Hemigrapsus Nudus Class: Malacostraca Order: Decapoda Section: Brachyura the Purple Shore Crab Family: Varunidae

Total Page:16

File Type:pdf, Size:1020Kb

Hemigrapsus Nudus Class: Malacostraca Order: Decapoda Section: Brachyura the Purple Shore Crab Family: Varunidae Phylum: Arthropoda, Crustacea Hemigrapsus nudus Class: Malacostraca Order: Decapoda Section: Brachyura The purple shore crab Family: Varunidae Taxonomy: The brachyuran family Cephalothorax: Grapsidae, the shore crabs, was a very large Eyes: Eyestalks and eyes of family with several subfamilies and little moderate size with eyes that are at antero- taxonomic scrutiny, until recently. Based on molecular and morphological evidence, lateral angles (Fig. 2). Grapsid species authors (von Sternberg and Cumberlidge apparently have keen vision (Wicksten 2011). 2000; Schubart et al. 2000; de Grave et al. Antennae: 2009; Schubart 2011) elevated all grapsid Mouthparts: The mouth of decapod subfamilies to family level, reducing the crustaceans comprises six pairs of number of species formally within the appendages including one pair of mandibles Grapsidae. Recent molecular evidence has (on either side of the mouth), two pairs of placed Hemigrapsus species within the maxillae and three pairs of maxillipeds. The Varunidae, but this is currently debated and maxillae and maxillipeds attach posterior to some authors still refer to them as members the mouth and extend to cover the mandibles of the Grapsidae sensu lato (Ng et al. 2008; (Ruppert et al. 2004). Wicksten 2011) and others have adopted the Carapace: Flat, smooth, punctate new familial designation (e.g. Kuris et al. (Schmitt 1921) and bears three teeth (two 2007). Besides the higher taxonomic lateral that are posterior to postorbital) classifications, the known specific synonym (Wicksten 2011). Square in shape, with for H. nudus is Pseudograpsus nudus rounded antero-lateral margins (Rathbun (Wicksten 2011), which is not currently used. 1918) and no transverse lines (compare to P. crassipes) (Fig. 1). Posteriorly, carapace is Description flat (Wicksten 2011) (Fig. 1). Size: Carapace 56.2 mm in width and 48 mm Frontal Area: Very slightly rounded in length (Rathbun 1918; Wicksten 2011) (Fig. and without prominent lobes (Fig. 2). 1). An adult male from Coos Bay, was 32 mm Teeth: Two carapace teeth below the in width and weighed 17.5 g (wet weight). orbital tooth, which are lateral, while the last Color: Red, purple, or whitish with chelipeds tooth is small (Fig. 2) (Wicksten 2011). that are red-spotted (compare to H. Pereopods: Naked (without hair) and oregonensis, Plate 21 Kozloff 1993; Kuris et rather short (Schmitt 1921) with short dactyls al. 2007) (Fig. 1). Although coloration is (Fig. 1) (Wicksten 2011). generally species-specific among grapsid Chelipeds: Smooth, equal or almost crabs, nearly white or yellow forms of both equal in size with curved fingers (Wicksten Hemigrapsus species have been reported 2011). Chelipeds stout, mottled above, with (Wicksten 2011). teeth on margins and with small round red General Morphology: The body of decapod spots (Fig. 1). Male with inflated palms and a crustaceans can be divided into the patch of fine hair on inner surface. cephalothorax (fused head and thorax) and Abdomen (Pleon): Females with wide abdomen. They have a large plate-like abdomen and male H. nudus have narrow carapace dorsally, beneath which are five abdomens that exposes the sternum at the pairs of thoracic appendages (see chelipeds base (see Sexual Dimorphism, Fig. 3). and pereopods) and three pairs of Telson & Uropods: maxillipeds (see mouthparts). The abdomen Sexual Dimorphism: Male and female and associated appendages are reduced and brachyuran crabs are easily differentiable. folded ventrally (Decapoda, Kuris et al. 2007). The most conspicuous feature, the abdomen, Hiebert, T.C. 2015. Hemigrapsus nudus. