Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Introduction Object oriented programming using Java UNIT-1 Introduction: Approaches to Software Design, Evolution of the Object Model, Benefits of Object Programming; Object Model: Objects, Classes, Sub-classing and Inheritance, Polymorphism Object Programming in Windowed Environments: Benefits of OOP in Windowed Application Environments, Application Frameworks and Class Libraries. ------------------------------------------------------------------------------------------------------ Introduction Software design is a process to conceptualize the software requirements into software implementation. Software design takes the user requirements as challenges and tries to find optimum solution. Number of Issues that must be addressed in software design that are maintainability, reusability, portability, security, integrity, and user friendliness of software products. There are multiple variants of software design. Let us study them briefly: Structured Design Structured design is a conceptualization of problem into several well-organized elements of solution. It is basically concerned with the solution design. Benefit of structured design is, it gives better understanding of how the problem is being solved. Structured design is mostly based on ‘divide and conquer’ strategy where a problem is broken into several small problems and each small problem is individually solved until the whole problem is solved. The small pieces of problem are solved by means of solution modules. These modules are arranged in hierarchy. They communicate with each other. A good structured design always follows some rules for communication among multiple modules, namely - Cohesion - grouping of all functionally related elements. Coupling - communication between different modules. A good structured design has high cohesion and low coupling arrangements. Function Oriented Design In function-oriented design, the system is comprised of many smaller sub- systems known as functions. These functions are capable of performing significant task in the system. Function oriented design inherits some properties of structured design where divide and conquer methodology is used. This design mechanism divides the whole system into smaller functions, which provides means of abstraction by concealing the information and their operation. These functional modules can share information among themselves by means of information passing and using information available globally. Object Oriented Design Object oriented design works around the entities and their characteristics instead of functions involved in the software system. The whole concept of software solution revolves around the engaged entities. Let us see the important concepts of Object Oriented Design: Objects - All entities involved in the solution design are known as objects. For example, person, banks, company and customers are treated as objects. Every entity has some attributes associated to it and has some methods to perform on the attributes. Classes - A class is a generalized description of an object. An object is an instance of a class. Class defines all the attributes, which an object can have and methods, which defines the functionality of the object. In the solution design, attributes are stored as variables and functionalities are defined by means of methods or procedures. Encapsulation - In OOD, the attributes (data variables) and methods (operation on the data) are bundled together is called encapsulation. Encapsulation not only bundles important information of an object together, but also restricts access of the data and methods from the outside world. This is called information hiding. Inheritance - OOD allows similar classes to stack up in hierarchical manner where the lower or sub-classes can import, implement and re- use allowed variables and methods from their immediate super classes. This property of OOD is known as inheritance. This makes it easier to define specific class and to create generalized classes from specific ones. Polymorphism - OOD languages provide a mechanism where methods performing similar tasks but vary in arguments, can be assigned same name. This is called polymorphism, which allows a single interface performing tasks for different types. Depending upon how the function is invoked, respective portion of the code gets executed. Software Design Approaches Here are two generic approaches for software designing: Top down Design We know that a system is composed of more than one sub-systems and it contains a number of