Historical and Contemporary Genetic Perspectives on New World Monk Seals (Genus Neomonachus)

Total Page:16

File Type:pdf, Size:1020Kb

Historical and Contemporary Genetic Perspectives on New World Monk Seals (Genus Neomonachus) Historical and Contemporary Genetic Perspectives on New World Monk Seals (Genus Neomonachus) Alicia Nicole Mihnovets Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2017 © 2017 Alicia Nicole Mihnovets All Rights Reserved ABSTRACT Historical and Contemporary Genetic Perspectives on New World Monk Seals (Genus Neomonachus) Alicia Nicole Mihnovets Through common descent, closely-related taxa share many life history traits, some of which can influence extinction-proneness. Thus, examining historical and contemporary genetic patterns is valuable in accounting for evolutionary and ecological processes that may be critical to the successful conservation of threatened species. Unsustainable harvesting of monk seals (tribe Monachini) until the late nineteenth century caused the recent extinction of Caribbean monk seals (Neomonachus tropicalis) and critically low population sizes for Hawaiian and Mediterranean monk seals (Neomonachus schauinslandi and Monachus monachus, respectively). Having lost one branch of its evolutionary lineage, and with a second branch threatened by extinction, the genus Neomonachus can serve as a valuable case for examining evolutionary and ecological linkages that are sensitive to non-random anthropogenic selection pressure. An important foundation for such pursuits is the understanding of evolutionary sequences of speciation and diversification that gave rise to common traits shared by extinct and vulnerable species. Further consideration of the phylogenetic non- randomness of species vulnerability requires examination of genetic variation at the population level to infer the presence of fundamental processes (e.g., migration and reproduction) that directly influence population viability. This dissertation includes three individual studies that make use of molecular systematic and population genetic techniques to address these topics. First, a complete mitochondrial genome sequence of the extinct Caribbean monk seal (N. tropicalis) was assembled and used to resolve long-standing phylogenetic questions regarding the sequence of divergence among monk seal species and sister taxa. Second, novel microsatellite marker assays were developed and used to characterize the extent of population-level variation across 24 polymorphic microsatellite loci of 1192 endangered Hawaiian monk seals (N. schauinslandi) that were sampled during a longitudinal study spanning three decades. Third, resulting genotypes from a subset of individuals (N= 785) were integrated with previously reported genotypes consisting of 18 other loci for the largest ever population-level assessment of N. schauinslandi genetic diversity and population differentiation throughout the Hawaiian archipelago. The new microsatellite data will be of particular value for future individual-level assessment of parentage and relatedness in N. schauinslandi, which will help managers better infer the reproductive mechanisms that factor into population persistence and recovery. Results of this study expand understanding of the evolutionary and conservation genetic status of monk seals, as well as molecular genetic capacity, for future research regarding a unique and highly imperiled New World pinniped lineage. TABLE OF CONTENTS List of Figures ......................................................................................................................v List of Tables .................................................................................................................... vii List of Abbreviations ......................................................................................................... ix iv Acknowledgements ............................................................................................................ xi vi Dedication ........................................................................................................................ xiv ix CHAPTER 1. INTRODUCTION .....................................................................................1 The Phylogenetic Relationships of Monk Seals ................................................................3 The Population Status of Monk Seals ..................................................................................3 The Conservation Genetics of Monk Seals ..........................................................................7 Research Focus ...................................................................................................................8 References .........................................................................................................................10 CHAPTER 2. A RECONSTRUCTION OF THE MITOCHONDRIAL GENOME OF THE CARRIBEAN MONK SEAL ..........................................................................14 Abstract ..............................................................................................................................15 Introduction ........................................................................................................................17 Materials and Methods .......................................................................................................20 Tissue sampling and aDNA extraction ..............................................................................20 Mitochondrial genome sequencing and assembly .............................................................20 Mitochondrial genome annotation and sequence analysis ................................................21 Phylogenetic analysis.........................................................................................................21 Results and Discussion ......................................................................................................23 Mitochondrial genome sequencing and assembly ............................................................23 Genome organization and nucleotide composition ...........................................................23 i Protein coding regions .......................................................................................................24 tRNA and rRNA genes ........................................................................................................24 Non-coding regions ............................................................................................................25 Phylogenetic analysis.........................................................................................................26 Conclusion .........................................................................................................................27 Acknowledgements ............................................................................................................28 References ..........................................................................................................................29 Supplementary Information ...............................................................................................48 Ancient DNA extraction methods .......................................................................................48 CHAPTER 3. A NOVEL MICROSATELLITE MULTIPLEX ASSAY FOR THE ENDANGERED HAWAIIAN MONK SEAL......................................................49 Abstract ..............................................................................................................................50 Introduction ........................................................................................................................51 Methods and Results ..........................................................................................................52 Acknowledgements ............................................................................................................54 Author’s Contributions ......................................................................................................54 References ..........................................................................................................................56 Supplementary Material .....................................................................................................61 CHAPTER 4. REVISITING THE GENETIC DIVERSITY AND CONNECTIVITY OF THE ENDANGERED HAWAIIAN MONK SEAL ...............................................63 Abstract ..............................................................................................................................64 Introduction ........................................................................................................................67 ii Methods and Materials .......................................................................................................69 Study system .......................................................................................................................69 Sample collection, DNA extraction, and microsatellite genotyping ..................................70 Study design .......................................................................................................................71 Data analysis .....................................................................................................................72 Results ................................................................................................................................75 DNA sample summary........................................................................................................75
Recommended publications
  • Monk Seals in Post-Classical History
    Monk Seals in Post-Classical History The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century William M. Johnson Mededelingen No. 39 2004 NEDERLANDSCHE COMMISSIE VOOR INTERNATIONALE NATUURBESCHERMING Mededelingen No. 39 i NEDERLANDSCHE COMMISSIE VOOR INTERNATIONALE NATUURBESCHERMING Netherlands Commission for International Nature Protection Secretariaat: Dr. H.P. Nooteboom National Herbarium of the Netherlands Rijksuniversiteit Leiden Einsteinweg 2 Postbus 9514, 2300 RA Leiden Mededelingen No. 39, 2004 Editor: Dr. H.P. Nooteboom PDF edition 2008: Matthias Schnellmann Copyright © 2004 by William M. Johnson ii MONK SEALS IN POST-CLASSICAL HISTORY The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century by William M. Johnson Editor, The Monachus Guardian www.monachus-guardian.org email: [email protected] iii iv TABLE OF CONTENTS MONK SEALS IN POST-CLASSICAL HISTORY ......................................................III ABSTRACT ......................................................................................................................... VII ACKNOWLEDGEMENTS ........................................................................................................ VII MONK SEALS IN POST-CLASSICAL HISTORY ..............................................................................1 AN INTRODUCTION TO THE SPECIES ......................................................................1
    [Show full text]
  • 56. Otariidae and Phocidae
    FAUNA of AUSTRALIA 56. OTARIIDAE AND PHOCIDAE JUDITH E. KING 1 Australian Sea-lion–Neophoca cinerea [G. Ross] Southern Elephant Seal–Mirounga leonina [G. Ross] Ross Seal, with pup–Ommatophoca rossii [J. Libke] Australian Sea-lion–Neophoca cinerea [G. Ross] Weddell Seal–Leptonychotes weddellii [P. Shaughnessy] New Zealand Fur-seal–Arctocephalus forsteri [G. Ross] Crab-eater Seal–Lobodon carcinophagus [P. Shaughnessy] 56. OTARIIDAE AND PHOCIDAE DEFINITION AND GENERAL DESCRIPTION Pinnipeds are aquatic carnivores. They differ from other mammals in their streamlined shape, reduction of pinnae and adaptation of both fore and hind feet to form flippers. In the skull, the orbits are enlarged, the lacrimal bones are absent or indistinct and there are never more than three upper and two lower incisors. The cheek teeth are nearly homodont and some conditions of the ear that are very distinctive (Repenning 1972). Both superfamilies of pinnipeds, Phocoidea and Otarioidea, are represented in Australian waters by a number of species (Table 56.1). The various superfamilies and families may be distinguished by important and/or easily observed characters (Table 56.2). King (1983b) provided more detailed lists and references. These and other differences between the above two groups are not regarded as being of great significance, especially as an undoubted fur seal (Australian Fur-seal Arctocephalus pusillus) is as big as some of the sea lions and has some characters of the skull, teeth and behaviour which are rather more like sea lions (Repenning, Peterson & Hubbs 1971; Warneke & Shaughnessy 1985). The Phocoidea includes the single Family Phocidae – the ‘true seals’, distinguished from the Otariidae by the absence of a pinna and by the position of the hind flippers (Fig.