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12710 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to [email protected] is narrow and triangular in males while it is has one lateral tooth, not two (Symons 1964). wide and flap-like in females (Brachyura, The only other, locally occurring grapsid crab, Kuris et al. 2007). Male H. nudus have a Planes cyaneus, is a pelagic species that is narrow abdomen, exposing the sternum at the only found washed ashore on drift logs with base (Fig. 3) and the palm of the male gooseneck barnacles (Kuris et al. 2007). cheliped with a patch of long, fine hair. Rhithropanopeus harrisii, an introduced Females have a wide abdomen, hiding the xanthid (Panopeidae) mud crab, is sometimes sternum (Fig. 3), and only a few isolated found with H. oregonensis and potentially H. bristles on the palm of the cheliped. nudus. It has a slightly convergent sides, strong dorsal ridges on its carapace and three Possible Misidentifications sharp carapace teeth. Hemigrapsus species were formally members of the Grapsidae, a family characterized by Ecological Information the carpus of the third maxilliped not Range: Type locality is Puget Sound, articulating near the anterior merus angle and Washington (Ricketts and Calvin 1971). by lateral mouth margins that are parallel or Known range includes Sitka, Alaska, to Gulf convergent (Wicksten 2011). The genus of California (Rathbun 1918). Uncommon in Hemigrapsus may now a member of the Southern California (Garth and Abbott 1980; family Varunidae (see Taxonomy) Jaffe et al. 1987; Wicksten 2011). characterized by chelae morphology, gaping Local Distribution: Coos, Siletz, and third maxillipeds and setose walking legs (Ng Tillamook Bay estuaries (and probably more et al. 2008). Two Hemigrapsus species occur Oregon estuaries) in rocky, brackish habitats. locally, H. oregonensis and H. nudus. Habitat: Semi-protected and protected rocky Hemigrapsus nudus, the purple shore crab, is coasts and bays. Prefers coarse sand to larger than H. oregonensis, is “naked” (i.e. not gravel substrates overlain with large rock hairy) on its walking legs and has chelipeds cover (Schmitt 1921; Kuris et al. 2007). In with conspicuous red spots. Hemigrapsus salt marshes, but not as commonly nudus lives mostly on the rocky open coast, encountered as H. oregonensis, and in but is also found in salt marshes (Knudsen burrows and under driftwood. Less common 1964). Hemigrapsus oregonensis has been in California salt marshes (Kozloff 1993). called a small, bleached edition of H. nudus Hemigrapsus nudus is common in mid tide (Ricketts and Calvin 1971). The following pool regions (Ricketts and Calvin 1971) and is features are particularly useful in found in areas of swift water and large differentiating the two Hemigrapsus species: boulders (Puget Sound, Knudsen 1964). 1) H. oregonensis has a marked frontal notch Hemigrapsus nudus can be found in more where H. nudus has a shallow depression, 2) exposed situations than H. oregonensis and the lateral spines of H. oregonensis are sharp withstands desiccation better (large and distinctly separated from the side but H. specimens). The two Hemigrapsus species nudus spines are not, 3) The dactyls of do co-occur, but one usually finds one or the walking legs 1–3 are long in H. oregonensis other (Kozloff 1993). and short in H. nudus and 4) the dactyl of the Salinity: Occurs in outer shore full strength fourth walking leg is round in H. oregonensis seawater, brackish and hyper-saline and flat in H. nudus (Kuris et al. 2007). The (estuarine marsh) waters. Can endure low final varunid crab that occurs locally is the salinities better at high temperatures (Todd introduced Chinese mitten crab, Eriocheir and Dehnel 1960). sinensis, but this species is very large and Temperature: Hemigrapsus nudus easily differentiable from either Hemigrapsus individuals can tolerate temperatures up to species. 33.6˚C but are more tolerant of cold than Pachygrapsus crassipes, a consistent warm temperatures and modify their behavior member of the Grapsidae, is a dark green to regulate body temperature (McGaw 2003). crab with many transverse dark red striations Survival is most poor with low temperature on its legs and carapace (H. oregonensis is combined with low salinity, but smallest smooth), its frontal margin is straight and it Hiebert, T.C. 2015. Hemigrapsus nudus. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. specimens are most resistant to temperature and the production of second brood is rare. extremes (Todd and Dehnel 1960). Embryos are approximately 380 µm in Tidal Level: Strictly littoral (Ricketts and diameter and become 450 µm upon hatching Calvin 1971) and found higher than H. (Jaffe et al. 1987). The reproduction and life- oregonensis, but both species are found from cycle of C. epialti is dependent on and high to low levels (Todd and Dehnel 1960). corresponds to that of its host species. Occurs is the rockweed belt, underneath However, this nemertean is not host specific rocks and is commonly found just below high- (unlike Carcinonemertes errans on Cancer tide level (Monterey, California, Hiatt 1948). magister) and occurs amongst egg masses of Hemigrapsus nudus is often found with other species including Hemigrapsus Pachygrapsus, which extends higher into the oregonensis, Pachygrapsus crassipes (Kuris intertidal and prefers larger rocks. 