components. Top-down design takes the whole software system as one entity and then decomposes it to achieve more than one sub-system or component based on some characteristics. Each sub-system or component is then treated as a system and decomposed further. This process keeps on running until the lowest level of system in the top-down hierarchy is achieved. Top-down design starts with a generalized model of system and keeps on defining the more specific part of it. When all components are composed the whole system comes into existence. Top-down design is more suitable when the software solution needs to be designed from scratch and specific details are unknown. Bottom-up Design The bottom up design model starts with most specific and basic components. It proceeds with composing higher level of components by using basic or lower level components. It keeps creating higher level components until the desired system is not evolved as one single component. With each higher level, the amount of abstraction is increased. Bottom-up strategy is more suitable when a system needs to be created from some existing system, where the basic primitives can be used in the newer system. Both, top-down and bottom-up approaches are not practical individually. Instead, a good combination of both is used. The algorithms are designed using two approaches that are the top-down and bottom-up approach. In the top-down approach, the complex module is divided into submodules. On the other hand, bottom-up approach begins with elementary modules and then combine them further. The prior purpose of an algorithm is to operate the data comprised in the datastructure. In other words, an algorithm is used to perform the operations on the data inside the data structures. Comparison Chart BASIS FOR TOP-DOWN APPROACH BOTTOM-UP APPROACH COMPARISON Basic Breaks the massive problem Solves the fundamental into smaller sub problems. low-level problem and integrates them into a larger one. Process Submodules are solitarily Examine what data is to be encapsulated, and BASIS FOR TOP-DOWN APPROACH BOTTOM-UP APPROACH COMPARISON analysed. implies the concept of information hiding. Communication Not required in the top-down Needs a specific amount approach. of communication. Redundancy Contain redundant Redundancy can be information. eliminated. Programming Structure/procedural oriented Object-oriented languages programming languages (i.e. C) programming languages follows the top-down approach. (like C++, Java, etc.) follows the bottom-up approach. Mainly used in Module documentation, test Testing case creation, code implementation and debugging. Evolution of the Object Model Evolution & Overview of Java By the end of 1980s and the early 1990s, Object-oriented programming using C++ took hold. For a brief moment, it seemed as if programmers had found the perfect language finally. C++ was a language that could be used to create a wide range of programs. However, forces were brewing that would drive computer language evolution forward once again. Within few years WWW (World Wide Web) and the Internet would reach critical mass. This event would cause another revolution in programming. Java is general purpose language which is used for developing either Stand alone Programs or either you can develop We Programs or Web Applets First of all program of java is Compiled then it is transferred into the byte codes For Executing java programs java name of the compiler is used for Converting the java program into the byte code and then by using the interpreter we converts the Bytes code into the machine language. If we simply execute the programs on our Machine then it is called as the Stand Alone Programs but if we using the Applets for which includes Graphical Environment then it is called as Web Applets. JAVA History Every Languages have a history or Every Language has a past Java is Developed in 1991 in USA And it was Called as OAK and it is Developed by James Gosling name of the Engineer of the Microsoft Sun Team. Java Was Developed For Developing the Electronics' things Like VCR, Televisions etc. The History of Java Includes. In 1990 Sun Microsoft Team develop java for Electronics Things but in 1991 java was Comes with the new name Called as OAK then After that in 1992 java was come with the new idea of developing Software's for the Handheld Devices Like Mobile Phones ,Pagers etc. But in 1993 Java Was So Popular in the World Wide Web or in the Internet For Developing Games and Graphical Applications with the help of Applets The Most Important usable thing in Graphical Programming. Features of Java Compiled and Interpreter Java has both Compiled and Interpreter Feature Program of java is First Compiled and Then it is must to Interpret it .First of all The Program of java is Compiled then after Compilation it creates Bytes Codes rather than Machine Language Then After Bytes Codes are Converted into the Machine Language is Converted into the Machine Language with the help of the Interpreter So For Executing the java Program First of
