Shore Crab, Hemigrapsus Oregonensis (Brachyura: Grapsidae)L

Total Page:16

File Type:pdf, Size:1020Kb

Shore Crab, Hemigrapsus Oregonensis (Brachyura: Grapsidae)L Pacific Science (1993), vol. 47, no. 3: 256-262 © 1993 by University of Hawaii Press. All rights reserved Behavioral Basis of Depth Regulation in the First Zoeal Stage of the Pacific Shore Crab, Hemigrapsus oregonensis (Brachyura: Grapsidae)l 2 MARIELISE ARANA 2 ,3 AND STEPHEN SULKIN ,4 ABSTRACT: The behavioral basis ofdepth regulation is determined for the first pelagic larval stage ofthe shore crab Hemigrapsus oregonensis Dana. Larvae are negatively buoyant, passively sinking at 0.79 em/sec in 25 parts per thousand (ppt) salinity (S) seawater and at 0.67 em/sec in 30 ppt S. At 30 ppt S, larvae are negatively geotactic and move upward. At 25 ppt S, larvae remain negatively geotactic, but a low level of locomotor activity results in net downward move­ ment. Swimming speed is higher at 30 ppt S than at 25 ppt S; however, there is no response to incremental increases in hydrostatic pressure up to 0.8 atm at either salinity. Behavioral responses should promote upward migration ofthe hatching stage similar to the case with other intertidal crab species; however, low precision in depth regulation contrasts with results from other species. IN MANY BENTHIC marine invertebrates, in­ ment into the water column, a response that cluding most brachyuran crabs, adult distri­ presumably results in dispersal of offspring bution is influenced by dispersal ofthe pelagic from the site of hatching. Hatching-stage larval stage. The pattern of larval dispersal is larvae generally respond to the higher pres­ regulated by a number of factors, including sures and salinities present at depth by in­ larval morphology, duration, and behavior. creasing locomotor activity. This locomotor In estuarine and coastal marine environ­ activity is oriented by negative geotaxis such ments, current speed and direction often vary that upward migration results. Key behav­ with depth. As a consequence, patterns of ioral elements of this response thus include vertical distribution can significantly influence negative geotaxis and high barokinesis (Sulkin larval dispersal (e.g., Bousfield 1955, Thorson et al. 1980, Jacoby 1982, Kelly et al. 1982, 1964, Cronin 1982). It is well documented that Schembri 1982). The effects of other environ­ larval crabs possess behavioral traits that mental parameters, such as salinity, on larval contribute to depth regulation (reviewed by behavior also have been documented (Latz Sulkin 1984), thus producing characteristic and Forward 1977, Sulkin et al. 1980). patterns ofvertical distribution and dispersal. With the exception ofJacoby's (1982) study Particular attention has been paid to the of larval behavior in Cancer magister Dana, behavioral response of the first zoeal stage of most research has been conducted either on many species of crabs (Sulkin 1984). Such shallow-water, estuarine species (Sulkin 1984) studies have documented the presence of be­ or on oceanic species whose adults occupy havioral traits that promote upward move- deep water (Kelly et al. 1982). Both groups Rossess larval adaptations likely to promote upward migration upon hatching, althougfi some differences in larval behavior between 1 The first author was supported on this project by a grant to the Shannon Point Marine Center from the shallow-water and oceanic species have been National Science Foundation as part of the Research noted. Experiences for Undergraduates Site Program (OCE­ The study reported here examined the be­ 9000676). Manuscript accepted 8 October 1992. havioral responses to gravity and hydrostatic 2 Shannon Point Marine Center, 1900 Shannon Point Road, Anacortes, Washington 98221. pressure in the hatching stage of the crab 386-24 144th Street, Briarwood, New York 11435. Hemigrapsus oregonensis Dana, a common 4 Correspondent. shore crab that inhabits rocky intertidal Depth Regulation in Pelagic Larvae of Hemigrapsus-ARANA AND SULKIN 257 beaches along the eastern Pacific Ocean. In marked offin the middle ofthe cylinder. Mean the Puget Sound basin, adults occupy the values were compared using a Student's t test. shallow waters of the lower intertidal, but larvae are readily dispersed to nearby waters Geotaxis exceeding 100 m in depth. Results are com­ pared with those reported in the literature for Geotaxis, or gravity orientation, is defined shallow-water species whose larvae are re­ as oriented movement in the vertical plane tained in shallow water and for oceanic spe­ in the absence of other environmental cues cies whose larvae are distributed in waters of (Fraenkel and Gunn 1961). Two methods substantial depth. were employed to measure geotaxis in H. oregonensis. The first method involved recording the response of individual larvae. A larva was MATERIALS AND METHODS pipetted into a test tube (150 mm long by 15 Experimental