .. 45 5 Plane Graphs and the DCEL 51 5.1 TheEulerFormula............................... 52 5.2 TheDoubly-ConnectedEdgeList. .. 53 5.2.1 ManipulatingaDCEL . 54 5.2.2 GraphswithUnboundedEdges . 57 5.2.3 Remarks................................. 58 3 Contents CG 2012 6 Delaunay Triangulations 61 6.1 TheEmptyCircleProperty . 64 6.2 TheLawsonFlipalgorithm
    [Show full text]
  • 5 PSEUDOLINE ARRANGEMENTS Stefan Felsner and Jacob E
    5 PSEUDOLINE ARRANGEMENTS Stefan Felsner and Jacob E. Goodman INTRODUCTION Pseudoline arrangements generalize in a natural way arrangements of straight lines, discarding the straightness aspect, but preserving their basic topological and com- binatorial properties. Elementary and intuitive in nature, at the same time, by the Folkman-Lawrence topological representation theorem (see Chapter 6), they provide a concrete geometric model for oriented matroids of rank 3. After their explicit description by Levi in the 1920’s, and the subsequent devel- opment of the theory by Ringel in the 1950’s, the major impetus was given in the 1970’s by Gr¨unbaum’s monograph Arrangements and Spreads, in which a number of results were collected and a great many problems and conjectures posed about arrangements of both lines and pseudolines. The connection with oriented ma- troids discovered several years later led to further work. The theory is by now very well developed, with many combinatorial and topological results and connections to other areas as for example algebraic combinatorics, as well as a large number of applications in computational geometry. In comparison to arrangements of lines arrangements of pseudolines have the advantage that they are more general and allow for a purely combinatorial treatment. Section 5.1 is devoted to the basic properties of pseudoline arrangements, and Section 5.2 to related structures, such as arrangements of straight lines, configura- tions (and generalized configurations) of points, and allowable sequences of permu- tations. (We do not discuss the connection with oriented matroids, however; that is included in Chapter 6.) In Section 5.3 we discuss the stretchability problem.
    [Show full text]
  • Chapter 12 Pseudotriangulations
    Chapter 12 Pseudotriangulations We have seen that arrangements and visibility graphs are useful and powerful models for motion planning. However, these structures can be rather large and thus expensive to build and to work with. Let us therefore consider a simpli ed problem: for a robot which is positioned in some environment of obstacles, which and where is the next obstacle that it would hit, if it continues to move linearly in some direction? This type of problem is known as a ray shooting query because we imagine to shoot a ray starting from the current position in a certain direction and want to know what is the rst object hit by this ray. If the robot is modeled as a point and the environment as a simple polygon, we arrive at the following problem. Problem 8 (Ray-shooting in a simple polygon.) Given a simple polygon P = (p1, . , pn), a point q 2 R2, and a ray r emanating from q, which is the rst edge of P hit by r? r q P Figure 12.1: An instance of the ray-shooting problem within a simple polygon. In the end, we would like to have a data structure to preprocess a given polygon such that a ray shooting query can be answered eciently for any query ray starting somewhere inside P. As a warmup, let us look at the case that P is a convex polygon. Here the problem is easy: Supposing we are given the vertices of P in an array-like structure, the boundary 103 Chapter 12.
