Iter Blanket, Shield and Material Data Base
Total Page:16
File Type:pdf, Size:1020Kb
ITER DOCUMENTATION SERIES, No. 29 INlS-mf —13018 ITER BLANKET, SHIELD AND MATERIAL DATA BASE INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1991 ITER BLANKET, SHIELD AND MATERIAL DATA BASE ITER DOCUMENTATION SERIES, No. 29 ITER BLANKET, SHIELD AND MATERIAL DATA BASE PART A (ITER BLANKET AND SHIELD) D. SMITH, W. DAENNER, Y. GOHAR, T. KURODA, G.E. SHATALOV, A.B. ANTIPENKOV, H. ATTAYA, C. BAKER, M. BILLONE, I.V. DANILOV, L.EL GUEBALY, M. FERRARI, P. GIERSZEWSKI, V.I. KHRIPUNOV, V.G. KOVALENKO, P. LORENZETTO, S. MAJUMDAR, K. MAKI, S. MORI, L. PETRIZZI, V. RADO, A. RAFFRAY, F. ROSATELLI, A. ROSSANI, M. SAWAN, O.L. SHCHIPAKIN, A. M.SIDOROV, G. SIMBOLOTTI, YU.S. STREBKOV, I. SVIATOSLAVSKY, H. TAKATSU, V.N. TEBUS.V. VIOLANTE, H. YOSHIDA, F. ZACCHIA, S.A. ZIMIN PART B (MATERIAL DATA BASE) D. SMITH, I.V. ALTOVSKY, V.R. BARABASH, J. BEESTON, M. BILLONE, J.L. BOUTARD, T. BURCHELL, J. DAVIS, S.A. FABRITSIEV, M. GROSSBECK, A. HASSANEIN, G.M. KALININ, P. LORENZETTO, R. MATTAS, K. NODA, R. NYGREN, N.V. ODINTSOV, V.V. RYBYN, H. TAKATSU, V.P. VINOKUROV, R.WATSON, C.WU INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 1991 ITER BLANKET, SHIELD AND MATERIAL DATA BASE IAEA, VIENNA, 1991 IAEA/ITER/DS/29 Printed by the IAEA in Austria October 1991 FOREWORD Development of nuclear fusion as a practical energy source could provide great benefits. This fact has been widely recognized and fusion research has enjoyed a level of international co-operation unusual in other scientific areas. From its inception, the International Atomic Energy Agency has actively promoted the international exchange of fusion information. In this context, the IAEA responded in 1986 to calls for expansion of international co-operation in fusion energy development expressed at summit meetings of governmental leaders. At the invitation of the Director General there was a series of meetings in Vienna during 1987, at which representatives of the world's four major fusion programmes developed a detailed proposal for a joint venture called International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activities (CDA). The Director General then invited each interested party to co-operate in the CDA in accordance with the Terms of Reference that had been worked out. All four Parties accepted this invitation. The ITER CDA, under the auspices of the IAEA, began in April 1988 and were successfully completed in December 1990. This work included two phases, the definition phase and the design phase. In 1988 the first phase produced a concept with a consistent set of technical characteristics and preliminary plans for co-ordinated R&D in support of ITER. The design phase produced a conceptual design, a description of site requirements, and preliminary construction schedule and cost estimate, as well as an ITER R&D plan. The information produced within the CDA has been made available for the ITER Parties to use either in their own programme or as part of an international collaboration. As part of