Inaugural-Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Inaugural-Dissertation INAUGURAL-DISSERTATION zur Erlangung der Doktorwürde der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg vorgelegt von Bärbel Großmann aus Bad Kreuznach Tag der mündlichen Prüfung: Strukturelle und funktionale Analyse des genomischen DAZL1-Locus in Mammalia Gutachter: Prof. Dr. Werner Buselmaier Prof. Dr. Michael Wink Die vorliegende Arbeit wurde von Januar 1998 bis März 2002 unter Anleitung von Herrn PD Dr. rer. nat. P. H. Vogt in der Fachgruppe „Reproduktionsgenetik“ am Institut für Humangenetik der Universität Heidelberg angefertigt. Danksagung Herrn PD Dr. P.H. Vogt danke ich für die Überlassung des Themas und die fachliche Betreuung. Mein besonderer Dank gilt Herrn Prof. Dr. W. Buselmaier für die Übernahme des Erstgutachtens. Ebenso gilt mein besonderer Dank Herrn Prof. Dr. Michael Wink für die Übernahme der Funktion des Zweitgutachters. Herrn Dr. Hager und seinem Team danke ich für die Durchführung der cytogenetischen Studien. Bei Herrn Prof. Strowitzki von der Abteilung Gynäkologische Endokrinologie und Reproduktionsmedizin der Universität Heidelberg bedanke ich mich für die Kooperation bei der DAZL1-Mutataionsanalyse bei POF-Patientinnen und bei Herrn Prof. Fryns aus der Abteilung Humangenetik des Fachbereichs Humanbiologie der Universität Leuven für die Bereitstellung von Patientenmaterial. Ganz besonders möchte ich mich bei den Mitarbeitern der „Arbeitsgruppe Vogt“ bedanken, die mir fachlich zur Seite gestanden haben und für eine nette und angenehme Atmosphäre gesorgt haben. Den Mitarbeitern der anderen Arbeitsgruppen des Instituts für Humangenetik danke ich für ihre Hilfsbereitschaft und die gute Zusammenarbeit. Bei Mostafa Kabiri und meinem Sohn Manusch bedanke ich mich für die Geduld, die sie aufbringen mussten. Zuletzt möchte ich mich bei meiner Familie bedanken, die mich immer bedingungslos unterstützt hat. In jeder Antwort kann man eine neue Frage finden. Jiddische Spruchweisheit Inhaltsverzeichnis _______________________________________________________________ Inhalt Seite 1. Einleitung 1 1.1 Der Gametogeneselocus DAZL1 1 1.1.1 DAZL1-Homologe beim Menschen 2 1.1.1.1 Die DAZ-Genfamilie auf dem humanen Y-Chromosom 2 1.1.1.2 Das humane BOULE-Gen auf Chromosom 2 4 1.1.2 Das Dazl1-Gen der Maus 5 1.1.3 DAZL1-Homologe in Xenopus und Zebrafisch 6 1.1.4 Evolution der DAZL1-Genfamilie 7 1.2 Keimbahnspezifische Genregulation 9 1.3 Genomische Transpositionsmechanismen in Primaten: die THE- Sequenzfamilie 11 1.4 DAZL1 und POF-Syndrom 12 1.5 Zielsetzung 14 2. Material 15 2.1 Untersuchungsmaterial 15 2.1.1 Patientenmaterial 15 2.1.2 Genomische DNA-Klone 15 2.1.2.1 Cosmid-Library von Callithrix jacchus 15 2.1.2.2 Cosmid-Library vom Gibbon (Hylobates klossi) 16 2.1.2.3 BAC-Klone vom Rind (Bos taurus) 16 2.1.2.4 BAC-Klone von der Maus (Mus musculus) 16 2.1.2.5 PAC-Klone von der Maus (Mus musculus) 17 2.1.2.6 Humane PAC-Klone 17 2.1.2.7 Humane BAC-Klone 18 2.2 Bakterienstämme 18 2.3 Vektoren 19 2.3.1 Plasmide 19 2.3.1.1 pBluescript SK (+) von Stratagene: 19 2.3.1.2 pCR®2.1-TOPO (Invitrogen, TOPOTM TA Cloning) 20 2.3.2 Cosmid-Vektoren 20 