1993; Roe et al. 2007; Kuris et al. 2007). Associates: Territory overlaps with Larva: Larval development in H. nudus Pachygrapsus crassipes over whom it is proceeds via a series of zoea (five total) and dominant (Hiatt 1948) and occasionally with megalopa stages, each marked by a molt. H. oregonensis. Parasitic castrating isopod, The zoea are planktotrophic and have large Portunion conformis, occurs in perivisceral compound eyes and four spines: one each cavity of some individuals (Garth and Abbott dorsal and rostral and two lateral (see Fig. 32, 1980). Can be host to nemertean Puls 2001; Fig. 54.5, Martin 2014). The Carcinonemertes epialti. Hemigrapsus rostrum and dorsal spines are of equal length nudus, H.
Recommended publications
  • COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
    COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp.
    [Show full text]
  • The Green Crab Invasion: a Global Perspective with Lessons From
    THE GREEN CRAB INVASION: A GLOBAL PERSPECTIVE, WITH LESSONS FROM WASHINGTON STATE by Debora R. Holmes A Thesis: Essay ofDistinction submitted in partial fulfillment of the requirements for the degree Master of Environmental Studies The Evergreen State College September 2001 This Thesis for the Master of Environmental Studies Degree by Debora R. Holmes has been approved for The Evergreen State College by Member of the Faculty 'S"f\: 1 '> 'o I Date For Maria Eloise: may you grow up learning and loving trails and shores ABSTRACT The Green Crab Invasion: A Global Perspective, With Lessons from Washington State Debora R. Holmes The European green crab, Carcinus maenas, has arrived on the shores of Washington State. This recently-introduced exotic species has the potential for great destruction. Green crabs can disperse over large areas and have serious adverse effects on fisheries and aquaculture; their impacts include the possibility of altering the biodiversity of ecosystems. When the green crab was first discovered in Washington State in 1998, the state provided funds to immediately begin monitoring and control efforts in both the Puget Sound region and along Washington's coast. However, there has been debate over whether or not to continue funding for these programs. The European green crab has affected marine and estuarine ecosystems, aquaculture, and fisheries worldwide. It first reached the United States in 1817, when it was accidentally introduced to the east coast. The green crab spread to the U.S. west coast around 1989 or 1990, most likely as larvae in ballast water from ships. It is speculated that during the El Ni:fio winter of 1997-1998, ocean currents transported green crab larvae north to Washington State, where the first crabs were found in the summer of 1998.
    [Show full text]
  • Bibliography-Of-Texas-Speleology
    1. Anonymous. n.d. University of Texas Bulletin No. 4631, pp. 51. 2. Anonymous. 1992. Article on Pendejo Cave. Washington Post, 10 February 1992. 3. Anonymous. 1992. Article on bats. Science News, 8 February 1992. 4. Anonymous. 2000. National Geographic, 2000 (December). 5. Anonymous. n.d. Believe odd Texas caves is Confederate mine; big rock door may be clue to mystery. 6. Anonymous. n.d. The big dig. Fault Zone, 4:8. 7. Anonymous. n.d. Cannibals roam Texas cave. Georgetown (?). 8. Anonymous. n.d. Cavern under highway is plugged by road crew. Source unknown. 9. Anonymous. n.d. Caverns of Sonora: Better Interiors. Olde Mill Publ. Co., West Texas Educators Credit Union. 10. Anonymous. n.d. Crawling, swimming spelunkers discover new rooms of cave. Austin(?). Source unknown. 11. Anonymous. n.d. Discovery (of a sort) in Airmen's Cave. Fault Zone, 5:16. 12. Anonymous. n.d. Footnotes. Fault Zone, 5:13. 13. Anonymous. n.d. Help the blind... that is, the Texas blind salamander [Brochure]: Texas Nature Conservancy. 2 pp. 14. Anonymous. n.d. Honey Creek map. Fault Zone, 4:2. 15. Anonymous. n.d. The Langtry mini-project. Fault Zone, 5:3-5. 16. Anonymous. n.d. Neuville or Gunnels Cave. http:// www.shelbycountytexashistory.org/neuvillecave.htm [accessed 9 May 2008]. 17. Anonymous. n.d. Palo Duro Canyon State Scenic Park. Austin: Texas Parks and Wildlife Department. 2 pp. 18. Anonymous. n.d. Texas blind salamander (Typhlomolge rathbuni). Mississippi Underground Dispatch, 3(9):8. 19. Anonymous. n.d. The TSA at Cascade Caverns. Fault Zone, 4:1-3, 7-8.
