Elm Leaf Beetle

Total Page:16

File Type:pdf, Size:1020Kb

Elm Leaf Beetle ELM LEAF BeeTLE Integrated Pest Management for Home Gardeners and Landscape Professionals The elm leaf beetle, Xanthogaleruca beetle has at least one generation a (=Pyrrhalta) luteola, is a leaf-chewing year in northern California and two pest of elm trees, especially European to three generations in central and elm species. American and most Asian southern California. elm species are less severely fed upon. Most Chinese elm cultivars, zelkova, DAMAGE and many newer elm cultivars are Adults chew entirely through the leaf, infrequently fed upon. often in a shothole pattern. Larvae skeletonize the leaf surface, causing IDENTIFICATION damaged foliage to turn brown to Adults are 1/4 inch long, olive-green whitish (Figure 4). Elm leaf beetles, Figure 1. Adult, eggs, and first-instar beetles with black, longitudinal stripes when abundant, can entirely defoli- larva of elm leaf beetle. along the margin and center of the back ate large elm trees, which eliminates (Figure 1). Females lay yellowish eggs summer shade and reduces the aes- in double rows of about 5 to 25 on the thetic value of trees. Repeated, exten- underside of leaves. Eggs become gray- sive defoliation weakens elms, caus- ish before hatching. Larvae resemble ing trees to decline. However, the elm caterpillars and are black when newly leaf beetle has not been a significant, hatched and shortly after molting widespread problem in California (shedding the old skin). After feeding, since the 1990s. larvae become yellowish to green with rows of tiny dark tubercles (projec- MANAGEMENT tions). Third-instar larvae grow up to It is essential to correctly identify the Figure 2. Third-instar elm leaf beetle 1/3 inch long and have dense rows of cause of damaged elm leaves before larvae. dark tubercles down their sides that taking management action. European resemble two black stripes (Figure 2). flea weevil, Orchestes alni, also chews Pupae are orange to bright yellow. holes in elm leaves and causes elms to defoliate. This introduced beetle LIFE CYCLE has become a serious elm pest in the The elm leaf beetle develops through eastern United States, but currently four life stages: egg, larva, pupa, and does not occur in California. Also adult (Figure 3). Adults commonly from a distance, foliage severely overwinter in bark crevices and wood- chewed by beetles resembles the piles or in buildings. In spring they fly browning and dieback caused by to elm foliage and chew leaves, and Dutch elm disease fungi, Ophiostoma females lay eggs. Eggs hatch into lar- (=Ceratocystis) ulmi and O. novo-ulmi. vae that develop through three instars Report any suspected Dutch elm dis- (growth stages) over a period of several ease, European flea weevil, or other Figure 3. Elm leaf beetle stages and life weeks while chewing on foliage and new pests to the local county agricul- cycle. then crawl down the tree trunk. Ma- tural commissioner. cides, bark banding, or systemic insec- ture larvae become curled and inactive (a stage referred to as prepupae), then Where the elm leaf beetle is a prob- ticide. Recognize that elm leaf beetle pupate, sometimes in large numbers, lem, manage it with an integrated populations historically have fluctu- around the tree base. After about 10 program that incorporates good ated dramatically from year to year and days as pupae, adults emerge and fly to cultural practices, conservation of trees do not warrant treatment most the canopy to feed and, during spring natural enemies, regular monitoring, years. When management is warranted, and summer, lay eggs. The elm leaf and the use of less-persistent insecti- use a combination of methods; because PEST NOTES Publication 7403 Statewide Integrated Pest Management Program June 2014 June 2014 Elm Leaf Beetle no single action improves the health of Monitoring elm trees or kills 100% of the pests. Determine the need and effective timing for any pesticide application Cultural Control by visually inspecting leaves at about Good cultural care of trees is an essen- weekly intervals beginning in spring tial component of integrated pest man- when the first generation of eggs and agement. American and European elm larvae are expected. Watch for the species are adapted to summer rainfall. appearance of clusters of yellowish to Maintain tree vigor, and protect trunks gray eggs and caterpillar-like larvae. and roots from injury, by providing The calendar date of peak abundance appropriate irrigation in areas with and damage varies greatly from year summer drought. Check for dead or to year depending on spring tempera- dying branches and promptly remove tures. If beetles are too abundant, use Figure 4. Damage due to elm leaf beetle them. Dying branches pose a limb drop the heat accumulation method dis- feeding. (failure) hazard and provide habitat for cussed in Degree-Day Monitoring to bark beetles, Scolytus multistriatus and determine the optimal time to inspect S. schevyrewi foliage and to accurately time insecti- , which vector the Dutch