2.3.2.1 Lawrist 7 20 I Inhaltsverzeichnis _______________________________________________________________ 2.3.3 BAC-Vektor 21 2.3.4 PAC-Vektoren 21 2.3.4.1 PAC-Vektor pCYPAC2 21 2.3.4.2 PAC-Vektor pPAC4 22 2.4 Enzyme 22 2.4.1 Restriktionsendonukleasen 22 2.4.2 Sonstige Enzyme 22 2.5 Nukleinsäuren 23 2.5.1 Längenmarker für die Agarosegelelektrophprese 23 2.5.2 Nukleotide 24 2.5.3 Oligonukleotide 24 2.5.4 Sonstige Nukleinsäuren 26 2.6 Antibiotika 26 2.7 Antikörper, Farbstoffe und Antifading 26 2.8 Software und Datenbanken zur „in silico“-Sequenzanalyse 26 2.9 Filmmaterial 27 2.9.1 Fotographie 27 2.9.2 Autoradiographie 27 2.10 Kits 27 2.11 Geräte 28 2.12 Nährmedien und Zusätze 28 2.12.1 Medien für die Bakterienkultivierung 28 2.13 Puffer und Lösungen 29 2.13.1 Lösungen für die Agarose-Gelelektrophosese 29 2.13.2 Puffer und Lösungen für Southern-Blots 29 2.13.3 Puffer und Lösungen für RNA-Gele 30 2.13.4 Puffer und Lösungen für die radioaktive Hybridisierung 30 2.13.5 Puffer und Lösungen für die nicht radioaktive Hybridisierung mit Digoxigenin 31 2.13.6 Puffer und Lösungen für Sequenziergele 31 2.13.7 Puffer und Lösungen für Plasmidpräparationen 31 2.13.8 Puffer und Lösungen für die Präparation genomischer DNA aus Blut 32 2.13.9 Puffer und Lösungen für FISH 32 2.13.10 Puffer und Lösungen für die TMHA 33 II Inhaltsverzeichnis _______________________________________________________________ 3. Methoden 3.1 Mikrobiologische Techniken 34 3.1.1 Kultivierung von Bakterien auf Agarplatten 34 3.1.2 Kultivierung von Bakterien in Flüssigmedien 34 3.1.2.1 Photometrische Bestimmung der Bakteriendichte 34 3.1.3 Langzeitlagerung von Bakterien in Form von Glycerinstocks 34 3.2 Nukleinsäurepräparationen 35 3.2.1 DNA-Isolierung aus Blut 35 3.2.2 Isolierung von RNA aus Hodengewebe 35 3.2.3 Isolierung von RNA aus Blut 36 3.2.4 Isolierung von Plasmid-DNA 36 3.2.4.1 Plasmid-DNA-Aufreinigung über Silikagel-Säulen 37 3.2.4.1.1 Mini-Präparation 37 3.2.4.1.2 Maxi-Präparation 38 3.2.4.1.3 Präparation von BAC- und PAC-DNA 38 3.2.4.1.4 Alternatives Protokoll zur Isolierung von PAC-DNA 40 3.3 Agarose-Gelelektrophorese 41 3.3.1 Fragmentlängenbestimmung 42 3.3.2 Formaldehyd-Agarosegele für die RNA-Analyse 43 3.4 PCR (Polymerase-Kettenreaktion) 44 3.4.1 Berechnung der „Annealing-Temperatur“ 45 3.4.2 Standard-PCR-Ansatz: und Programm 45 3.5 Sequenzierung von DNA mit dem A.L.F. Express DNA Sequenzierer 46 3.6 Southern-Blot 48 3.6.1 Kapillar-DNA-Blot nach Southern 48 3.6.2 Bidirektionaler Blot (Sandwich-Blot) 50 3.6.3 Vakuum-Blot 50 3.7 Hybridisierungsverfahren 51 3.7.1 Radioaktive Markierung einer Sonde mit _-32-P-dCTP 51 3.7.1.1 Random-Priming 51 3.7.1.2 Markierung durch PCR 52 3.7.1.3 Aufreinigung radioaktiv markierter DNA-Sonden 52 3.7.1.4 Denaturierung der Sonde 53 3.7.1.5 Hybridisierung von Nukleinsäure-Blots 53 III Inhaltsverzeichnis _______________________________________________________________ 3.7.2 Nicht-radioaktive Hybridisierung mit dem Digoxigenin-System 53 3.7.2.1 Markierung der Sonde 53 3.7.2.1.1 DIG-Labelling durch Random Priming 54 3.7.2.1.2 DIG-Labelling mit Hilfe von PCR 55 3.7.2.2 DNA-Hybridisierung mit Digoxigenin-markierten DNA-Sonden 56 3.7.2.2.1 