    [Show full text]
  • Marine Invertebrate Field Guide
    Marine Invertebrate Field Guide Contents ANEMONES ....................................................................................................................................................................................... 2 AGGREGATING ANEMONE (ANTHOPLEURA ELEGANTISSIMA) ............................................................................................................................... 2 BROODING ANEMONE (EPIACTIS PROLIFERA) ................................................................................................................................................... 2 CHRISTMAS ANEMONE (URTICINA CRASSICORNIS) ............................................................................................................................................ 3 PLUMOSE ANEMONE (METRIDIUM SENILE) ..................................................................................................................................................... 3 BARNACLES ....................................................................................................................................................................................... 4 ACORN BARNACLE (BALANUS GLANDULA) ....................................................................................................................................................... 4 HAYSTACK BARNACLE (SEMIBALANUS CARIOSUS) .............................................................................................................................................. 4 CHITONS ...........................................................................................................................................................................................
    [Show full text]
  • Download Download
    Italian Journal of Food Safety 2020; volume 9:8774 Risks and critical issues related Chinese Mitten Crab. The presence of E. to the discovery on the market sinensis in Europe is reported since the early Correspondence: Federica Maria Sessa, Food 1900s plausibly due to the accidental Chain studio associato, via G. Guinizzelli 24, of unauthorized live alien species introduction of zoea larval stages through 50133, Firenze (FI), Italy. on the Italian territory: Chinese ballast waters (Bentley, 2011; Hopkins, Tel: +39 3495456481. E-mail: [email protected] crab (Eriocheir sinensis) 2001). The first survey was recorded in Germany in 1912, in the Aller river near the Key words: Eriocheir sinensis; Chinese city of Rethem and in 1914 in the Elbe river Federica Maria Sessa,1 Luca Cianti,2 Mitten Crab; invasive species; official control; (Hymanson et al., 1999). More recently, risks and critical issues. Nicola Brogelli,1 Lara Tinacci,3 3 alternatives routes for the introduction of the Alessandra Guidi species within the European borders has Contributions: The authors contributed equally. 1Food Chain Studio associato, Firenze; been hypothesized as consequence of its Conflicts of interest: The authors declare no 2Azienda USL Toscana Centro, Firenze; import for food purpose generally related to conflict of interest. 3Dipartimento di Scienze Veterinarie, Asian cuisine specialties (Robbins, et al., Università di Pisa, Italy 2003). Funding: none. Indeed, in East and South-East Asia E. sinensis is recognized as one of the most Received for publication: 18 December 2019. commercially valuable crabs and it is Revision received: 6 March 2020. Abstract presented on the market in various forms Accepted for publication: 30 March 2020.