    [Show full text]
  • Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
    Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2.
    [Show full text]
  • MEDITERRANEAN MONK SEAL REHABILITATION in GREECE 1990-2004: 15 Years of Action
    HELLENIC SOCIETY FOR THE STUDY AND PROTECTION OF THE MONK SEAL MEDITERRANEAN MONK SEAL REHABILITATION IN GREECE 1990-2004: 15 years of action © M. Schnellmann / MOm Athens 2005 MEDITERRANEAN MONK SEAL REHABILITATION IN GREECE 1990-2004: 15 years of action Athens 2005 © Copyright notice This report or any part of this report can be used only after the written permission of MOm/ Hellenic Society for the Study and Protection of the Mediterranean Monk Seal (www.mom.gr). Hellenic Society for the Study and Protection of the Monk Seal Operation – Coordination: MOm/ The Hellenic Society for the Study and Protection of the Monk Seal Cooperating Organizations: • Seal Rehabilitation and Research Centre (SRRC), Pieterburen, the Netherlands • Department of Virology, Erasmus University Rotterdam • Veterinary Faculty of Aristotle University of Thessalonica Centre Coordinator Eugenia Androukaki, biologist, MOm 1987-1996: Lies Vedder, DVM SRRC Responsible 1996-2004: Natassa Komnenou, DVM, PhD Univ. of Veterinarians Thessaloniki A.D.M.E. Osterhaus, Prof. Of Virology, Erasmus Veterinary Consultant University of Rotterdam Scientific Consultant Spyros Kotomatas, PhD Population Ecology, MOm Eugenia Androukaki, biologist, MOm Report Editing Archontia Chatzispyrou, marine biologist, MOm Mediterranean Monk Seal Rehabilitation in Greece 1990-2004: 15 years of action 1/29 Hellenic Society for the Study and Protection of the Monk Seal CONTENTS ACKNOWLEDGEMENTS..............................................................................................................
    [Show full text]
  • Monachus Schauinslandi) P
    Journal of Zoology. Print ISSN 0952-8369 Distribution and frequencies of shark-inflicted injuries to the endangered Hawaiian monk seal (Monachus schauinslandi) P. Bertilsson-Friedman Department of Zoology, University of New Hampshire, Durham, NH, USA Keywords Abstract Hawaiian monk seals; Monachus schauinslandi; shark-inflicted injuries; injury I analyzed the frequencies of wounds inflicted by sharks to the endangered distribution; shark interactions. Hawaiian monk seal Monachus schauinslandi at three colonies in the Northwestern Hawaiian Islands between 1990 and 2000. I applied specific criteria typical of shark Correspondence bites to all injuries to avoid bias. Pooling data from all years and the three colonies Petra Bertilsson-Friedman. Current address: revealed several patterns. Sharks injured more pups (nursing and weaned) and GPS Department, St Joseph’s College of juveniles (1–2 years old) than adults and subadults. More female pups and male Maine, 278 Whites Bridge Road, Standish, juveniles than any other size classes were injured by sharks. Almost all (97%) of ME 04084-9978, USA. the injured pups were from French Frigate Shoals. More juveniles than expected Email: [email protected] were wounded at Laysan Island and Lisianski Island. Most shark wounds were between the diaphragm and the pelvic girdle, but pups were bitten most often just Received 13 December 2004; accepted behind the pelvis compared with adults who were bitten more often near the head 23 June 2005 and neck. doi:10.1111/j.1469-7998.2006.00066.x Introduction atolls and islands. The species has declined substantially during the past several decades. Many factors have been In contrast to well-studied terrestrial mammals, little is suggested to explain the decline and lack of recovery, known about predation on marine mammals.