beetles are too abundant) apply insecti- elm disease fungi. Avoid unnecessary cide application. cide. Generally the higher the tempera- pruning; and when pruning make cuts ture, the sooner beetles and damage properly, preferably during late fall and If you plan to spray foliage or apply appear in the spring. When spring tem- winter and when trees are young. systemic insecticide to trunks, make the application when first- and second- peratures are cooler, elm leaf beetles appear later because they do not feed, Choose species or cultivars that resist instar (small) larvae are abundant. grow, or reproduce below a “threshold both Dutch elm disease and elm leaf With bark banding discussed below, temperature” of about 52°F. beetle when planting (Table 1). Pest- band as soon as third-instar (larger) resistant elms include Accolade, Emer- larvae are observed on leaves. To predict the peak abundance of each ald Sunshine, Frontier, Prospector, and elm leaf beetle life stage, temperatures most Chinese elms, except Dynasty. If you drench or inject soil with a root-absorbed, systemic insecticide, are monitored in units called degree- the most effective application time is days. One degree-day is 1 degree above Control Action Guidelines. Healthy spring when elm trees flush new leaves elm trees can tolerate substantial dam- the insect’s lower threshold tempera- or shortly after leaf flush. The time for age to leaves; total defoliation may have ture maintained for a full day. For the action is before you know definitely little long-term effect on healthy elms, elm leaf beetle, degree-days above 52°F whether beetles will become abundant especially if leaf damage occurs late in are accumulated for each season begin- enough to warrant this preventive ap- the season. Suggested guidelines are ning March 1. The first- and second- plication. to take action when needed to prevent instar larvae of first-generation elm leaf greater than 40% defoliation (portion beetles are most abundant at about 700 Generally, insecticide application is degree-days above 52°F accumulated of leaf area chewed or leaves dropped unlikely to be warranted if: prematurely); or if damage is less toler- from March 1. If populations are high • beetles and damage were low during and damage is anticipated, foliar in- able or occurring earlier in the growing late summer the previous year; secticide spray or trunk spray or injec- season, a treatment threshold of 20% • systemic insecticide was properly tion of systemic insecticide at about defoliation may be used. For additional applied the previous growing 700 degree-days will catch susceptible information on how to predict the season; or larvae at their greatest abundance. amount of defoliation from each beetle • the winter was relatively warm or generation refer to the 1998 publication wet or both, because this weather by Dahlsten and others listed in Refer- apparently causes more “hibernat- Elm leaf beetle development can eas- ences. ing” beetles to die before elm leaves ily be predicted using the point-and- appear in spring. click, degree-day calculator online at Timing of action varies according to the If any of the above circumstances are http://www.ipm.ucanr.edu/calludt. control methods and situation. To avoid true, avoid insecticide application un- cgi/DDMODEL?MODEL=ELB&CROP unacceptable defoliation, when using less monitoring of plants reveals that =landscape. If you manage large num- methods that kill a smaller proportion elm leaf beetles are present and exces- bers of elms, you can further improve of the pests or take longer to provide sively abundant. your treatment by using degree-days control allowing beetles to continue to in combination with egg presence- feed and damage leaves, take action Degree-Day Monitoring. Monitor absence sampling, as explained in the sooner than you would when using temperatures to determine the opti- 1993 publication by Dahlsten and oth- faster-acting methods. mal time to inspect elm leaves and (if ers listed in References. ◆ 2 of 5 ◆ June 2014 Elm Leaf Beetle Biological Control Monitor beetle abundance and dam- age, as discussed above, to determine Elm leaf beetle populations are usu- ally low at least partly because of treatment need, choice of method, and biological control by native predators timing. Apply insecticide only when and introduced parasites. Predators beetles are present or expected to be- of the elm leaf beetle include certain come too abundant. Insecticides can bugs, earwigs, lacewing larvae, and have unintended effects, such as con- predaceous ground beetles. The easiest taminating water, poisoning natural to recognize parasite is a small black enemies and pollinators, and causing tachinid fly, Erynniopsis antennata. After secondary pest outbreaks. Completely Erynniopsis larvae feed inside and read and follow the product label in- Figure 5. Elm leaf beetle prepupae kill beetle larvae, the parasite’s 1/5 structions for the safe and effective use (left) pupae, and pupae of the Erynniop- inch long, black to reddish pupae can of the insecticide.