Recommended publications
  • Java Programming 18Mca32c
    JAVA PROGRAMMING 18MCA32C Unit – I INTRODUCTION FACULTY Dr. K. ARTHI MCA, M.Phil., Ph.D., Assistant Professor, Postgraduate Department of Computer Applications, Government Arts College (Autonomous), Coimbatore 641018. JAVA PROGRAMMING 18MCA32C Syllabus Objective: On successful completion of the course the students should have understood the Basic concept and fundamentals of core java classes, API, OOPS concept in Java and features of OOPS. UNIT I: The Genesis of Java - The Java class Libraries - Data types, Variables - Operators - Arrays. Control Statements: Selection statements - Iteration statements - Jump statements. Introducing classes: Class Fundamentals - Declaring objects - Methods. UNIT II: Constructors - this keyword - Garbage collection. Overloading Methods - Access controls - Nested and Inner classes. Inheritance: Inheritance basics - using Super - Method overriding - Dynamic method Dispatch - Abstract classes - using final with inheritance. Packages and Interfaces: Packages - Access protection - Importing Packages - Interfaces. UNIT III: Exception Handling: Exception Handling Fundamentals - Java’s Built in Exceptions - creating own Exception subclasses. Multithreaded Programming: The Java Thread Model - Creating a Thread - Synchronization - Inter Thread communication. UNIT IV: I/O Basics - Reading console Input -Writing Console Output - Reading and writing Files - Exploring java.io. Applet Fundamentals - Applet Basics - Introducing the AWT. UNIT V: Software Development using Java: Java Beans introduction - Servlets: Life cycle - A simple servlet - servlet API - Handling HTTP Request and Responses - Session tracking. Networking Basics - Remote Method Invocation (RMI) - Accessing Database with JDBC. TEXT BOOKS: 1. Herbert Schildt, “The Complete Reference Java 2”, 2nd Ed, Tata McGraw Hill (I) Pvt. Ltd.,2002. 2. H.M. Deitel and P. J. Deitel, “Java How to Program”, 6th Ed, PHI/Pearson Education Asia 2005. History of Java 1.
    [Show full text]
  • Java (Programming Langua a (Programming Language)
    Java (programming language) From Wikipedia, the free encyclopedialopedia "Java language" redirects here. For the natural language from the Indonesian island of Java, see Javanese language. Not to be confused with JavaScript. Java multi-paradigm: object-oriented, structured, imperative, Paradigm(s) functional, generic, reflective, concurrent James Gosling and Designed by Sun Microsystems Developer Oracle Corporation Appeared in 1995[1] Java Standard Edition 8 Update Stable release 5 (1.8.0_5) / April 15, 2014; 2 months ago Static, strong, safe, nominative, Typing discipline manifest Major OpenJDK, many others implementations Dialects Generic Java, Pizza Ada 83, C++, C#,[2] Eiffel,[3] Generic Java, Mesa,[4] Modula- Influenced by 3,[5] Oberon,[6] Objective-C,[7] UCSD Pascal,[8][9] Smalltalk Ada 2005, BeanShell, C#, Clojure, D, ECMAScript, Influenced Groovy, J#, JavaScript, Kotlin, PHP, Python, Scala, Seed7, Vala Implementation C and C++ language OS Cross-platform (multi-platform) GNU General Public License, License Java CommuniCommunity Process Filename .java , .class, .jar extension(s) Website For Java Developers Java Programming at Wikibooks Java is a computer programming language that is concurrent, class-based, object-oriented, and specifically designed to have as few impimplementation dependencies as possible.ble. It is intended to let application developers "write once, run ananywhere" (WORA), meaning that code that runs on one platform does not need to be recompiled to rurun on another. Java applications ns are typically compiled to bytecode (class file) that can run on anany Java virtual machine (JVM)) regardless of computer architecture. Java is, as of 2014, one of tthe most popular programming ng languages in use, particularly for client-server web applications, witwith a reported 9 million developers.[10][11] Java was originallyy developed by James Gosling at Sun Microsystems (which has since merged into Oracle Corporation) and released in 1995 as a core component of Sun Microsystems'Micros Java platform.