Hybridisierung in Hybridisierungslösung 56 3.7.2.2.2. Hybridisierung in DIG Easy Hyb 56 3.7.2.3 Stringenzwaschen 57 3.7.2.4 Detektion 57 3.7.3 Fluoreszenz-in-situ-Hybridisierung (FISH) auf Metaphase- Chromosomen 58 3.7.3.1 Herstellung von Chromosomenpräparaten aus Blut 59 3.7.3.2 Vorbehandlung der Chromosomenpräparate 60 3.7.3.3. Markierung der FISH-DNA-Sonden durch „Nick-Translation“ 61 3.7.3.4 Hybridisierung 62 3.7.3.5 Denaturierung der Chromosomenpräparate 62 3.7.3.6 Aufarbeitung der Proben 62 3.7.3.7 Detektion der FISH-Signale und Gegenfärbung der Chromosomen 63 3.7.3.8 Gegenfärbung der Chromosomen mit DAPI 64 3.7.3.9 Fluoreszenzmikroskopie und Bildbearbeitung 64 3.8 Mutationsscreening mit TMHA 65 3.8.1 Prinzip des WAVETM-Systems 66 3.8.2 Auswahl der Primer und PCR 67 3.8.3 Protokoll für die PCR 68 3.9 SNP-Analyse nach dem ARMS-Prinzip 69 3.9.1 Chi-Quadrat-Test 69 3.10 Screenen von auf Filter gespotteten Genbanken 70 3.11 Screening von BAC- bzw. PAC-Bibliotheken des RZPD mittels PCR 72 4. Ergebnisse 74 4.1 Strukturelle Analyse des DAZL1-Locus 74 4.1.1 Isolierung von genomischen DAZL1-Klonen 74 4.1.1.1 Humane DAZ- und DAZL1-Klone 74 4.1.1.1.1 Entstehung einer 2,2 kb-Insertion im DAZ-Locus von Primaten 83 4.1.1.1.2 Humane DAZL1 BAC-und PAC-Klone 85 IV Inhaltsverzeichnis _______________________________________________________________ 4.1.1.2 Genomische DAZL1-Klone von Mammalia 87 4.1.1.2.1 Hylobates klossi 87 4.1.1.2.2 Callithrix jacchus 87 4.1.1.2.3 Genomische Dazl1-Klone von der Maus 88 4.1.1.2.4 Genomische Dazl1-Klone vom Rind 89 4.2 Die genomische Struktur des DAZL1-Locus 89 4.2.1 Konservierte Elemente im genomischen DAZL1-Locus 96 4.3 In silico-Analyse der 5´-Upstream-Region von DAZL1 auf potentielle Promotorfunktion 100 4.4 Die 3´- untranslatierte Region des humanen DAZL1-Gens 106 4.5 Molekulare Analyse der DAZL1-Transposition 109 4.5.1 Identifizierung der ersten DAZ-Genkopie 114 4.5.2 Vergleich der Exon-Intron-Mutationsraten zwischen DAZL1 und DAZ2 115 4.6 Fluoreszenz-in-situ-Hybridisierung (FISH) von CosCaja-DAZL1 auf Metaphase-Chromosomen von Callithrix jacchus 118 4.7 DAZL1-Mutationsanalyse 120 4.7.1 DAZL1-Deletionsanalyse mittels Fluoreszenz in situ Hybridisierung (FISH) 120 4.7.2 DAZL1-Mutationsanalyse in POF-Patientinnen auf RNA-Ebene 124 4.7.3 DAZL1-Mutationsanalyse an POF-Patienninen auf DNA- Sequenzebene 127 4.7.3.1 Mutationsanalyse von Exon 3 127 4.7.3.1.1 Primer und Bedingungen für die Mutationsanalyse von Exon 3 127 4.7.3.1.2 Ergebnisse der TMHA für Exon 3 130 4.7.2.1.3 Ergebnis der Exon 3- Sequenzanalyse 131 4.7.3.2 Mutationsanalyse von Exon 5 und 6 132 4.7.3.2.1 Primer und Bedingungen für die Mutationsanalyse von Exon 5 und 6 132 4.7.3.2.2 Ergebnisse der TMHA für Exon 5 und 6 134 4.7.3.2.3 Ergebnis der Sequenzanalyse von Exon 5 und 6 136 4.7.3.3 Mutationsanalyse von Exon 9 137 4.7.3.3.1 Primer und Bedingungen für die Mutationsanalyse von Exon 9 137 4.7.3.3.2 Ergebnisse der TMHA für Exon 9 139 4.7.3.3.3 Ergebnis der Exon 9-Sequenzanalyse 140 4.8 SNP-Analyse 141 4.8.1 SNP Nr.
Recommended publications
  • Rabbit Anti-DAZAP1/FITC Conjugated Antibody-SL14200R-FITC