Recommended publications
  • Coleoptera: Chrysomelidae: Alticinae) of the Fauna of Latvia
    Acta Zoologica Lituanica, 2009, Volumen 19, Numerus 2 DOI: 10.2478/v10043-009-0011-x ISSN 1648-6919 TO THE KNOWLEDGE OF FLEA BEETLES (COLEOPTERA: CHRYSOMELIDAE: ALTICINAE) OF THE FAUNA OF LATVIA. 3. GENERA NEOCREPIDODERA HEIKERTINGER, 1911 AND CREPIDODERA CHEVROLAT, 1836 Andris BUKEJS Institute of Systematic Biology, Daugavpils University, Vienības 13, Daugavpils, LV-5401, Latvia. E-mail: [email protected] Abstract. Faunal data on four species of the genus Neocrepidodera Heikertinger, 1911 and on five spe- cies of the genus Crepidodera Chevrolat, 1836 are presented. A total of 806 specimens of these genera have been processed. The bibliographic information on these flea beetle genera in Latvia is summarised for the first time. One species, Crepidodera lamina (Bedel, 1901), is deleted from the list of Latvian Coleoptera. The annotated list of Latvian species is given, including five species of Neocrepidodera Heikertinger, 1911 and five species of Crepidodera Chevrolat, 1836. Key words: Coleoptera, Chrysomelidae, Alticinae, Neocrepidodera, Crepidodera, fauna, Latvia INTRODUCT I ON and Pūtele 1976; Rūtenberga 1992; Barševskis 1993, 1997; Bukejs and Telnov 2007. The most recent lists of This publication continues our study on flea beetles of Latvian Neocrepidodera and Crepidodera can be found the Latvian fauna (Bukejs 2008b, c). in the published catalogues of Latvian Coleoptera by There are 48 species and subspecies of the genus Neo- Telnov et al. (1997) and Telnov (2004), respectively. crepidodera Heikertinger, 1911 and 17 species of the The imagoes of Crepidodera feed on leaves of Salix genus Crepidodera Chevrolat, 1836 known in the Pa- and Populus. The larvae of Crepidodera aurata (Mar- laearctic region (Gruev & Döberl 1997).
    [Show full text]
  • Department of Planning and Zoning
    Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only
    [Show full text]
  • Bark Beetles
    Bark Beetles O & T Guide [O-#03] Carol A. Sutherland Extension and State Entomologist Cooperative Extension Service z College of Agriculture and Home Economics z October 2006 Although New Mexico bark beetle adults are In monogamous species such as the Douglas small, rarely exceeding 1/3 inch in length, they fir beetle, Dendroctonus pseudotsugae, the are very capable of killing even the largest female bores the initial gallery into the host host trees with a mass assault, girdling them or tree, releases pheromones attractive to her inoculating them with certain lethal pathogens. species and accepts one male as her mate. Some species routinely attack the trunks and major limbs of their host trees, other bark beetle species mine the twigs of their hosts, pruning and weakening trees and facilitating the attack of other tree pests. While many devastating species of bark beetles are associated with New Mexico conifers, other species favor broadleaf trees and can be equally damaging. Scientifically: Bark beetles belong to the insect order Coleoptera and the family Scolytidae. Adult “engraver beetle” in the genus Ips. The head is on the left; note the “scooped out” area Metamorphosis: Complete rimmed by short spines on the rear of the Mouth Parts: Chewing (larvae and adults) beetle, a common feature for members of this Pest Stages: Larvae and adults. genus. Photo: USDA Forest Service Archives, USDA Forest Service, www.forestryimages.org Typical Life Cycle: Adult bark beetles are strong fliers and are highly receptive to scents In polygamous species such as the pinyon bark produced by damaged or stressed host trees as beetle, Ips confusus, the male bores a short well as communication pheromones produced nuptial chamber into the host’s bark, releases by other members of their species.