    [Show full text]
  • Q. What Is Java ? Java Is a Programming Language and A
    GANDHI CHOWK Q. What is Java ? Java is a programming language and a platform. Java is a high level, robust, secured and object-oriented programming language. Platform: Any hardware or software environment in which a program runs, is known as a platform. Since Java has its own runtime environment (JRE) and API, it is called platform. Where it is used? According to Sun, 3 billion devices run java. There are many devices where java is currently used. Some of them are as follows: 1. Desktop Applications such as acrobat reader, media player, antivirus etc. 2. Web Applications such as irctc.co.in, javatpoint.com etc. 3. Enterprise Applications such as banking applications. 4. Mobile 5. Embedded System 6. Smart Card 7. Robotics 8. Games etc. TYPES OF JAVA APPLICATIONS There are mainly 4 type of applications that can be created using java programming: 1) Standalone Application It is also known as desktop application or window-based application. An application that we need to install on every machine such as media player, antivirus etc. AWT and Swing are used in java for creating standalone applications. 2) Web Application An application that runs on the server side and creates dynamic page, is called web application. Currently, servlet, jsp, struts, jsf etc. technologies are used for creating web applications in java. Ishwar Prakash(8271395373) 1 GANDHI CHOWK 3) Enterprise Application An application that is distributed in nature, such as banking applications etc. It has the advantage of high level security, load balancing and clustering. In java, EJB is used for creating enterprise applications.
    [Show full text]
  • Release Notes What's
    Release Notes Amster is a lightweight command-line interface, ideal for use in DevOps processes, such as continuous integration and deployment. Read these release notes before you install Amster. The information contained in these release notes cover prerequisites for installation, known issues and improvements to the software, changes and deprecated functionality, and other important information. ForgeRock Identity Platform® serves as the basis for our simple and comprehensive Identity and Access Management solution. We help our customers deepen their relationships with their customers, and improve the productivity and connectivity of their employees and partners. For more information about ForgeRock and about the platform, see https://www.forgerock.com. What’s New This page covers new features and improvements in Amster. What’s New in Amster 7.1 Support for AM 7.1 or Later Only Amster 7.1 supports exporting and importing conguration from AM 7.1 or later. If you have a previous version of Amster: 1. Perform a fresh installation of Amster 7.1. For more information, see Install Amster. 2. Migrate any Amster Groovy scripts from the previous Amster installation. Take into account any changes in functionality. 3. Convert any JSON conguration les that were exported from AM 5 or later. The AM 7.1 ZIP le includes a conguration le upgrade tool. For more information on converting conguration les for import into AM 7.1, see the README.md le in the Config-Upgrader-7.1.0.zip le. 4. Test the new Amster installation. 5. Delete the previous Amster installation. Before You Install This page covers software and hardware prerequisites for installing and running Amster.
    [Show full text]
  • Supporting C Extensions for Dynamic Languages an Abbreviated Version of [10]
    High-Performance Language Composition: Supporting C Extensions for Dynamic Languages An abbreviated version of [10]. Grimmer Matthias1, Chris Seaton2, Thomas W¨urthinger2 and Hanspeter M¨ossenb¨ock1 1 Johannes Kepler University, Linz, Austria fgrimmer,[email protected] 2 Oracle Labs fchris.seaton,[email protected] Abstract. Many dynamic languages such as Ruby offer functionality for writing parts of applications in a lower-level language such as C. These C extension modules are usually written against the API of an interpreter, which provides access to the higher-level language's internal data struc- tures. Alternative implementations of the high-level languages often do not support such C extensions because implementing the same API as in the original implementations is complicated and limits performance. In this paper we describe a novel approach for modular composition of languages that allows dynamic languages to support C extensions through interpretation. We propose a flexible and reusable cross-language mechanism that allows composing multiple language interpreters. This mechanism allows us to efficiently exchange runtime data across different interpreters and also enables the dynamic compiler of the host VM to inline and optimize programs across multiple language boundaries. We evaluate our approach by composing a Ruby interpreter with a C interpreter. We run existing Ruby C extensions and show how our system executes combined Ruby and C modules on average over 3× faster than the conventional implementation of Ruby with native C extensions. 1 Introduction Most programming languages offer functionality for calling routines in modules that are written in another language. There are multiple reasons why program- mers want to do this, including to run modules already written in another lan- guage, to achieve higher performance than is normally possible in the primary language, or generally to allow different parts of the system to be written in the most appropriate language.