Animals mm diam.) filled with seawater of either 25 ppt S or 30 ppt S. The test tube was sealed Ovigerous H. oregonensis were collected and placed in the horizontal position on a from the intertidal zone at the Shannon Point ringstand, with a rotating clamp. The larva Marine Center near Anacortes, Washington. was retained in this position for 75 sec in the Adult crabs were held in large glass bowls dark (Forward 1985). The tube was then containing filtered seawater at 30 parts per rotated 90° to the vertical position and the thousand (ppt) salinity (S) and 15°C, until individual was monitored for movement in larvae hatched. Larvae from three broods the vertical plane for the first 10 sec. Ifa larva were used in the experiment, with larvae moved upward (±22.5° from the vertical from each brood maintained separately. Up­ axis), it was defined as exhibiting negative on hatching, larvae from each brood were geotaxis; ifit moved downward (±22,SO from transferred by pipette to bowls containing the vertical axis), it was defined as showing clean seawater. Each culture bowl contained positive geotaxis. At each salinity, a total 100 larvae. Larvae were transferred daily to of 25 individual measurements were made for clean seawater (30 ppt S; 15°C) and fed newly each of three broods (n = 75). The numbers hatched nauplii of brine shrimp, Artemia sp. responding as negative, positive, or neutral Larvae to be used in the various behavioral are presented as percentages. experiments were drawn randomly from the A second method of testing for geotaxis mass cultures. Larvae used in all experiments involved placing a sample of 10 larvae into a that called for 25 ppt S seawater were placed vertically oriented acrylic observation cham­ in this lower salinity for at least 12 hr before ber (30 cm long by 5 cm diam.), divided the experiment. All experiments were con­ vertically into three sections of equal length. ducted on larvae within 24 hr of hatching. The larvae were introduced carefully by pi­ pette into the middle section after dark-adap­ Buoyancy tation for 75 sec. Distribution oflarvae among the three sections was determined every 5 min Buoyancy was measured on anesthetized for 30 min. A deep red backlight was used to r-vae-that-had-btl~n-{}X-fl0secl-te--seawater-()f-silhouette-thdaTvae-fur-c-o-onttng4'noe"'e"'x"'p"'eri'tI - the appropriate salinity to which a few crystals ment was performed with larvae from each of of magnesium sulfate had been added. The the three broods at each salinity, and the data larvae were then pipetted gently into a vertical were pooled for analysis. cylinder filled with seawater of either 25 ppt or 30 ppt S as appropriate. Descent rates for Barokinesis 50 larvae were measured in both 25 ppt and 30 ppt S by determining the time required for Swimming speed as a function of hydro­ individuals to traverse a 10-cm-Iong distance static pressure was determined according to 258 PACIFIC SCIENCE, Volume 47, July 1993 the method of Kelly et al. (1982). Approxi­ TABLE I mately 25 larvae were placed in the acrylic PERCENTAGE OF INDIVIDUAL LARVAE MOVING UP, observation chamber, and the chamber was DOWN, OR NOT MOVING IN EITHER DIRECTION filled with seawater, sealed, and attached to a (NEUTRAL) IN THREE EXPERIMENTS USING LARVAE FROM closed system in which pressure can be in­ EACH OF THREE BROODS, CONDUCTED AT 30 PPT SALINITY creased. The pressure generator consists of a AND AT 25 PPT SALINITY piston screw pump that develops pressure ppt 25 ppt within a small volume by fluid compression. 30 In these experiments, larvae were subjected to DIRECTION EXPERIMENT NO. EXPERIMENT NO. stepwise increments of0.2 atmospheres (atm), OF MOVEMENT I 2 3 I 2 3 up to a total of 0.8 atm. Larvae were induced to swim along the axis of the horizontally Up 88 96 44 0 32 36 Neutral 12 4 44 8 12 4 oriented chamber toward a dim white light. Down 0 0 12 92 56 60 Individuals were timed as they swam across a 5-cm space marked off in the middle of the chamber. After 10 measurements were made, the pressure was increased by 0.2 atm to the bution determined at 5-min intervals. Shown next increment, and 10 larvae again were are the results at 5, 15, and 30 min. After only timed. The complete series of measurements 5min, a stable distribution was obtained, with was repeated three times at each salinity. For the majority moving to the top section of the each salinity, the mean swimming speed at cylinder. each pressure was calculated and compared Results at 25 ppt S were more equivocal. among pressures. As shown in Table I, initial movement of a majority of individuals was downward, al- though in two of the experiments, approxi­ mately one-third of the larvae did move up­ RESULTS ward. In the experiments using the vertical Buoyancy cylinder, all larvae had positioned themselves in the bottom third ofthe chamber after 5 min Anesthetized larvae were negatively buoy­ and remained there (Figure I).