    [Show full text]
  • Elms Grown in America
    ARNOLDIA A continuation of the BULLETIN OF POPULAR INFORMATION of the Arnold Arboretum, Harvard University VOLUME I DECEMBER I 9, 19411 NUMBER IS ELMS GROVG’N IN AMERICA years ago, Professor Charles S. Sargent, Director T~’ENTY-FIVEof the Arnold Arburetum w rote the following statement concerning the European Elms-unfortunately just as true today as it was then - "There is probably more confusion in the identification and proper naming of these trees (the European elms) in American parl.s and gar- dens than of any other group of trees, and it is only in very recent ~ ears that English botanists have been able to reach what appear to be sound conclusions in regard to them. The confusion started with Lin- naeus, who believed that all European elms belonged to one species, and it has been increased by the appearance of natural hybrids of at least two of the species and by the tendency of seedlings to show much variation from the original types." Today, with six elm species native in the United State, five species native of Europe (including many varieties), and se‘ eral more species native of Asia, the picture becomes even more confused. The elm is, and always has been, a standard shade tree, for even though it is threatened in certain sections by the Dutch elm disease, the gardening public will still plant elms. Approximately fifty elms will be mentioned in this bulletin. About thirty of them have been listed as available in - the nurseries of this country during the past two years : all but five of them are growing in the Arnold Arboretum at Boston.
    [Show full text]
  • Dutch Elm Disease Pathogen Transmission by the Banded Elm Bark Beetle Scolytus Schevyrewi
    For. Path. 43 (2013) 232–237 doi: 10.1111/efp.12023 © 2013 Blackwell Verlag GmbH Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi By W. R. Jacobi1,3, R. D. Koski1 and J. F. Negron2 1Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA; 2U.S.D.A. Forest Service, Rocky Mountain Forest Research Station, Fort Collins, CO USA; 3E-mail: [email protected] (for correspondence) Summary Dutch Elm Disease (DED) is a vascular wilt disease of Ulmus species (elms) incited in North America primarily by the exotic fungus Ophios- toma novo-ulmi. The pathogen is transmitted via root grafts and elm bark beetle vectors, including the native North American elm bark beetle, Hylurgopinus rufipes and the exotic smaller European elm bark beetle, Scolytus multistriatus. The banded elm bark beetle, Scolytus schevyrewi, is an exotic Asian bark beetle that is now apparently the dominant elm bark beetle in the Rocky Mountain region of the USA. It is not known if S. schevyrewi will have an equivalent vector competence or if management recommendations need to be updated. Thus the study objectives were to: (i) determine the type and size of wounds made by adult S. schevyrewi on branches of Ulmus americana and (ii) determine if adult S. schevyrewi can transfer the pathogen to American elms during maturation feeding. To determine the DED vectoring capability of S. schevyrewi, newly emerged adults were infested with spores of Ophiostoma novo-ulmi and then placed with either in-vivo or in-vitro branches of American elm trees.
    [Show full text]
  • Millichope Park and Estate Invertebrate Survey 2020
    Millichope Park and Estate Invertebrate survey 2020 (Coleoptera, Diptera and Aculeate Hymenoptera) Nigel Jones & Dr. Caroline Uff Shropshire Entomology Services CONTENTS Summary 3 Introduction ……………………………………………………….. 3 Methodology …………………………………………………….. 4 Results ………………………………………………………………. 5 Coleoptera – Beeetles 5 Method ……………………………………………………………. 6 Results ……………………………………………………………. 6 Analysis of saproxylic Coleoptera ……………………. 7 Conclusion ………………………………………………………. 8 Diptera and aculeate Hymenoptera – true flies, bees, wasps ants 8 Diptera 8 Method …………………………………………………………… 9 Results ……………………………………………………………. 9 Aculeate Hymenoptera 9 Method …………………………………………………………… 9 Results …………………………………………………………….. 9 Analysis of Diptera and aculeate Hymenoptera … 10 Conclusion Diptera and aculeate Hymenoptera .. 11 Other species ……………………………………………………. 12 Wetland fauna ………………………………………………….. 12 Table 2 Key Coleoptera species ………………………… 13 Table 3 Key Diptera species ……………………………… 18 Table 4 Key aculeate Hymenoptera species ……… 21 Bibliography and references 22 Appendix 1 Conservation designations …………….. 24 Appendix 2 ………………………………………………………… 25 2 SUMMARY During 2020, 811 invertebrate species (mainly beetles, true-flies, bees, wasps and ants) were recorded from Millichope Park and a small area of adjoining arable estate. The park’s saproxylic beetle fauna, associated with dead wood and veteran trees, can be considered as nationally important. True flies associated with decaying wood add further significant species to the site’s saproxylic fauna. There is also a strong