    [Show full text]
  • Underwater Hearing and Communication in the Endangered Hawaiian Monk Seal Neomonachus Schauinslandi
    Vol. 44: 61–78, 2021 ENDANGERED SPECIES RESEARCH Published January 28 https://doi.org/10.3354/esr01092 Endang Species Res OPEN ACCESS Underwater hearing and communication in the endangered Hawaiian monk seal Neomonachus schauinslandi Jillian M. Sills1,*, Kirby Parnell2,3, Brandi Ruscher2, Chloe Lew1, Traci L. Kendall4, Colleen Reichmuth1 1Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA 2Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA 3Marine Mammal Research Program, Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kaneohe, HI 96744, USA 4Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA ABSTRACT: Hawaiian monk seals are among the most endangered marine mammals and the most basal of the phocid seals. The auditory biology of monk seals is compelling from behavioral, evolutionary, and conservation perspectives, but we presently lack substantive bioacoustic infor- mation for this species, with no formal descriptions of underwater vocalizations and limited data concerning hearing. These seals have been isolated for more than 10 million yr and have auditory structures differing from those of related species. Additionally, unlike other aquatically mating phocids, monk seals breed asynchronously and are not known to produce social calls in water. To address existing knowledge gaps, we trained a mature male Hawaiian monk seal to perform a psychophysical task while submerged. Detection thresholds were measured for narrowband sounds across the frequency range of hearing. We also conducted a year-round characterization of the seal’s spontaneous underwater vocalizations. This individual demonstrated best hearing between 0.2 and 33 kHz, with a lower high-frequency roll-off than that of related species.
    [Show full text]
  • Bibliography of the Hawaiian Monk Seal Monachus Schauinslandi Matschie 1905
    BIBLIOGRAPHY OF THE HAWAIIAN MONK SEAL MONACHUS SCHAUINSLANDI MATSCHIE 1905 by George H. Balazs Hawaii Institute of Marine Biology and G. Causey Whittow Kewalo Marine Laboratory Pacific Biomedical Research Center UNIVERSITY OF HAWAII HAWAII INSTITUTE OF MARINE BIOLOGY HONOLULU, HAWAII TECHNICAL REPORT No.3S MARCH 1978 BIBLIOGRAPHY OF THE HAWAIIAN MONK SEAL MONACHUS SCHAUINSLANDI MATSCHIE 1905 by George H. Balazs Hawaii Institute of Marine Biology and G. Causey Whittow Kewalo Marine Laboratory Pacific Biomedical Research Center March 1978 Hawaii Institute of Marine Biology University of Hawaii Technical Report No. 35 1 INTRODUCTION There is considerable interest in the Hawaiian monk seal at present due to its restricted range and recent designation as an "endangered species" under provisions of the U. S. Endangered Species Act of 1973. The following comprehensive list of references has therefore been assembled for the benefit of anyone seeking information on this rare, endemic marine mammal. All material known to us as of February 10, 1978, which deals either exclusively or in part with Monachus schauinsl.andi, has been included. A special feature of the bibliography is the incorporation of references to articles from the " Honolulu newspapers and to unpublished reports, which we were in a strategic position to locate. It should be noted that an unknown number of publications also exist on the Mediterranean monk seal (Monachus monachus) , as well as the Caribbean monk seal (Monachus tY'opical.is) which is now thought to be extinct. Unpublished reports listed as resulting from the Pacific Ocean Biological Survey Program (1963-1969) as well as those by E.