    [Show full text]
  • History of Java the History of Java Is Very Interesting. Java Was Originally Designed for Interactive Television, but It Was
    History of Java The history of Java is very interesting. Java was originally designed for interactive television, but it was too advanced technology for the digital cable television industry at the time. The history of java starts with Green Team. Java team members (also known as Green Team), initiated this project to develop a language for digital devices such as set-top boxes, televisions, etc. However, it was suited for internet programming. Later, Java technology was incorporated by Netscape. The principles for creating Java programming were "Simple, Robust, Portable, Platform-independent, Secured, High Performance, Multithreaded, Architecture Neutral, Object-Oriented, Interpreted and Dynamic". Currently, Java is used in internet programming, mobile devices, games, e-business solutions, etc. There are given the significant points that describe the history of Java. 1) James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language project in June 1991. The small team of sun engineers called Green Team. 2) Originally designed for small, embedded systems in electronic appliances like set-top boxes. 3) Firstly, it was called "Greentalk" by James Gosling, and file extension was .gt. 4) After that, it was called Oak and was developed as a part of the Green project. Why Java named "Oak"? 5) Why Oak? Oak is a symbol of strength and chosen as a national tree of many countries like U.S.A., France, Germany, Romania, etc. 6) In 1995, Oak was renamed as "Java" because it was already a trademark by Oak Technologies. Why Java Programming named "Java"? 7) Why had they chosen java name for java language? The team gathered to choose a new name.
    [Show full text]
  • Supporting C Extensions for Dynamic Languages
    Dynamically Composing Languages in a Modular Way: Supporting C Extensions for Dynamic Languages Matthias Grimmer Chris Seaton Thomas Wurthinger¨ Johannes Kepler University, Austria Oracle Labs, United Kingdom Oracle Labs, Switzerland [email protected] [email protected] [email protected] Hanspeter Mossenb¨ ock¨ Johannes Kepler University, Austria [email protected] Abstract Keywords Cross-language, Language Interoperability, Virtual Many dynamic languages such as Ruby, Python and Perl offer some Machine, Optimization, Ruby, C, Native Extension kind of functionality for writing parts of applications in a lower- level language such as C. These C extension modules are usually 1. Introduction written against the API of an interpreter, which provides access Most programming languages offer some kind of functionality for to the higher-level language’s internal data structures. Alternative calling routines in modules that are written in another language. implementations of the high-level languages often do not support There are multiple reasons why programmers want to do this, in- such C extensions because implementing the same API as in the cluding to run modules already written in another language, to original implementations is complicated and limits performance. achieve higher performance than is normally possible in the pri- In this paper we describe a novel approach for modular com- mary language, or generally to allow different parts of the system position of languages that allows dynamic languages to support to be written in the most appropriate language. C extensions through interpretation. We propose a flexible and Dynamically typed and interpreted languages such as Perl, reusable cross-language mechanism that allows composing mul- Python and Ruby often provide support for running extension mod- tiple language interpreters, which run on the same VM and share ules written in the lower-level language C, known as C extensions the same form of intermediate representation – in this case abstract or native extensions.
    [Show full text]
  • Java (Software Platform) from Wikipedia, the Free Encyclopedia Not to Be Confused with Javascript
    Java (software platform) From Wikipedia, the free encyclopedia Not to be confused with JavaScript. This article may require copy editing for grammar, style, cohesion, tone , or spelling. You can assist by editing it. (February 2016) Java (software platform) Dukesource125.gif The Java technology logo Original author(s) James Gosling, Sun Microsystems Developer(s) Oracle Corporation Initial release 23 January 1996; 20 years ago[1][2] Stable release 8 Update 73 (1.8.0_73) (February 5, 2016; 34 days ago) [±][3] Preview release 9 Build b90 (November 2, 2015; 4 months ago) [±][4] Written in Java, C++[5] Operating system Windows, Solaris, Linux, OS X[6] Platform Cross-platform Available in 30+ languages List of languages [show] Type Software platform License Freeware, mostly open-source,[8] with a few proprietary[9] compo nents[10] Website www.java.com Java is a set of computer software and specifications developed by Sun Microsyst ems, later acquired by Oracle Corporation, that provides a system for developing application software and deploying it in a cross-platform computing environment . Java is used in a wide variety of computing platforms from embedded devices an d mobile phones to enterprise servers and supercomputers. While less common, Jav a applets run in secure, sandboxed environments to provide many features of nati ve applications and can be embedded in HTML pages. Writing in the Java programming language is the primary way to produce code that will be deployed as byte code in a Java Virtual Machine (JVM); byte code compil ers are also available for other languages, including Ada, JavaScript, Python, a nd Ruby.