    [Show full text]
  • Predicting the Areas of Suitable Distribution for Zelkova Serrata in China Under Climate Change
    sustainability Article Predicting the Areas of Suitable Distribution for Zelkova serrata in China under Climate Change Chunyan Cao 1 and Jun Tao 2,* 1 College of Horticultural Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China; [email protected] 2 College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China * Correspondence: [email protected]; Tel.: +86-0514-8799-7219 Abstract: Predicting the geographic distribution of a species together with its response to climate change is of great significance for biodiversity conservation and ecosystem sustainable development. Zelkova serrata is an excellent shelterbelt tree species that is used for soil and water conservation due to the fact of its well-developed root system, strong soil fixation, and wind resistance. However, the wild germplasm resources of Z. serrata have been increasingly depleted due to the fact of its weak ability to regenerate naturally and the unprecedented damage humans have caused to the natural habitats. The present work using Maxent aimed to model the current potential distribution of this species as well as in the future, assess how various environmental factors affect species distribution, and identify the shifts in the distribution of this species in various climate change scenarios. Our findings show habitat in provinces in the southern Qinling and Huai river basins have high environmental suitability. Temperature seasonality, annual precipitation, annual mean temperature, and warmest quarter precipitation were the most important factors affecting its distribution. Under a climate change scenario, the appropriate habitat range showed northeastward expansion geographically. The results in the present work can lay the foundation for the cultivation and conservation of Z.
    [Show full text]
  • Chrysomela 43.10-8-04
    CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 43.2 July 2004 INSIDE THIS ISSUE Fabreries in Fabreland 2- Editor’s Page St. Leon, France 2- In Memoriam—RP 3- In Memoriam—JAW 5- Remembering John Wilcox Statue of 6- Defensive Strategies of two J. H. Fabre Cassidine Larvae. in the garden 7- New Zealand Chrysomelidae of the Fabre 9- Collecting in Sholas Forests Museum, St. 10- Fun With Flea Beetle Feces Leons, France 11- Whither South African Cassidinae Research? 12- Indian Cassidinae Revisited 14- Neochlamisus—Cryptic Speciation? 16- In Memoriam—JGE 16- 17- Fabreries in Fabreland 18- The Duckett Update 18- Chrysomelidists at ESA: 2003 & 2004 Meetings 19- Recent Chrysomelid Literature 21- Email Address List 23- ICE—Phytophaga Symposium 23- Chrysomela Questionnaire See Story page 17 Research Activities and Interests Johan Stenberg (Umeå Univer- Duane McKenna (Harvard Univer- Eduard Petitpierre (Palma de sity, Sweden) Currently working on sity, USA) Currently studying phyloge- Mallorca, Spain) Interested in the cy- coevolutionary interactions between ny, ecological specialization, population togenetics, cytotaxonomy and chromo- the monophagous leaf beetles, Altica structure, and speciation in the genus somal evolution of Palearctic leaf beetles engstroemi and Galerucella tenella, and Cephaloleia. Needs Arescini and especially of chrysomelines. Would like their common host plant Filipendula Cephaloleini in ethanol, especially from to borrow or exchange specimens from ulmaria (meadow sweet) in a Swedish N. Central America and S. America. Western Palearctic areas. Archipelago. Amanda Evans (Harvard University, Maria Lourdes Chamorro-Lacayo Stefano Zoia (Milan, Italy) Inter- USA) Currently working on a phylogeny (University of Minnesota, USA) Cur- ested in Old World Eumolpinae and of Leptinotarsa to study host use evolu- rently a graduate student working on Mediterranean Chrysomelidae (except tion.