    [Show full text]
  • Letter to K. Baker, 1-29-07
    Marine Mammal Commission 4340 East-West Highway, Room 905 Bethesda, MD 20814 29January 2007 Mr. Kyle Baker National Marine Fisheries Service 263 13th Avenue, South St. Petersburg, FL 33701 Dear Mr. Baker: The Marine Mammal Commission, in consultation with its Committee of Scientific Advisors on Marine Mammals, has reviewed the National Marine Fisheries Service’s 29 November 2006 Federal Register notice announcing its intent to conduct a review of the Caribbean monk seal, Monachus tropicalis, under the Endangered Species Act and requesting information on the species’ status. We have reviewed our files and, with great regret, we have concluded that the species is extinct and should be removed from the list of endangered and threatened species. Fossil and archeological evidence, along with sighting records, indicate that the species once occurred from the southeastern United States through the Bahamas and the Caribbean Sea. A review of those records by Rice (1973) concluded that the last authoritative sighting was of a small colony of animals at Seranilla Banks between Jamaica and the Yucatan Peninsula in 1952. A few other unconfirmed sightings were reported from the 1950s into the 1970s, but at least some of those were reported to involve escaped California sea lions (Gunter 1968 cited in Rice 1973). Although the species may have been extinct when the Endangered Species Act was passed in 1973, the Marine Mammal Commission wrote to the National Marine Fisheries Service on 26 January 1977 recommending that the Caribbean monk seal be listed as “endangered” under the Endangered Species Act and “depleted” under the Marine Mammal Protection Act.
    [Show full text]
  • Global Patterns in Marine Mammal Distributions
    SUPPLEMENTARY INFORMATION I. TAXONOMIC DECISIONS In this work we followed Wilson and Reeder (2005) and Reeves, Stewart, and Clapham’s (2002) taxonomy. In the last 20 years several new species have been described such as Mesoplodon perrini (Dalebout 2002), Orcaella heinsohni (Beasley 2005), and the recognition of several species have been proposed for orcas (Perrin 1982, Pitman et al. 2007), Bryde's whales (Kanda et al. 2007), Blue whales (Garrigue et al. 2003, Ichihara 1996), Tucuxi dolphin (Cunha et al. 2005, Caballero et al. 2008), and other marine mammals. Since we used the conservation status of all species following IUCN (2011), this work is based on species recognized by this IUCN to keep a standardized baseline. II. SPECIES LIST List of the species included in this paper, indicating their conservation status according to IUCN (2010.4) and its range area. Order Family Species IUCN 2010 Freshwater Range area km2 Enhydra lutris EN A2abe 1,084,750,000,000 Mustelidae Lontra felina EN A3cd 996,197,000,000 Odobenidae Odobenus rosmarus DD 5,367,060,000,000 Arctocephalus australis LC 1,674,290,000,000 Arctocephalus forsteri LC 1,823,240,000,000 Arctocephalus galapagoensis EN A2a 167,512,000,000 Arctocephalus gazella LC 39,155,300,000,000 Arctocephalus philippii NT 163,932,000,000 Arctocephalus pusillus LC 1,705,430,000,000 Arctocephalus townsendi NT 1,045,950,000,000 Carnivora Otariidae Arctocephalus tropicalis LC 39,249,100,000,000 Callorhinus ursinus VU A2b 12,935,900,000,000 Eumetopias jubatus EN A2a 3,051,310,000,000 Neophoca cinerea
    [Show full text]
  • 1 Billing Code: 3510-22-P DEPARTMENT OF
    This document is scheduled to be published in the Federal Register on 05/17/2019 and available online at https://federalregister.gov/d/2019-10330, and on govinfo.gov Billing Code: 3510-22-P DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XG359 Marine Mammals; File No. 21482 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice; receipt of application. SUMMARY: Notice is hereby given that Dan T. Engelhaupt, Ph.D., HDR, Inc., 4173 Ewell Road, Virginia Beach, VA, 23455, has applied in due form for a permit to conduct scientific research on 83 species of marine mammals. DATES: Written, telefaxed, or e-mail comments must be received on or before [insert date 30 days after date of publication in the FEDERAL REGISTER]. ADDRESSES: The application and related documents are available for review by selecting “Records Open for Public Comment” from the “Features” box on the Applications and Permits for Protected Species (APPS) home page, https://apps.nmfs.noaa.gov, and then selecting File No. 21482 from the list of available applications. These documents are also available upon written request or by appointment in the Permits and Conservation Division, Office of Protected Resources, NMFS, 1315 East- West Highway, Room 13705, Silver Spring, MD 20910; phone (301) 427-8401; fax (301) 713-0376. 1 Written comments on this application should be submitted to the Chief, Permits and Conservation Division, at the address listed above. Comments may also be submitted by facsimile to (301) 713-0376, or by email to [email protected].