    [Show full text]
  • The Symplectic Geometry of Polygons in Euclidean Space
    The Symplectic Geometry of Polygons in Euclidean Space Michael Kap ovich and John J Millson March Abstract We study the symplectic geometry of mo duli spaces M of p oly r gons with xed side lengths in Euclidean space We show that M r has a natural structure of a complex analytic space and is complex 2 n analytically isomorphic to the weighted quotient of S constructed by Deligne and Mostow We study the Hamiltonian ows on M ob r tained by b ending the p olygon along diagonals and show the group generated by such ows acts transitively on M We also relate these r ows to the twist ows of Goldman and JereyWeitsman Contents Intro duction Mo duli of p olygons and weighted quotients of conguration spaces of p oints on the sphere Bending ows and p olygons Actionangle co ordinates This research was partially supp orted by NSF grant DMS at University of Utah Kap ovich and NSF grant DMS the University of Maryland Millson The connection with gauge theory and the results of Gold man and JereyWeitsman Transitivity of b ending deformations Bending of quadrilaterals Deformations of ngons Intro duction Let P b e the space of all ngons with distinguished vertices in Euclidean n 3 space E An ngon P is determined by its vertices v v These vertices 1 n are joined in cyclic order by edges e e where e is the oriented line 1 n i segment from v to v Two p olygons P v v and Q w w i i+1 1 n 1 n are identied if and only if there exists an orientation preserving isometry g 3 of E which
    [Show full text]
  • Pseudotriangulations and the Expansion Polytope
    99 Pseudotriangulations G¨unter Rote Freie Universit¨atBerlin, Institut f¨urInformatik 2nd Winter School on Computational Geometry Tehran, March 2–6, 2010 Day 5 Literature: Pseudo-triangulations — a survey. G.Rote, F.Santos, I.Streinu, 2008 98 Outline 1. Motivation: ray shooting 2. Pseudotriangulations: definitions and properties 3. Rigidity, Laman graphs 4. Rigidity: kinematics of linkages 5. Liftings of pseudotriangulations to 3 dimensions 97 1. Motivation: Ray Shooting in a Simple Polygon 97 1. Motivation: Ray Shooting in a Simple Polygon Walking in a triangulation: Walk to starting point. Then walk along the ray. 97 1. Motivation: Ray Shooting in a Simple Polygon Walking in a triangulation: Walk to starting point. Then walk along the ray. O(n) steps in the worst case. 96 Triangulations of a convex polygon 1 12 2 11 3 10 4 9 5 8 6 7 96 Triangulations of a convex polygon 1 1 12 2 12 2 11 3 11 3 10 4 10 4 9 5 9 5 8 6 8 6 7 7 balanced triangulation A path crosses O(log n) triangles. 95 Triangulations of a simple polygon 1 5 2 12 1 12 2 3 11 10 11 4 3 6 8 10 4 9 7 9 5 balanced triangulation: balanced geodesic8 triangulation:6 An edge crosses O(log n) An edge crosses O7 (log n) triangles. pseudotriangles. [Chazelle, Edelsbrunner, Grigni, Guibas, Hershberger, Sharir, Snoeyink 1994] 95 Triangulations of a simple polygon 1 5 2 12 1 12 2 3 11 10 11 4 3 corner 6 8 pseudotriangle 10 4 tail 9 7 9 5 balanced triangulation: balanced geodesic8 triangulation:6 An edge crosses O(log n) An edge crosses O7 (log n) triangles.
    [Show full text]
  • Memory-Constrained Algorithms for Simple Polygons∗
    Memory-Constrained Algorithms for Simple Polygons∗ Tetsuo Asanoy Kevin Buchinz Maike Buchinz Matias Kormanx Wolfgang Mulzer{ G¨unter Rote{ Andr´eSchulzk November 17, 2018 Abstract A constant-work-space algorithm has read-only access to an input array and may use only O(1) additional words of O(log n) bits, where n is the input size. We show how to triangulate a plane straight-line graph with n vertices in O(n2) time and constant work- space. We also consider the problem of preprocessing a simple polygon P for shortest path queries, where P is given by the ordered sequence of its n vertices. For this, we relax the space constraint to allow s words of work-space. After quadratic preprocessing, the shortest path between any two points inside P can be found in O(n2=s) time. 1 Introduction In algorithm development and computer technology, we observe two opposing trends: on the one hand, there are vast amounts of computational resources at our fingertips. Alas, this often leads to bloated software that is written without regard to resources and efficiency. On the other hand, we see a proliferation of specialized tiny devices that have a limited supply of memory or power. Software that is oblivious to space resources is not suitable for such a setting. Moreover, even if a small device features a fairly large memory, it may still be preferable to limit the number of write operations. For one, writing to flash memory is slow and costly, and it also reduces the lifetime of the memory. Furthermore, if the input is stored on a removable medium, write-access may be limited for technical or security reasons.