Recommended publications
  • Looking Beyond the Mortality of Bycatch: Sublethal Effects of Incidental Capture on Marine Animals
    Biological Conservation 171 (2014) 61–72 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Review Looking beyond the mortality of bycatch: sublethal effects of incidental capture on marine animals a, a a,b b a Samantha M. Wilson ⇑, Graham D. Raby , Nicholas J. Burnett , Scott G. Hinch , Steven J. Cooke a Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Sciences, Carleton University, Ottawa, ON, Canada b Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada article info abstract Article history: There is a widely recognized need to understand and reduce the incidental effects of marine fishing on Received 14 August 2013 non-target animals. Previous research on marine bycatch has largely focused on simply quantifying mor- Received in revised form 10 January 2014 tality. However, much less is known about the organism-level sublethal effects, including the potential Accepted 13 January 2014 for behavioural alterations, physiological and energetic costs, and associated reductions in feeding, growth, or reproduction (i.e., fitness) which can occur undetected following escape or release from fishing gear. We reviewed the literature and found 133 marine bycatch papers that included sublethal endpoints Keywords: such as physiological disturbance, behavioural impairment, injury, reflex impairment, and effects on RAMP reproduction,
    [Show full text]
  • Olympia Oyster (Ostrea Lurida)
    COSEWIC Assessment and Status Report on the Olympia Oyster Ostrea lurida in Canada SPECIAL CONCERN 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Olympia Oyster Ostrea lurida in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 56 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 30 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Gillespie, G.E. 2000. COSEWIC status report on the Olympia Oyster Ostrea conchaphila in Canada in COSEWIC assessment and update status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-30 pp. Production note: COSEWIC acknowledges Graham E. Gillespie for writing the provisional status report on the Olympia Oyster, Ostrea lurida, prepared under contract with Environment Canada and Fisheries and Oceans Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim and 2-month interim status reports were overseen by Robert Forsyth and Dr. Gerald Mackie, COSEWIC Molluscs Specialist Subcommittee Co-Chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’huître plate du Pacifique (Ostrea lurida) au Canada.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Substrate Mediates Consumer Control of Salt Marsh Cordgrass on Cape Cod, New England
    Ecology, 90(8), 2009, pp. 2108–2117 Ó 2009 by the Ecological Society of America Substrate mediates consumer control of salt marsh cordgrass on Cape Cod, New England 1 MARK D. BERTNESS, CHRISTINE HOLDREDGE, AND ANDREW H. ALTIERI Department of Ecology and Evolutionary Biology, 80 Waterman Street, Brown University, Providence, Rhode Island 02912 USA Abstract. Cordgrass die-offs in Cape Cod, Massachusetts, USA, salt marshes have challenged the view that the primary production of New England salt marshes is controlled by physical factors. These die-offs have increased dramatically over the last decade and are caused by the common herbivorous marsh crab Sesarma reticulatum, but other factors that control crab impacts remain unclear. We examined the influence of plant nutrient supply and disturbances on Sesarma herbivory by fertilizing plots and creating experimental disturbances, since previous studies have revealed that they mediate the intensity of herbivory in other Western Atlantic marshes. Neither nutrient enrichment nor experimental disturbances affected crab grazing intensity despite their strong effects in other marsh systems. Within and among Cape Cod salt marshes, however, Sesarma burrows are concentrated on peat substrate. Surveys of 10 Cape Cod marshes revealed that burrow density, depth, and complexity are all much higher on peat than on sand or mud substrate, and paralleling these patterns, crab abundance, herbivore pressure, and the expansion of die-off areas are markedly higher on peat than on other substrates. Complementing work hypothesizing that predator release is triggering increased crab herbivory in Cape Cod marshes, these results suggest that cordgrass die-offs are constrained to the peat substrate commonly found on the leading edge of marshes and that the vulnerability of New England salt marshes to crab herbivory and future die-offs may be predictable.