    [Show full text]
  • The Antarctic Ross Seal, and Convergences with Other Mammals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Servicio de Difusión de la Creación Intelectual Evolutionary biology Sensory anatomy of the most aquatic of rsbl.royalsocietypublishing.org carnivorans: the Antarctic Ross seal, and convergences with other mammals Research Cleopatra Mara Loza1, Ashley E. Latimer2,†, Marcelo R. Sa´nchez-Villagra2 and Alfredo A. Carlini1 Cite this article: Loza CM, Latimer AE, 1 Sa´nchez-Villagra MR, Carlini AA. 2017 Sensory Divisio´n Paleontologı´a de Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina. CONICET, La Plata, Argentina anatomy of the most aquatic of carnivorans: 2Pala¨ontologisches Institut und Museum der Universita¨tZu¨rich, Karl-Schmid Strasse 4, 8006 Zu¨rich, Switzerland the Antarctic Ross seal, and convergences with MRS-V, 0000-0001-7587-3648 other mammals. Biol. Lett. 13: 20170489. http://dx.doi.org/10.1098/rsbl.2017.0489 Transitions to and from aquatic life involve transformations in sensory sys- tems. The Ross seal, Ommatophoca rossii, offers the chance to investigate the cranio-sensory anatomy in the most aquatic of all seals. The use of non-invasive computed tomography on specimens of this rare animal Received: 1 August 2017 reveals, relative to other species of phocids, a reduction in the diameters Accepted: 12 September 2017 of the semicircular canals and the parafloccular volume. These features are independent of size effects. These transformations parallel those recorded in cetaceans, but these do not extend to other morphological features such as the reduction in eye muscles and the length of the neck, emphasizing the independence of some traits in convergent evolution to aquatic life.
    [Show full text]
  • Novel Terrestrial Haul-Out Behaviour by Ringed Seals
    POLAR RESEARCH, 2017 VOL. 36, 1374124 https://doi.org/10.1080/17518369.2017.1374124 RESEARCH ARTCLE Novel terrestrial haul-out behaviour by ringed seals (Pusa hispida)in Svalbard, in association with harbour seals (Phoca vitulina) Christian Lydersena, Jade Vaquie-Garciaa, Espen Lydersenb, Guttorm N. Christensenc & Kit M. Kovacsa aNorwegian Polar Institute, Tromsø, Norway; bUniversity College of Southeast Norway, Campus Bø, Norway; cAkvaplan-Niva, Tromsø, Norway ABSTRACT KEYWORDS Ringed seals (Pusa hispida) are the most ice-associated of all Arctic pinnipeds. In the Svalbard Arctic; behavioural plasticity; area, this species has always given birth, moulted and rested on sea ice. In addition, much of climate change; glacier their food has been comprised of ice-associated prey. Recently, ringed seals have been fronts; lagoons; sea ice reported to be using terrestrial substrates as a haul-out platform in some fjords on the west coast of Spitsbergen. In many cases the seals involved are harbour seals (Phoca vitulina), which are extending their distribution into new areas within the Svalbard Archipelago and which are being misclassified as ringed seals. However, this study reports that terrestrial haul- out by ringed seals is also now taking place on rocks exposed at low tide as well as on the coastline. Recent intrusions of warm Atlantic Water (with associated prey) have extended deep into the fjords of western Spitsbergen, resulting in deteriorated ice conditions for ringed seals and expanded habitat for harbour seals. Over the last decade, ringed seals have become more and more confined in coastal areas to narrow bands in front of tidal glacier fronts where Arctic conditions still prevail.
    [Show full text]