    [Show full text]
  • Table of Contents
    A Comprehensive Introduction to Vista Operating System Table of Contents Chapter 1 - Windows Vista Chapter 2 - Development of Windows Vista Chapter 3 - Features New to Windows Vista Chapter 4 - Technical Features New to Windows Vista Chapter 5 - Security and Safety Features New to Windows Vista Chapter 6 - Windows Vista Editions Chapter 7 - Criticism of Windows Vista Chapter 8 - Windows Vista Networking Technologies Chapter 9 -WT Vista Transformation Pack _____________________ WORLD TECHNOLOGIES _____________________ Abstraction and Closure in Computer Science Table of Contents Chapter 1 - Abstraction (Computer Science) Chapter 2 - Closure (Computer Science) Chapter 3 - Control Flow and Structured Programming Chapter 4 - Abstract Data Type and Object (Computer Science) Chapter 5 - Levels of Abstraction Chapter 6 - Anonymous Function WT _____________________ WORLD TECHNOLOGIES _____________________ Advanced Linux Operating Systems Table of Contents Chapter 1 - Introduction to Linux Chapter 2 - Linux Kernel Chapter 3 - History of Linux Chapter 4 - Linux Adoption Chapter 5 - Linux Distribution Chapter 6 - SCO-Linux Controversies Chapter 7 - GNU/Linux Naming Controversy Chapter 8 -WT Criticism of Desktop Linux _____________________ WORLD TECHNOLOGIES _____________________ Advanced Software Testing Table of Contents Chapter 1 - Software Testing Chapter 2 - Application Programming Interface and Code Coverage Chapter 3 - Fault Injection and Mutation Testing Chapter 4 - Exploratory Testing, Fuzz Testing and Equivalence Partitioning Chapter 5
    [Show full text]
  • Mˇerení Výkonnosti Java Virtual Machine
    MASARYKOVA UNIVERZITA FAKULTA}w¡¢£¤¥¦§¨ INFORMATIKY !"#$%&'()+,-./012345<yA| Mˇeˇrenívýkonnosti Java Virtual Machine BAKALÁRSKA PRÁCA Michal K ˇnazský Brno, 2012 Prehlásenie Prehlasujem, že táto bakalárska práca je mojím pôvodným autorským dielom, ktoré som vypracoval samostatne. Všetky zdroje, pramene a li- teratúru, ktoré som pri vypracovaní používal alebo z nich ˇcerpal,v práci riadne citujem s uvedením úplného odkazu na príslušný zdroj. Michal Kˇnazský Vedúci práce: Mgr. Marek Grác ii Pod’akovanie Dakujemˇ pánom Mgr. Marekovi Grácovi a Ing. Pavlovi Tišnovskému, Ph.D. z firmy Red Hat za vedenie práce, za poskytnuté rady a za vel’kú dávku trpezlivosti. iii Kl’úˇcovéslová Java, Java Virtual Machine, meranie výkonu, garbage collector, SPEC, SPECjvm2008, SPECjbb2005, J2DBench, Oracle, IBM, OpenJDK iv Zhrnutie Ciel’om práce je preskúmat’ nástroje na meranie výkonu Java Virtual Ma- chine. Práca sa zaoberá nástrojmi SPECjvm2008, SPECjbb2005 a J2DBench – analyzuje ich vlastnosti a funkcie a hodnotí použitie v praxi. V prak- tickej ˇcastisú nástroje použité na zmeranie a porovnanie výkonu viace- rých JVM. Predstavený je program JVMBenchmarker, ktorý bol vytvo- rený ako súˇcast’ práce. Slúži na automatizované spúšt’anie SPECjvm2008 a SPECjbb2005 nástrojov. Práca sa d’alej venuje garbage collectorom, opi- suje GC prítomné v HotSpot a J9 VM a porovnáva ich výkon pomocou nástroja SPECjbb2005. v Obsah 1 Java ................................... 2 1.1 Java ako platforma ....................... 2 1.2 Java ako jazyk .......................... 2 1.2.1 Java API . 2 1.2.2 Java Virtual Machine . 3 1.2.3 Java Development Kit . 3 1.3 História a vývoj ......................... 3 1.3.1 Oznaˇcovanieverzií . 4 1.4 Java implementácie ....................... 4 1.4.1 Cesta k open source .