    [Show full text]
  • Life History of the Native Shore Crabs Hemigrapsus Oregonensis And
    3/12/2018 people.oregonstate.edu/~yamadas/crab/ch5.htm Life History of Hemigrapsus oregonensis and Hemigrapsus nudus Objective of study Materials and Methods Results SEX SPECIES TIDE LEVEL SITE Discussion Prediction of the possible impact of Carcinus maenas on the populations of Hemigrapsus oregonensis and Hemigrapsus nudus Life History of the native shore crabs Hemigrapsus oregonensis and Hemigrapsus nudus and their distribution, relative abundance and size frequency distribution at four sites in Yaquina Bay, Oregon. Jennifer Oliver and Anja Schmelter Life History of Hemigrapsus oregonensis and Hemigrapsus nudus Much is known about the life history of the two common intertidal shore crabs Hemigrapsus oregonensis and Hemigrapsus nudus. The following summary was compiled from Batie 1975; Behrens Yamada and Boulding 1996 and 1998; Cohen et. al 1995; Daly 1981; Grosholz and Ruiz 1995; Harms and Seeger 1989; Low 1970; Morris Abbot and Haderlie 1980; Naylor 1962; and Rudy and Rudy 1983. Both of these species are Brachyuran crabs belonging to the family Grapsidae. These crabs can be distinguished from other crabs by their square carapace and eyes, which are set out towards the front corners of their carapace. The characteristic features of Hemigrapsus oregonensis are the dull olive-colored hairs on its legs, and a carapace width ranging up to 34.7 mm for males and 29.1 mm for females. This carapace is colored yellow-green or gray and has a four-lobed anterior margin (Plate 1). H. oregonensis occurs from the high to low intertidal zones of bays and estuaries from Resurrection Bay (Alaska) to Bahia de Todos Santos (Baja California).
    [Show full text]
  • An Invitation to Monitor Georgia's Coastal Wetlands
    An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources).
    [Show full text]
  • The Chinese Mitten Crab Eriocheir Sinensis (Decapoda: Grapsidae)
    The Chinese mitten OCEANOLOGIA, 42 (3), 2000. pp. 375–383. crab Eriocheir sinensis 2000, by Institute of (Decapoda: Grapsidae) Oceanology PAS. from Polish waters* KEYWORDS Catadromous species Eriocheir sinensis Non-indigenous organism Monika Normant Anna Wiszniewska Anna Szaniawska Institute of Oceanography, University of Gdańsk, al. Marszałka J. Piłsudskiego 46, PL–81–378 Gdynia, Poland; e-mail: [email protected] Manuscript received 2 June 2000, reviewed 19 June 2000, accepted 30 June 2000. Abstract The Chinese mitten crab Eriocheir sinensis Milne-Edwards, 1854 is a newcomer to the Baltic Sea. Previous studies have shown that since the 1940s single large specimens of this species have been caught annually in Polish waters. The invasion of the Chinese mitten crab has been reported from many European countries, including Poland, where it is especially abundant in the Odra Estuary. Of 186 specimens captured in Lake Dąbie in August 1998, 45% were females and 55% males. The carapace width of these crabs varied between 53 and 88 mm and the average wet weight was 169 ± 45.3 g. 1. Introduction New species, sometimes from very remote regions, have appeared in recent decades in the Baltic Sea. The introduction of these organisms to the Baltic is primarily the result of human activity, most often during the dumping of ballast water from ships (Ingle 1986). One of these immigrants to the Baltic is the Chinese mitten crab Eriocheir sinensis Milne-Edwards, 1854, so named because of the dense patches of hair on the claws of * The research was supported by grant No. 0915/P04/98/15 from the Polish State Committee for Scientific Research.
