Elsevier Editorial System(Tm)For - 16% at 350°C Compared to - 00532R1 O
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
List of New Mineral Names: with an Index of Authors
415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis. -
Download the Scanned
THn AlrERrcAN MTUERALocIST ]OURNAL OF THE MINERALOGICAL SOCIET.Y OF AMERICA Vo]. 28 NOVEMBER-DECEMBER, 1943 Nos. 11and 12 INTERNAL STRUCTURE OF SILICATE MINERALS THAT GELATINIZE WITH ACID* K. J. Munere, tJ. S. Geolog'icalSuney, Washington,D. C. Abstract ..::*:)::. Introduction. 546 Methodof testingmineral powders. 5+7 Compilationof data.. 549 Classifiedlist of gelatinizing minerals 552 Discussion Orthosilicates. 555 Subsilicates.. JJO Pyrosilicates. 556 Ring structures. 556 Chain structures.. JJ/ Disilicates.. 558 Silicatype. 560 Unclassified silicates 561 Gelatinization af ter ignition 562 Acknowledgements..... 562 ABsrRAcr A list of silicate minerals that are reported to gelatinize on being treated with acid was compiled and arranged according to a classification based on the internal structures of the minerals. From an examination of this data it is concluded that the following classes of minerals willgelatinize, if they are vulnerable to acid attack. 1. Those minerals containing silicate radicals of small molecular weight, namely orthosilicates, pyrosilicates, and possibly silicates containing ring structures of three silicon atoms. 2. Those minerals withlarge continuous silicon-oxygen networks that lvilldisintegrate into units of low molecular weight. (a) Disilicates containing appreciable ferric iron in the silicon-oxygen sheets. (b) Minerals of the silica type with three-dimensional networks that contain aluminum in the ratio of at least two aluminum atoms to three silicon atoms. Minerals that separate insoluble silica, instead of gelatinizing, upon being treated with acid, are characterized by silicon-oxygen structures of large dimensions that do not dis- integrate into small units under acid attack. These are SiO3 chains, SirOrr double chains, x Published by permission of the Director, Geological Survey, U. -
C:\Documents and Settings\Alan Smithee\My Documents\MOTM
L`qbg1//7Lhmdq`knesgdLnmsg9Rsdkkdqhsd This month’s mineral, stellerite, is a rare zeolite with a decidedly international flavor. It was first found in Russia, recognized as a mineral species by a Polish mineralogist, and named for a German naturalist. Our specimens were collected in India from the Deccan Traps, one of the world’s largest volcanic provinces and the source of the finest zeolite specimens. OGXRHB@K OQNODQSHDR Chemistry: Ca4(Al8Si28O72)A28H2O Hydrous Calcium Aluminosilicate (Hydrous Calcium Aluminum Silicate), usually containing some sodium and potassium Class: Silicates Subclass: Tectosilicates Group: Zeolite Subgroup: Heulandite Crystal System: Orthorhombic Crystal Habits: Dipyramidal, usually spherical as radiating, rounded nodules or sheaf-like aggregates of thin, platy crystals; also massive and fibrous. Color: Usually colorless or white, sometimes pale hues of yellow, brown, orange, or pink Luster: Vitreous Transparency: Transparent to translucent Streak: White Refractive Index: 1.484-1.497 Cleavage: Perfect in one direction Fracture: Uneven, brittle Hardness: 4.5 Specific Gravity: 2.2 Luminescence: None Distinctive Features and Tests: Best field marks are radiating form, thin crystals, and primary occurrence in hydrothermally metamorphosed volcanic environments. Stellerite is easily confused with the zeolite minerals stilbite-Ca [(Ca0.5,K,Na)9(Al9Si27O72)A28H2O] and barrerite [Na8(Al8Si28O72)A26H2O]. Positive differentiation between these species often requires laboratory methods. Dana Classification Number: 77.1.4.4 M @L D Stellerite, which is named for German naturalist Georg Wilhelm Steller (1709-1746), is pronounced just as it is spelled—STELL-er-ite. Stellerite was formerly thought to have two varieties, which were referred to as “calcium stellerite” and “sodium stellerite.” In contemporary European mineralogical literature, stellerite appears as “stellerit” and “stellerita.” BNL ONRHSHNM Stellerite is the fifth zeolite group mineral to be featured as our Mineral of the Month. -
Silicon Aluminium Ordering in the Framework of Zeolites