    [Show full text]
  • Looking Beyond the Mortality of Bycatch: Sublethal Effects of Incidental Capture on Marine Animals
    Biological Conservation 171 (2014) 61–72 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Review Looking beyond the mortality of bycatch: sublethal effects of incidental capture on marine animals a, a a,b b a Samantha M. Wilson ⇑, Graham D. Raby , Nicholas J. Burnett , Scott G. Hinch , Steven J. Cooke a Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Sciences, Carleton University, Ottawa, ON, Canada b Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada article info abstract Article history: There is a widely recognized need to understand and reduce the incidental effects of marine fishing on Received 14 August 2013 non-target animals. Previous research on marine bycatch has largely focused on simply quantifying mor- Received in revised form 10 January 2014 tality. However, much less is known about the organism-level sublethal effects, including the potential Accepted 13 January 2014 for behavioural alterations, physiological and energetic costs, and associated reductions in feeding, growth, or reproduction (i.e., fitness) which can occur undetected following escape or release from fishing gear. We reviewed the literature and found 133 marine bycatch papers that included sublethal endpoints Keywords: such as physiological disturbance, behavioural impairment, injury, reflex impairment, and effects on RAMP reproduction,
    [Show full text]
  • Olympia Oyster (Ostrea Lurida)
    COSEWIC Assessment and Status Report on the Olympia Oyster Ostrea lurida in Canada SPECIAL CONCERN 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Olympia Oyster Ostrea lurida in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 56 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 30 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Gillespie, G.E. 2000. COSEWIC status report on the Olympia Oyster Ostrea conchaphila in Canada in COSEWIC assessment and update status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-30 pp. Production note: COSEWIC acknowledges Graham E. Gillespie for writing the provisional status report on the Olympia Oyster, Ostrea lurida, prepared under contract with Environment Canada and Fisheries and Oceans Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim and 2-month interim status reports were overseen by Robert Forsyth and Dr. Gerald Mackie, COSEWIC Molluscs Specialist Subcommittee Co-Chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’huître plate du Pacifique (Ostrea lurida) au Canada.
    [Show full text]
  • A Checklist and Annotated Bibliography of the Subterranean Aquatic Fauna of Texas
    A CHECKLIST AND ANNOTATED BIBLIOGRAPHY OF THE SUBTERRANEAN AQUATIC FAUNA OF TEXAS JAMES R. REDDELL and ROBERT W. MITCHELL Texas Technological College WATER RESOURCES \ CENTER Lubbock, Texas WRC 69-6 INTERNATIONAL CENTER for ARID and August 1969 SEMI-ARID LAND STUDIES A CHECKLIST AND ANNOTATED BIBLIOGRAPHY OF THE SUBTERRANEAN AQUATIC FAUNA OF TEXAS James R. Reddell and Robert W. Mitchell Department of Biology Texas Tech University Lubbock, Texas INTRODUCTION In view of the ever-increasing interest in all studies relating to the water resources of Texas, we have found it timely to prepare this guide to the fauna and biological literature of our subterranean waters. The value of such a guide has already been demonstrated by Clark (1966) in his "Publications, Personnel, and Government Organizations Related to the Limnology, Aquatic Biology and Ichthyology of the Inland Waters of Texas". This publication dea ls primarily with inland surface waters, however, barely touching upon the now rather extensive literature which has accumulated on the biology of our subterranean waters. To state a n obvious fact, it is imperative that our underground waters receive the attention due them. They are one of our most important resources. Those subterranean waters for which biological data exi st are very un­ equally distributed in the state. The best known are those which are acces­ sible to collection and study via the entrances of caves. Even in cavernous regions there exist inaccessible deep aquifers which have yielded little in­ formation as yet. Biological data from the underground waters of non-cave rn­ ous areas are virtually non-existant.