    [Show full text]
  • Molecular Phylogeny, Taxonomy, and Evolution of Nonmarine Lineages Within the American Grapsoid Crabs (Crustacea: Brachyura) Christoph D
    Molecular Phylogenetics and Evolution Vol. 15, No. 2, May, pp. 179–190, 2000 doi:10.1006/mpev.1999.0754, available online at http://www.idealibrary.com on Molecular Phylogeny, Taxonomy, and Evolution of Nonmarine Lineages within the American Grapsoid Crabs (Crustacea: Brachyura) Christoph D. Schubart*,§, Jose´ A. Cuesta†, Rudolf Diesel‡, and Darryl L. Felder§ *Fakulta¨tfu¨ r Biologie I: VHF, Universita¨ t Bielefeld, Postfach 100131, 33501 Bielefeld, Germany; †Departamento de Ecologı´a,Facultad de Biologı´a,Universidad de Sevilla, Apdo. 1095, 41080 Sevilla, Spain; ‡Max-Planck-Institut fu¨ r Verhaltensphysiologie, Postfach 1564, 82305 Starnberg, Germany; and §Department of Biology and Laboratory for Crustacean Research, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-2451 Received January 4, 1999; revised November 9, 1999 have attained lifelong independence from the sea (Hart- Grapsoid crabs are best known from the marine noll, 1964; Diesel, 1989; Ng and Tan, 1995; Table 1). intertidal and supratidal. However, some species also The Grapsidae and Gecarcinidae have an almost inhabit shallow subtidal and freshwater habitats. In worldwide distribution, being most predominant and the tropics and subtropics, their distribution even species rich in subtropical and tropical regions. Over- includes mountain streams and tree tops. At present, all, there are 57 grapsid genera with approximately 400 the Grapsoidea consists of the families Grapsidae, recognized species (Schubart and Cuesta, unpubl. data) Gecarcinidae, and Mictyridae, the first being subdi- and 6 gecarcinid genera with 18 species (Tu¨ rkay, 1983; vided into four subfamilies (Grapsinae, Plagusiinae, Tavares, 1991). The Mictyridae consists of a single Sesarminae, and Varuninae). To help resolve phyloge- genus and currently 4 recognized species restricted to netic relationships among these highly adaptive crabs, portions of the mitochondrial genome corresponding the Indo-West Pacific (P.
    [Show full text]
  • A Revision of Neosesarma (Crustacea: Brachyura: Sesarmidae) with the Description of a New Species Peter J.F
    Memoirs of the Queensland Museum | Nature 56 (1) © Queensland Museum PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Director. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qm.qld.gov.au A Queensland Government Project Typeset at the Queensland Museum A revision of Neosesarma (Crustacea: Brachyura: Sesarmidae) with the description of a new species Peter J.F. DAVIE Queensland Museum, PO Box 3300, South Brisbane, Qld 4101, Australia Davie, P.J.F. 2012 02 17. A revision of Neosesarma (Crustacea: Decapoda: Sesarmidae) with the description of a new species. Memoirs of the Queensland Museum – Nature 56(1): 221–233. Brisbane. ISSN 0079–8835. Accepted 25 November 2011. ABSTRACT The Indo-west Pacific mangrove crab genus Neosesarma Serène & Soh, 1970, is revised. A new species, N. hirsutus, is described from northern Australia. The distribution of N. rectipectinatum is extended south to northern Australia and southern Papua. All species can be separated by differences in male claw tuberculation, the length and number of teeth of the pectinated crest on the dorsal surface of the cheliped palm, and the shape of the male first gonopods.