SILICON ALUMINIUM ORDERING IN THE FRAMEWORK OF ZEOLITES GLAUCO GOTTARDI and ALBERTO ALBERTI GOTTARDI, GLAUCO and ALBERTI, ALBERTO, 1985: Silicon aluminium ordering in the framework of zeolites. Bull. Geol. Soc. Finland 57, Part 1—2, 197—206. The (Si, Al) ordering scheme in the framework of zeolites is reviewed, and four classes are recognized: 1 — zeolites with Si: Al = 1 : 1 and a simple order given by the alternation of Si and Al; 2 — zeolites with Si> Al and an ordered distribution; 3 — zeolites with Si>Al and partial Al-enrichment in some tetrahedra; 4 — zeolites with Si>Al and complete disorder, or at least with a framework that in principle favours disorder. A crystallization model requiring the formation of cages of tetrahedra around a hydrated cation acting as a template is suitable for classes 3 and 4, but not for classes 1 and 2, which require the standard crystal growth scheme. Key words: zeolite, framework, (Si, Al) order, crystallization. Glauco Gottardi and Alberto Alberti: Istituto di Mineralogia e Petrologia, Univer- sitå di Modena, via S.Eufemia 19, 41100 Modena, Italy. Introduction Class 1: Zeolites with Si: (Si 4- Al) = 0.50. These obey Loewenstein's rule and exhibit or- The distribution of silicon and aluminium in dered distribution given by the alternation of Si the centre of the tetrahedra of framework sili- and Al in the tetrahedra. An obvious conse- cates may be ordered or disordered, and every quence is that the rings with an odd number of mineralogist knows how hard it is to solve the tetrahedra are prohibited in their frameworks; enigma of the real (Si, Al) order in plagioclases, (Si, Al) disorder is possible only if Si: (Si + Al) concealed in their modulated domain structure. -
Infrared Spectra of Natural Zeolites of the Stilbite Group
Infrared spectra of natural zeolites of the stilbite group F. PECHAR and D. RYKL Institute of Geology and Geotechnics, Czechoslovak Academy of Sciences, 182 09 Prague Received 1 October 1979 Accepted for publication 21 May 1980 The infrared absorption spectra of natural zeolites of the 7th structural group: heulandite, clinoptilolite, brewsterite, and stilbite were measured. The spectra were taken in the wavenumber region 200—4000 cm-1 by the KBr technique (1 :40). The number and symmetry of individual vibrations were ascertained by theoretical factor-group analysis. The wavenumbers measured may be divided into four fundamental groups according to assignment to particular vibrations: 1. Stretching vibrations of the bonds inside the (Al, Si)04 tetrahedrons (wavenumbers 400—1100 cm-1); 2. Stretching vibrations of the OH groups of water molecules (wavenumbers 1590—1670 and 3400—3700 cm"1); 3. Exter nal vibrations between the (Al, Si)04 tetrahedrons (wavenumbers 300—500 and 1100—1250 cm"1); 4. Translation-rotation vibrations of the lattice and water molecules (wavenumbers 200—700 cm"1). The course of the spectra was subsequently confronted with structure and the character of bonds in these zeolites. Были измерены инфракрасные абсорпционные спектры натуральных цеолитов 7-ой структурной группы: гейландита, клиноптилолита, брюс- терита и стильбита. Спектры регистрировались в области волновых чисел 200—4000 см"1 с использованием техники КВг таблет (1: 40). Для опре деления числа и симметрии отдельных колебаний был проведен теорети ческий фактор-групповой анализ. Измеренные полосы в спектрах можно разделить на 4 основные группы по принадлежности к отдельным типам колебаний: 1. валентные колебания связей внутри (AI, Si)04 тетраэдров (область волновых чисел 400—1100 см"1); 2. -
The Microscopic Determination of the Nonopaque Minerals
DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 679 THE MICROSCOPIC DETERMINATION OF THE NONOPAQUE MINERALS BY ESPER S. LARSEN WASHINGTON GOVERNMENT PRINTING OFFICE 1921 CONTENTS. CHAPTER I. Introduction.................................................. 5 The immersion method of identifying minerals........................... 5 New data............................................................. 5 Need of further data.................................................... 6 Advantages of the immersion method.................................... 6 Other suggested uses for the method.................................... 7 Work and acknowledgments............................................. 7 CHAPTER II. Methods of determining the optical constants of minerals ....... 9 The chief optical constants and their interrelations....................... 9 Measurement of indices of refraction.................................... 12 The embedding method............................................ 12 The method of oblique illumination............................. 13 The method of central illumination.............................. 14 Immersion media.................................................. 14 General features............................................... 14 Piperine and iodides............................................ 16 Sulphur-selenium melts....................................... 38 Selenium and arsenic selenide melts........................... 20 Methods of standardizing -