    [Show full text]
  • Java Programming [R17a0507]
    JAVA PROGRAMMING [R17A0507] LECTURE NOTES B.TECH II YEAR – II SEM (R17) (2018-19) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, INDIA. MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (R17A0507)JAVA PROGRAMMING Objectives: This subject aims to introduce students to the Java programming language. Upon successful completion of this subject, students should be able to create Java programs that leverage the object-oriented features of the Java language, such as encapsulation, inheritance and polymorphism; use data types, arrays and other data collections; implement error-handling techniques using exception handling, create and event-driven GUI using Swing components. UNIT-I OOP Concepts:- Data abstraction, encapsulation, inheritance, Benefits of Inheritance, Polymorphism, classes and objects, Procedural and object oriented programming paradigms. Java Programming- History of Java, comments, Data types, Variables, Constants, Scope and Lifetime of variables, Operators, Operator Hierarchy, Expressions, Type conversion and casting, Enumerated types, Control flow- block scope, conditional statements, loops, break and continue statements, simple java stand alone programs, arrays, console input and output, formatting output, constructors, methods, parameter passing, static fields and methods, access control, this reference, overloading methods and constructors, recursion, garbage collection, building strings, exploring string class. UNIT – II Inheritance – Inheritance hierarchies super and sub classes, Member access rules, super keyword, preventing inheritance: final classes and methods, the Object class and its methods. Polymorphism – dynamic binding, method overriding, abstract classes and methods.
    [Show full text]
  • JAVA – UNIT IV Java Tutorial 1
    OOP – JAVA – UNIT IV Java Tutorial 1. Java - What, Where and Why? 2. What is Java 3. Where Java is used 4. Java Applications Java Tutorial or Core Java Tutorial or Java Programming Tutorial is a widely used robust technology. Let's start learning of java from basic questions like what is java tutorial, core java, where it is used, what type of applications are created in java and why use java. What is Java? Java is a programming language and a platform . Java is a high level, robust, secured and object-oriented programming language. Platform : Any hardware or software environment in which a program runs, is known as a platform. Since Java has its own runtime environment (JRE) and API, it is called platform. Java Example Let's have a quick look at java programming example. A detailed description of hello java example is given in next page. class Simple{ public static void main(String args[]){ System.out.println( "Hello Java" ); } } Where it is used? According to Sun, 3 billion devices run java. There are many devices where java is currently used. Some of them are as follows: 1. Desktop Applications such as acrobat reader, media player, antivirus etc. 2. Web Applications such as irctc.co.in, javatpoint.com etc. 3. Enterprise Applications such as banking applications. 4. Mobile 5. Embedded System 6. Smart Card 7. Robotics 8. Games etc. Types of Java Applications There are mainly 4 type of applications that can be created using java programming: 1) Standalone Application It is also known as desktop application or window-based application.
    [Show full text]