    [Show full text]
  • Larval Development of the Chinese Mitten Crab Eriocheir Sinensis H
    HELGOL,~NDER MEERESUNTERSUCHUNGEN Helgolilnder Meeresunters. 50, 223-252 (1996) Larval development of the Chinese mitten crab Eriocheir sinensis H. Milne-Edwards (Decapoda: Grapsidae) reared in the laboratory M. Montfi 1, K. Anger 2 & C. de Bakker 3 1Fundag~o Universidade do Rio Grande, Base Oceanogr~fica Atl~ntica; 96.200 Rio Grande, RS, Brazil 2Biologische Anstalt Helgoland, Meeresstation; 27483 Helgoland, Germany 3Centro de Biologia Marinha, Universidade Federal do Paran~; 80. 000 Curitiba, PR, Brazil ABSTRACT: Larvae of the Chinese mitten crab Eriocheir sinensis were reared in the laboratory from the time of hatching and through metamorphosis. Development normally consists of a Prezoea, 5 Zoea stages, and a Megalopa. Occasionally, an additional (stage VI) Zoea and, in one case, an additional Megalopa (transitional to the first crab stage) were observed. Detailed morphological descriptions of all larval and the first two juvenile instars are given, and larval morphology is compared with that of two closely related species, Eriocheir japonicus and Eriocheir rectus, descriptions of which have recently become available. The zoeal stages of these species can be distinguished by their different number of aesthetascs and setae on the antennules, and different setation of maxillipeds 1 and 2. The Megalopa shows differences in the shape of the rostrum and again in the morphology of the antennule. These and other morphological differences (mainly in setation and spinulation of the zoeal carapace) between E. sinensis and E. japonicus larvae suggest that they may be very closely related but separate species; this contradicts a recent study of adult morphometrics and molecular genetics (Li et al., 1993), suggesting that they are only varieties of a single species.
    [Show full text]
  • First Record of the Marbled Crab Pachygrapsus Marmoratus
    First record of the marbled crab Pachygrapsus marmoratus (Fabricius, 1787) on the coast of Calvados (Bay of Seine, English Channel) Jean-Philippe Pezy, Jean-Claude Dauvin To cite this version: Jean-Philippe Pezy, Jean-Claude Dauvin. First record of the marbled crab Pachygrapsus marmoratus (Fabricius, 1787) on the coast of Calvados (Bay of Seine, English Channel). Cahiers de Biologie Marine, Station Biologique, 2015, 56 (2), pp.151-154. hal-01540879 HAL Id: hal-01540879 https://hal.archives-ouvertes.fr/hal-01540879 Submitted on 16 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cah. Biol. Mar. (2015) 56 : 151-154 First record of the marbled crab Pachygrapsus marmoratus (Fabricius, 1787) on the coast of Calvados (Bay of Seine, English Channel) Jean-Philippe PEZY 1,2,3 and Jean-Claude DAUVIN 1,2 (1) Normandie Université, France (2) Université de Caen Basse-Normandie, Laboratoire Morphodynamique Continentale et Côtière, UMR M2C, 24 rue des Tilleuls, F-14000 Caen, France (3) CNRS UMR CNRS 6143M2C, 24 rue des Tilleuls, 14000 Caen E-mail: [email protected] Abstract: A unique specimen of the decapod Pachygrapsus marmoratus, the marbled crab, was reported for the first time in August 2014 from the intertidal zone on the Calvados coast (western part of the Bay of Seine, Eastern English Channel).
    [Show full text]
  • Parasites in the Thoracic Ganglion of Pachygrapsus Marmoratus
    Article available at http://www.parasite-journal.org or http://dx.doi.org/10.1051/parasite/2004114425 Pa r a sites in the t h o r a c ic g a n g l io n o f Pachygrapsus m a r m o r a t u s (B r a c h y u r a : G r a p s id a e ) FROM THE COAST OF PORTUGAL KURIS A.M.*. TORCHIN M.E.* & LAFFERTY K.D.** S um m ary: R é su m é : P a r a sites d u g a n g l io n t h o r a c iq u e d e P achygrapsus W e examined 149 marbled shore crabs, Pachygrapsus MARMORATUS (BRACHYURA : GRAPSIDAE) DE LA CÔTE DU PORTUGAL marmoratus, from the coast of Portugal for parasites. In particular, Nous avons examiné 149 crabes marbrés, Pachygrapsus we focused our effort on the crab thoracic ganglion. The thoracic marmoratus, en provenance de la côte du Portugal à la recherche - ganglion is the largest concentration of nervous tissue in a crab de parasites. En particulier, nous avons concentré nos efforts sur le and thus, parasites associated with this organ are well situated to ganglion thoracique de ces crabes. Le ganglion thoracique est la influence host behavior. W e found metacercariae of two plus importante concentration de tissus nerveux chez le crabe et les microphallid trematode species in the thoracic ganglion. W e also parasites présents dans cet organe sont donc à même d'influencer found a microsporan and an apicomplexan associated with the le comportement de l'hôte.
    [Show full text]