The Constitution of the Natural Silicates
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR BULLETIN 588 THE CONSTITUTION OF THE NATURAL SILICATES BY FRANK WIGGLESWORTH CLARKE WASHINGTON GOVERNMENT PRINTING OFFICE 1914 CONTENTS. CHAPTER I. Introduction................................................ 5 CHAPTER II. The silicic acids............................................. 10 CHAPTER III. The silicates of aluminum................................... 19 General relations...................................................... 19 The nephelite type ................................................... 21 The garnet type ....................................................... 24 The feldspars and scapolites .......................................... 34 The zeolites ......................................... r ................ 40 The micas and chlorites ............................................... 51 The aluminous borosilicates .......................................... 65 Miscellaneous species ................................................ 74 CHAPTER IV. Silicates of dyad bases....................................... 87 Orthosilicates ......................................................." 87 Metasilicates ........................................................ 94 Disilicates and trisilicates ............................................ 107 CHAPTER V. Silicates of tetrad bases, titanosilicates, and columbosilicates..... 113 APPENDIX ............................................................... 124 INDEX. ................................................................. -
The Microscopic Determination of the Nonopaque Minerals
PLEASE DO NOT DESTROY OR THROW AWAY THIS PUBLICATION. If you haw no further use for it, write to the Geological Survey at Washington and ask for a frank to return it UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director Bulletin 848 THE MICROSCOPIC DETERMINATION OF THE NONOPAQUE MINERALS SECOND EDITION BY ESPER S. LARSEN AND HARRY HERMAN UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1934 For sale by the Superintendent of Documents, Washington, D. C. ------ Price 20 cents CONTENTS " '*" ^ t**v Page 1'f) OHAPTER 1. Introduction_______-____-----------_---------.-----_-_ 1 The immersion method of identifying minerals.______--___-_-___-_ 1 New data._______-___________-__-_-________-----_--_-_---_-_- 2 Need of further data.________------------------------------_-- 2 ; Advantages of the immersion method..___-__-_-__-_---__________ 2 Other suggested uses for the method___________________________ 3 Work and acknowledgments.___________-_____-_---__-__-___-___ 3 CHAPTER 2. Methods of determining the optical constants of minerals. __ 5 The chief optical constants and their interrelations________________ 5 Measurement of-indices of refraction____---____-__-_--_--_-_____ 8 The embedding method..___--------_-___-_-_-__--__-______ 8 The method of oblique illumination.___._-_-______-_____ 9 The method of central illumination______________________ 10 Dispersion method.----------------------.------------ 10 : Immersion media______--_---_-----_---------------------- 11 General features.--.-.-------------------------------- -
New Occurrbnce of Yugawaralite from the Chena Hot Springs Area, Alaska1 G
TIIE AMERICAN MINERALOGIST, VOL. 56, SEPTEMBER-OCTOBER' 1971 NEW OCCURRBNCE OF YUGAWARALITE FROM THE CHENA HOT SPRINGS AREA, ALASKA1 G. DoNarl EnEnluN, R. C. Enn, Fr-onBNcBWnnnn, aNp L. B. Bn.n'rrv, U. S. GeologicalSuroey, Menlo Park, California 94025. ABSTRACT Yugawaralite (CaAlzSieOro'4IIzO)' a relatively rare calcium zeolite, was found in a new locality near chena Hot springs, east-central Alaska in a geologic setting that difiers from quartz- that described for occurrences in Japan and Iceland. It occurs as well-formed' encrusted crystals up to 8 mm long, elongate along the a axis and tabular parallel to [ 0101. reported by previous workers. Chemical analysis shows SiOz61.47, AI2OB17.38, FerOr<0.04, TiOr<0.01, MgO(0'01, CaO 8.51, SrO 0.21, NazO 0.06, KrO 0.09, HrO+ 9.33, t{zo- 2.79, total 99.90 wt' /6' In which is 0.3737 apparent deficiency of cations lruror/(nro+no):1.09] disappears if H+, ions per formula