    [Show full text]
  • Open As a Single Document
    ILLUSTRATIONS Professor Charles Sprague Sargent in the Arnold Arboretum Library -1904, Plate I, opposite p. 30 Flowers and fruits of the hardy orange, Porrcirus tr;f’oliata. Plate II, p. 35 Map showing absolute minimum temperatures in the Northeastern states from 1926-1940. Plate III, p. 47 Map showing an average length for growing season in the Northeast- ern states. Plate IV, p. 49 Map showing the average July temperature in the Northeastern states for the years 1926 to 1940. Plate V, p. 511 Black walnuts. Plate VI, p. 33 Hickory nuts of various types. Plate VII, p. 57 The native rock elm, Ulmu.r thomasi. Plate VIII, p. 69 The European white elm or Russian elm, Lllmus laenis. Plate IX, p.711 Two varieties of the smoothleaf elm, L’lmus carpinjfolia. Plate X, p. 755 Leaf specimens of various elm species. Plate XI, p. 79 111 . ARNOLDIA A continuation of the BULLETIN OF POPULAR INFORMATION of the Arnold Arboretum, Harvard University VOLUME 1 MARCH 14, 1941 NUMBER I A SIMPLE CHANGE IN NAME "Bulletin of Popular Information" has always been an un- OURsatisfactory periodical to cite, because of the form of its title, which reads: "Arnold Arboretum, Harvard University, Bulletin of Popular Information." Moreover, for no very obvious reason, in the twenty-nine years of its publication it has attamed four series, and for clarity it is necessary to cite the series as well as the volume. In- itiated in May, 1911, sixty-three unpaged numbers form the first series, this run closing in November, 1914. In 1915, a new series was commenced with volume one and was continued for twelve years, closing with volume twelve in December, 1926.
    [Show full text]
  • Oregon Invasive Species Action Plan
    Oregon Invasive Species Action Plan June 2005 Martin Nugent, Chair Wildlife Diversity Coordinator Oregon Department of Fish & Wildlife PO Box 59 Portland, OR 97207 (503) 872-5260 x5346 FAX: (503) 872-5269 [email protected] Kev Alexanian Dan Hilburn Sam Chan Bill Reynolds Suzanne Cudd Eric Schwamberger Risa Demasi Mark Systma Chris Guntermann Mandy Tu Randy Henry 7/15/05 Table of Contents Chapter 1........................................................................................................................3 Introduction ..................................................................................................................................... 3 What’s Going On?........................................................................................................................................ 3 Oregon Examples......................................................................................................................................... 5 Goal............................................................................................................................................................... 6 Invasive Species Council................................................................................................................. 6 Statute ........................................................................................................................................................... 6 Functions .....................................................................................................................................................
    [Show full text]
  • Coleoptera, Chrysomelidae, Galerucinae)
    A peer-reviewed open-access journal ZooKeys 720:Traumatic 77–89 (2017) mating by hand saw-like spines on the internal sac in Pyrrhalta maculicollis 77 doi: 10.3897/zookeys.720.13015 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Traumatic mating by hand saw-like spines on the internal sac in Pyrrhalta maculicollis (Coleoptera, Chrysomelidae, Galerucinae) Yoko Matsumura1, Haruki Suenaga2, Yoshitaka Kamimura3, Stanislav N. Gorb1 1 Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botani- schen Garten 1-9, D-24118 Kiel, Germany 2 Sunshine A205, Nishiachi-chô 833-8, Kurashiki-shi, Okayama Pref., 710-0807, Japan 3 Department of Biology, Keio University, 4-1-1 Hiyoshi, Yokohama 223-8521, Japan Corresponding author: Yoko Matsumura ([email protected]) Academic editor: Michael Schmitt | Received 1 April 2017 | Accepted 13 June 2017 | Published 11 December 2017 http://zoobank.org/BCF55DA6-95FB-4EC0-B392-D2C4B99E2C31 Citation: Matsumura Y, Suenaga H, Kamimura Y, Gorb SN (2017) Traumatic mating by hand saw-like spines on the internal sac in Pyrrhalta maculicollis (Coleoptera, Chrysomelidae, Galerucinae). In: Chaboo CS, Schmitt M (Eds) Research on Chrysomelidae 7. ZooKeys 720: 77–89. https://doi.org/10.3897/zookeys.720.13015 Abstract Morphology of the aedeagus and vagina of Pyrrhalta maculicollis and its closely related species were inves- tigated. The internal sac of P. maculicollis bears hand saw-like spines, which are arranged in a row. Healing wounds were found on the vagina of this species, whose females were collected in the field during a repro- ductive season. However, the number of the wounds is low in comparison to the number of the spines.
    [Show full text]
  • 25Th U.S. Department of Agriculture Interagency Research Forum On
    US Department of Agriculture Forest FHTET- 2014-01 Service December 2014 On the cover Vincent D’Amico for providing the cover artwork, “…and uphill both ways” CAUTION: PESTICIDES Pesticide Precautionary Statement This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife--if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Product Disclaimer Reference herein to any specific commercial products, processes, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recom- mendation, or favoring by the United States government. The views and opinions of wuthors expressed herein do not necessarily reflect those of the United States government, and shall not be used for advertising or product endorsement purposes. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C.
    [Show full text]