    [Show full text]
  • Burrowing Activity of the Neohelice Granulata Crab (Brachyura, Varunidae) in Southwest Atlantic Intertidal Areas
    Ciencias Marinas (2018), 44(3): 155–167 http://dx.doi.org/10.7773/cm.v44i3.2851 Burrowing activity of the Neohelice granulata crab (Brachyura, Varunidae) in southwest Atlantic intertidal areas Actividad cavadora del cangrejo Neohelice granulata (Brachyura, Varunidae) en sitios intermareales del atlántico sudoccidental Sabrina Angeletti1*, Patricia M Cervellini1, Leticia Lescano2,3 1 Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Sur (CONICET-UNS), San Juan 670, 8000-Bahía Blanca, Argentina. 2 Departamento de Geología, Universidad Nacional del Sur, San Juan 670, 8000-Bahía Blanca, Argentina. 3 Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Calle 526 entre 10 y 11, 1900-La Plata, Argentina. * Corresponding author. E-mail: [email protected] A. The burrowing and semiterrestrial crab Neohelice granulata actively and constantly builds its burrows in the intertidal zone of the Bahía Blanca Estuary during low tide. Differences in structural morphology of N. granulata burrows and burrowing activities in contrasting microhabitats (saltmarsh and mudflat) were analyzed and related to several conditions, such as tide level, substrate type, sediment properties, and population density. In the mudflat the higher density of total burrows in autumn (172 burrows·m–2) was associated with molt timing, and the higher density of active burrows in summer (144 burrows·m–2) was associated with reproductive migration. Sediments from biogenic mounds (removed by crabs) showed higher water content and penetrability than surface sediments (control), suggesting that bioturbation increases the values of these parameters. Grain size distribution profiles and mineralogical composition did not vary between microhabitats or between seasons.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Population Structure of the Recent Invader Hemigrapsus Takanoi and Prey Size Selection on Baltic Sea Mussels
    Aquatic Invasions (2020) Volume 15, Issue 2: 297–317 CORRECTED PROOF Research Article Population structure of the recent invader Hemigrapsus takanoi and prey size selection on Baltic Sea mussels Ola Mohamed Nour1,2,*, Meike Stumpp3, Sonia C. Morón Lugo1,4, Francisco R. Barboza1 and Christian Pansch1 1GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany 2Department of Biology and Geology, Faculty of Education, Alexandria University, 21526 Alexandria, Egypt 3Institute of Zoology, Comparative Immunobiology, Christian-Albrechts University Kiel, 24118 Kiel, Germany 4Departement des Sciences Fondamentales, Universite du Quebec a Chicoutimi 555, Chicoutimi, Quebec G7H 2B 1, Canada Author e-mails: [email protected] (OMN), [email protected] (MS), [email protected] (SCML), [email protected] (FRB), [email protected] (CP) *Corresponding author Citation: Nour OM, Stumpp M, Morón Lugo SC, Barboza FR, Pansch C (2020) Abstract Population structure of the recent invader Hemigrapsus takanoi and prey size The shore crab Hemigrapsus takanoi Asakura and Watanabe, 2005, native to the selection on Baltic Sea mussels. Aquatic Northwest Pacific, was recorded in European waters about 25 years ago and it was Invasions 15(2): 297–317, https://doi.org/ first found in the Baltic Sea in 2014. Information on population structure of 10.3391/ai.2020.15.2.06 invaders and their new niche is needed in order to understand their biological Received: 16 April 2019 impact. Over one year, we assessed temporal changes in relative abundance, size-class Accepted: 9 November 2019 and sex ratio, as well as breeding season of H. takanoi in the Kiel Fjord (Western Published: 31 January 2020 Baltic Sea).
    [Show full text]
  • Protection Island Aquatic Reserve Management Plan
    S C C E Protection Island O R U Aquatic Reserve Management Plan November 2010 E E S R A L A U U R A T T A N Acknowledgements Aquatic Reserves Technical Advisory Committee, 2009 Brie Van Cleve, Nearshore and Ocean Washington State Department of Policy Analyst, Washington State Natural Resources Department of Fish and Wildlife Peter Goldmark, Commissioner of Dr. Alison Styring, Professor of Public Lands Biological Sciences, The Evergreen Bridget Moran, Deputy Supervisory, State College Aquatic Lands Dr. Joanna Smith, Marine Ecologist, The Nature Conservancy Orca Straits District John Floberg, Vice President of David Roberts, Assistant Division Stewardship and Conservation Manager Planning, Cascade Land Conservancy Brady Scott, District Manager Phil Bloch, Biologist, Washington State Department of Transportation Aquatic Resources Division Kristin Swenddal, Aquatic Resources Protection Island Aquatic Reserve Division Manager Planning Advisory Committee, 2010 Michal Rechner, Assistant Division Betty Bookheim, Natural Resource Manager, Policy and Planning Scientist Kyle Murphy, Aquatic Reserves Bob Boekelheide, Dungeness River Program Manager Audubon Center Betty Bookheim, Environmental Darcy McNamara, Jefferson County Specialist, Beach Watchers Michael Grilliot, Marc Hershman Marine Dave Peeler, People for Puget Sound Policy Fellow, Aquatic Reserves David Freed, Clallam County Program Associate MRC/Beach Watchers David Gluckman, Admiralty Audubon GIS and Mapping Jeromy Sullivan, Port Gamble S’Klallam Michael Grilliot, Marc Hershman Marine
    [Show full text]