    [Show full text]
  • 30 POLYGONS Joseph O’Rourke, Subhash Suri, and Csaba D
    30 POLYGONS Joseph O'Rourke, Subhash Suri, and Csaba D. T´oth INTRODUCTION Polygons are one of the fundamental building blocks in geometric modeling, and they are used to represent a wide variety of shapes and figures in computer graph- ics, vision, pattern recognition, robotics, and other computational fields. By a polygon we mean a region of the plane enclosed by a simple cycle of straight line segments; a simple cycle means that nonadjacent segments do not intersect and two adjacent segments intersect only at their common endpoint. This chapter de- scribes a collection of results on polygons with both combinatorial and algorithmic flavors. After classifying polygons in the opening section, Section 30.2 looks at sim- ple polygonizations, Section 30.3 covers polygon decomposition, and Section 30.4 polygon intersection. Sections 30.5 addresses polygon containment problems and Section 30.6 touches upon a few miscellaneous problems and results. 30.1 POLYGON CLASSIFICATION Polygons can be classified in several different ways depending on their domain of application. In chip-masking applications, for instance, the most commonly used polygons have their sides parallel to the coordinate axes. GLOSSARY Simple polygon: A closed region of the plane enclosed by a simple cycle of straight line segments. Convex polygon: The line segment joining any two points of the polygon lies within the polygon. Monotone polygon: Any line orthogonal to the direction of monotonicity inter- sects the polygon in a single connected piece. Star-shaped polygon: The entire polygon is visible from some point inside the polygon. Orthogonal polygon: A polygon with sides parallel to the (orthogonal) coordi- nate axes.
    [Show full text]
  • Area-Preserving Simplification and Schematization of Polygonal Subdivisions
    Area-preserving simplification and schematization of polygonal subdivisions Citation for published version (APA): Buchin, K., Meulemans, W., Van Renssen, A., & Speckmann, B. (2016). Area-preserving simplification and schematization of polygonal subdivisions. ACM Transactions on Spatial Algorithms and Systems , 2(1), 1-36. [2]. https://doi.org/10.1145/2818373 DOI: 10.1145/2818373 Document status and date: Published: 08/04/2016 Document Version: Accepted manuscript including changes made at the peer-review stage Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • CS368: Geometric Algorithms Handout # 3 Design and Analysis Stanford University Monday, 25 April 2005
    CS368: Geometric Algorithms Handout # 3 Design and Analysis Stanford University Monday, 25 April 2005 The following is a chapter on modeling motion from the brand new Handbook of Discrete and Computational Geometry, J. Goodman and J. O’Rourke, Eds., pp. 1117– 1134, CRC Press, 2004. 50 MOTION Leonidas J. Guibas 50.1 INTRODUCTION Motion is ubiquitous in the physical world, yet its study is much less developed than that of another common physical modality, namely shape. While we have several standardized mathematical shape descriptions, and even entire disciplines devoted to that area–such as Computer-Aided Geometric Design (CAGD)—the state of formal motion descriptions is still in flux. This in part because motion descriptions span many levels of detail; they also tend to be intimately coupled to an underlying physical process generating the motion (dynamics). Thus, until recently, proper abstractions were lacking and there was only limited work on algorithmic descriptions of motion and their associated complexity measures. This chapter aims to show how an algorithmic study of motion is intimately tied to discrete and computational geometry. After a quick survey of earlier work (Sections 50.2 and 50.3), we devote the bulk of this chapter to discussing the framework of Kinetic Data Structures (Section 50.4) [Gui98, BGH99]. We also briefly discuss methods for querying moving objects (Section 50.5). 50.2 MOTION IN COMPUTATIONAL GEOMETRY Dynamic computational geometry refers to the study of combinatorial changes in a geometric structure, as its defining objects undergo prescribed motions. For 2 example, we may have n points moving linearly with constant velocities in R ,and may want to know the time intervals during which a particular point appears on their convex hull, the steady-state form of the hull (after all changes have occurred), or get an upper bound on how many times the convex hull changes during this motion.
    [Show full text]