in excess of that required by an ideal SH:o in the unit cell, is present as oxonium ion. Thermogravimetric analysis gives good agreement with TGA curves from the tlpe Iocality. Ion-exchange values determined show a low-exchange capacity as compared with most zeolites. Infrared absorption spectra obtained are distinctive but have similarities to tlose of the heulandite grouP. INrnooucrroN Yugawaralite, a relatively rare calcium zerolite, was first describedby Sakurai and Hayashi (1952) fiom "Fudo-no-taki" Fall, near Yugawara Hot Spring, Kanagawa Prefecture, Japan. It has since been reported from Heinabergsjiikull, southeasternIceland (Barrer and Marshall' 1965; Walker, in pressl See Kerr and Williams, 1969, p. -
Zeolites in Fissures of Crystalline Basement Rocks
ZEOLITES IN FISSURES OF CRYSTALLINE BASEMENT ROCKS INAUGURALDISSERTATION zur Erlangung des Doktorgrades der Fakultät für Chemie, Pharmazie und Geowissenschaften der Albert-Ludwigs-Universität Freiburg im Breisgau vorgelegt von TOBIAS WEISENBERGER aus Emmendingen 2009 Vorsitzender des Promotionsausschusses: Prof. Dr. Rolf Schubert Referent: Prof. Dr. Kurt Bucher Korreferent: Prof. Dr. Reto Gieré Tag des Promotionsbeschlusses: 9.. Juli 2009 Saint Barbara statue in the Arvigo quarry– Patron saint of geologists and firemen Saints day: 4th December Der Tag der heiligen Barbara! - Feierlich stehen sie alle da, die Männer, die aus des Berges Nacht - das schwarze Gestein zu Tage gebracht, das dort gelegen seit Urweltzeit; - bald wird es vom roten Feuer gefreit. Feierlich stehen sie alle da.- Es ist 4. Dezember: St. Barbara! Du Schutzpatronin, St. Barbara, - Im Schmucke treten sie alle dir nah'; An dem Tschako wiegt sich die schwarze Feder, - Schwarz ist ja alles, Anzug und Leder. Dort sind die weißen, Musik trägt rot. - In Ordnung und Würde, wie nach Gebot beginnt der Zug, und wer ihn sah',- weiß, es ist heute St. Barbara! Zurück von der Kirche St. Barbara. - Und es geschieht, was immer geschah, Musik spielt lustig, die Federn winken, - in Oberschlesien will man auch trinken, sorglos sich freuen, den Tag genießen, - wen sollte das heitere Volk verdrießen? Und es geschieht, was immer geschah! - Nur einmal im Jahr ist St. Barbara! St. Barbara; Poem after Käthe Gutwein ABSTRACT I ABSTRACT The goal of the thesis is to study the occurrences and formation of zeolites hosted in crystalline basement rocks. The low-grade fissure mineral assemblages including zeolites are the key to the appreciation of water-rock interaction in hydrothermal and geothermal systems at relatively low temperatures (< 250 °C) located in granites and gneisses of the crystalline basement. -
RECOMMENDED NOMENCLATURE for ZEOLITE MINERALS 1571 the Canadian Mineralogist Vol
RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS 1571 The Canadian Mineralogist Vol. 35, pp. 1571-1606 (1997) RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERALS: REPORT OF THE SUBCOMMITTEE ON ZEOLITES OF THE INTERNATIONAL MINERALOGICAL ASSOCIATION, COMMISSION ON NEW MINERALS AND MINERAL NAMES DOUGLAS S. COOMBS1 (Chairman) Geology Department, University of Otago, P.O. Box 56, Dunedin, New Zealand ALBERTO ALBERTI Istituto di Mineralogia, Università di Ferrara, Corso Ercole Iº d’Este, 32, I-44100 Ferrara, Italy THOMAS ARMBRUSTER Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland GILBERTO ARTIOLI Dipartimento di Scienze della Terra, Università di Milano, via Botticelli, 23, I-20133 Milano, Italy CARMINE COLELLA Dipartimento di Ingegneria dei Materiali e della Produzione, Università Federico II di Napoli, Piazzale V. Tecchio, 80, I-80125 Napoli, Italy ERMANNO GALLI Dipartimento di Scienze della Terra, Università di Modena, via S. Eufemia, 19, I-41100 Modena, Italy JOEL D. GRICE Mineral Sciences Division, Canadian Museum of Nature, Ottawa, Ontario K1P 6P4, Canada FRIEDRICH LIEBAU Mineralogisch-Petrographisches Institut, Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany JOSEPH A. MANDARINO (retired from Subcommittee, December, 1994) Department of Mineralogy, Royal Ontario Museum, Toronto, Ontario M5S 2C6 Canada HIDEO MINATO 5-37-17 Kugayama, Suginami-ku, Tokyo 168, Japan ERNEST H. NICKEL Division of Exploration and Mining, CSIRO, Private Bag, Wembley 6014, Western Australia, Australia ELIO PASSAGLIA Dipartimento di Scienze della Terra, Università di Modena, via S. Eufemia, 19, I-41100 Modena, Italy DONALD R. PEACOR Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. SIMONA QUARTIERI Dipartimento di Scienze della Terra, Università di Modena, via S.