Rotating metrics admitting non-perfect fluids in General Relativity Ng. Ibohal Department of Mathematics, University of Manipur Imphal-795003, Manipur, India E-mail: (i) ngibohal@rediffmail.com (ii)
[email protected] November 2, 2018 Abstract In this paper an application of Newman-Janis algorithm in spherical sym- metric metrics with the functions M(u, r) and e(u, r) has been discussed. After the transformation of the metric via this algorithm, these two functions M(u, r) and e(u, r) will be of the three variables u, r, θ. With these functions of three variables, all the Newman-Penrose (NP) spin coefficients, the Ricci as well as the Weyl scalars have been calculated from the Cartan’s structure equations. From these NP quantities, a class of rotating solutions of Einstein’s field equa- tions can be obtained. These solutions include (a) Kerr-Newman, (b) rotating Vaidya solution, (c) rotating Vaidya-Bonnor solution, (d) rotating Husain’s solution, (e) rotating Wang-Wu solutions. It is found that the technique de- arXiv:gr-qc/0403098v1 24 Mar 2004 veloped by Wang and Wu can be used to generate new embedded solutions, that the Kerr-Newman solution can be combined smoothly with the rotating Vaidya solution to generate Kerr-Newman-Vaidya solution, and similarly, Kerr- Newman-Vaidya-Bonnor solution of the field equations. It has also shown that the embedded universes like Kerr-Newman de Sitter, rotating Vaidya-Bonnor- de Sitter, Kerr-Newman-Vaidya-de Sitter can be derived from the general so- lutions with Wang-Wu function. All rotating embedded solutions derived here can be written in Kerr-Schild forms, showing the extension of Xanthopoulos’s theorem.