its support of ITER, the IAEA is pleased to publish the documents that summarize the results of the Conceptual Design Activities. U CONTENTS PART A. ITER BLANKET AND SHIELD CONCEPTUAL DESIGN I. INTRODUCTION 15 II. SUMMARY OF CONCEPTUAL DESIGN 17 1. DESIGN GUIDELINES AND INTEGRATION ISSUES 17 2. BLANKET DESIGN 20 3. BLANKET ISSUES 25 4. SHIELD DESIGN 27 III. FUNCTION, DESIGN REQUIREMENTS AND CRITICAL ISSUES 29 1. FUNCTION AND DESIGN REQUIREMENTS OF BLANKET AND SHIELD 29 1.1 Blanket 29 1.2 Shield 31 2. CRITICAL DESIGN ISSUES FOR THE BLANKET AND SHIELD 32 2.1 Blanket 32 2.2 Shield 34 IV. MATERIAL SELECTION 37 1. STRUCTURAL MATERIALS 38 2. TRITIUM BREEDING MATERIALS 38 3. ELECTRICAL INSULATORS 39 V. BLANKET AND SHIELD SEGMENTATION 41 VI. BLANKET DESIGN DESCRIPTION 47 1. LAYERED CONCEPT 47 1.1 Outboard Section 48 1.2 Inboard Section 53 1.3 Copper Stabilizer Integration 53 1.4 Penetration accommodation 55 1.5 Fabrication and Assembly 55 2. PEBBLE CONCEPT 60 3. BIT CONCEPT 70 3.1 Poloidal BIT Concept 70 3.2 Toroidal BIT Concept 78 4. LITHIUM-LEAD EUTECTIC CONCEPT 81 5. SUMMARY OF BLANKET DESIGN PARAMETERS 88 VII. DESIGN ANALYSIS 93 1. NEUTRONICS ANALYSIS 93 1.1 Introduction 93 1.2 Poloidal Neutron Wall loading distribution 93 1.3 Tritium Breeding Analysis 94 1.4 Activation and Decay Heat Analysis 114 2. THERMAL/MECHANICAL ANALYSES 120 2.1 Breeder Temperature Control 120 2.2 Hydraulic Analysis 126 3. STRESS ANALYSIS 128 3.1 Normal Operation 128 3.2 Disruption Analysis 131 4. TRITIUM RECOVERY AND INVENTORY 133 5. POWER VARIATION CAPABILITY 144 6. SAFETY ANALYSIS 146 6.1 LOCA Analyses of the BIT Concept 146 6.2 LOFA Analyses 147 6.3 Safety Analyses for the Lithium Lead Concept 151 VIII. SHIELD 155 1. DESIGN LIMITS AND SAFETY FACTORS 155 2. NUCLEAR RESPONSES IN THE TF COILS 157 2.1 General Remarks 157 2.2 Comparative Analysis of all Relevant Results 160 2.3 Three-dimensional Analysis for a Specific Configuration 167 2.4 Conclusions 170 3. DOSE AFTER SHUTDOWN 171 3.1 Dose Equivalent from Bulk Shield 171 3.2 Dose Equivalent from NBI Duct Shield 172 4. RADIATION STREAMING ANALYSES 173 4.1 Assembly Gaps 173 4.2 Vacuum Pumping Ducts 174 4.3 Divertor Coolant Tube Penetrations 175 4.4 Neutral Beam Injection Ports 176 4.5 Diagnostics Channels 177 5. SUMMARY OF BENCHMARK CALCULATIONS 177 CONTENTS PART B. ITER MATERIALS EVALUATION AND DATA BASE I. INTRODUCTION 183 1. STRUCTURAL MATERIALS 184 2. TRITIUM-BREEDING MATERIALS 185 3. PLASMA-FACING MATERIALS 186 4. ELECTRICAL INSULATORS 187 II. STRUCTURAL MATERIALS 189 1. TYPE 316 AUSTENITIC STAINLESS STEEL: FIRST WALL AND BLANKET STRUCTURE 189 1.1 Selected Materials 189 1.2 Status of Existing Data Base 189 1.3 Main Key Issues 202 2. DISPERSION STRENGTHENED (DS) COPPER: DIVERTOR STRUCTURAL MATERIAL 203 2.1 Basis for Selection 203 2.2 Status of Existing Data Base 203 2.3 Key R&D Needs 206 3. NIOBIUM ALLOYS 207 3.1 Basis for Selection 207 3.2 Status of Existing Data Base 208 3.3 Compatibility with Water Coolant 209 4. MOLYBDENUM ALLOYS-PFC STRUCTURE 213 4.1 Basis for Selection 213 4.2 Status of Existing Data Base 214 5. BRAZING ISSUES 218 III. BLANKET MATERIALS 219 1. CERAMIC BREEDER 219 1.1 Basis for Selection 219 1.2 Critical Issues 221 1.3 Status of Existing Data Base 221 1.4 Key R&D Needs 228 2. BERYLLIUM 231 2.1 Basis for Selection 231 2.2 Critical Issues 231 2.3 Status of Existing Data Base 231 2.4 Key R&D Needs 234 3. LiPb BREEDER 237 3.1 Basis for Selection 237 3.2 Critical Issues 237 3.3 Status of Existing Data Base 238 4. AQUEOUS LITHIUM SALT BREEDER 241 4.1 Introduction 241 4.2 Critical Issues 241 4.3 Status of Existing Data Base 242 4.4 Key R&D Needs 245 IV. PLASMA FACING MATERIALS 247 1. CARBON BASED MATERIALS 247 1.1 Data Base 247 1.2 Thcrmo-mechanical properties 252 1.3 Critical Issues 256 2. TUNGSTEN 258 2.1 Surface Properties 258 2.2 Physical Properties 259 3. BERYLLIUM 262 3.1 Data Base 263 V. ELECTRICAL INSULATORS 267 PART A ITER BLANKET AND SHIELD CONCEPTUAL DESIGN 12. CONTRIBUTORS PART A (ITER BLANKET AND SHIELD) M. ABDOU, V.YU. ABORIN, S. ABOUSAID, V.V. ALEXANDROV, G.A. ANTONOV, L. ANZIDEI, A. BADAWI, A. BERTRAM, J. BLANCHARD, E. BOGUSCH, V.P. BONDARENKO, M. CAIRA, M. CHAZALON, A.M. CHEPOVSKI, S. CHIOCCHiO, F. CLAVAREZZA, R. CLEMMER, M. DALLE DONNE, V.V. DEMIDOV, O.F. DIKAREVA, E.V. DMITRIEVSKAJA, Z.A. DURIGINA, S.A. EREMIN, F. FABRIZI, G. FEDERICI, P. FINN, R. FOGARTY, M. GALMNA, D. GALLORI, F. GERVAISE, P. GORANSON, Z. GORBIS, H. GORENFLO, M. GRATTAROLA, Y.M. GRIBKOV, G. HAHN, C. HAMMONDS, S. HIRATA, P. HUBERT, O. IOP, Y. ISHIYAMA, R. JAKEMAN, C. JOHNSON, G. JONES, LA. KARTASHOV, G.M. KALININ, V.P. KARKLINA, H. KHATER, S.E. KHOMYAKOV, V.Y. KIRPAL, YU.G. KLABUKOV, K. KOIZUMI, T. KOBAYASHI, V.YU. KOLGANOV, G.I. KONDIR, J. KOPASZ, A.E. KOPYEV, K. KOSAKO, G. KULCINSKI, A. LIDE, C. LIN, A.V. LOPATKIN, V.E. LOUKASH, S.V. LUKASHIN, H. MAEKAWA, S.A. MAKAROV, M.L. MALYSHEV, A.V. MARACHEV, V.G. MARKOV, A.D. MARKOVSKY, M. MARTONE, R. MATTAS, J. MAYHALL, C. MAZZONE, M.N. MEDVEDEV, A. I. MERENKOV, H. MIURA, E. MOGAHED, V.N. MOSKALEV, D. MUIR, S. MUKHERJEE, T. NAKAMURA, C. NARDI, B. NELSON, V.Z. NEPOMNYASHCHIY, S.B. NIKITINA, S. NISHIO, V.D. NOVIKOV, G. OTTONELLO, V.V. OVECHKIN, L.D. PANTELEEV, I.P. PAZDRY, B.V. PETROV, V.V. POLIKSHA, V.YA. PROCHORENKO, E. PROUST, L. RINALDI, A. SANTAMARINA, R.T. SANTORO, KE. SATO, KO. SATO, F. SECOLO, G.A. SERNYAEV, V.V. SHIPILOV, E.A. SHIVERSKIY, YU.N. SOKURSKY, A.V. SIDORENKOV, E.N. SINITSIN, K.S. SKLADNOV, L. SORABELLA, S.I. SOROKIN, D. STEINER, K. SUMITA, T. SUZUKI, A.N. SVETCHKOPAL, D. SZE, S. TAM, YU.M. TRAPEZNIKOV, L. TURNER, A.G. UKHLINOV, M. UNO, K.A. VERSCHUUR, G. VIEIDER, A.V. VINNIKOV, N.K. VINOGRADOVA, D. WILLIAMSON, L. WITTENBERG, S. YAMAZAKI, A. YING, M. YOUSEFF, T. ZABAN, V.S. ZAKHARTSEV, A.N. ZARYANOV, V. ZEMLIANKIN I. INTRUDUCTION The terms of reference for ITER provide for incorporation of a tritium breeding blanket to supply most of the tritium for the fuel cycle of the device. The blanket and shield combined must be designed to operate at a neutron wall loading of about 1 MW/m and to provide adequate shielding of the magnets to meet the fluence goai of 3 MWa/m at the first wall.