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-DAZAP1/FITC Conjugated antibody SL14200R-FITC Product Name: Anti-DAZAP1/FITC Chinese Name: FITC标记的无精症缺失相关蛋白1抗体 DAZ associated protein 1; DAZ-associated protein 1; Dazap1; DAZP1_HUMAN; Alias: Deleted in azoospermia associated protein 1; Deleted in azoospermia-associated protein 1. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Chicken,Dog,Pig,Cow,Horse,Sheep, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 43kDa Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human DAZAP1 Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01Mwww.sunlongbiotech.com TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: In mammals, the Y chromosome directs the development of the testes and plays an important role in spermatogenesis. A high percentage of infertile men have deletions that map to regions of the Y chromosome. The DAZ (deleted in azoospermia) gene Product Detail: cluster maps to the AZFc region of the Y chromosome and is deleted in many azoospermic and severely oligospermic men.
    [Show full text]
  • Rashid Thesis 2015
    Protein Profile and Directed Gene Expression of Developing C2C12 cells By Susan Rashid Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science In the Biological Sciences Program YOUNGSTOWN STATE UNIVERSITY August 3, 2015 Protein Profile and Directed Gene Expression of Developing C2C12 cells Susan Rashid I hereby release this thesis to the public. I understand that this will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: ___________________________________________________ Susan Rashid, Student Date Approvals: ___________________________________________________ Dr. Gary Walker, Thesis Advisor 'ate ___________________________________________________ Dr. Jonathan Caguiat, Committee Member Date ___________________________________________________ Dr. David Asch, Committee Member Date ___________________________________________________ Dr. Sal Sanders, Associate Dean, Graduate Studies Date ABSTRACT Myogenesis is a tightly regulated process resulting in unique structures called myotubes or myofibers, which compose skeletal muscle. Myotubes are multi-nucleated fibers containing a functional unit composed of cytoskeletal proteins called the sarcomere. The specific arrangement of these proteins in the sarcomere works to contract and relax muscles. During embryonic and post-embryonic development, fluctuations in expression of growth factors throughout the program account for the dramatic structural changes from cell to mature muscle fiber. In vivo, these growth factors are strictly spatiotemporally regulated according to a ‘myogenic program.’ In order to assess the dynamics of protein expression throughout this program, we conducted a time course study using the mouse myoblast cell line C2C12, in which cells were allowed to differentiate and insoluble protein fractions were collected at seven time points.
    [Show full text]
  • Molecularly Imprinted Polymers for the Analysis of Protein Phosphorylation and the Role of Htra2/Omi Protein in Parkinson's Disease
    Molecularly Imprinted Polymers for the Analysis of Protein Phosphorylation and the Role of HtrA2/Omi Protein in Parkinson's Disease by Jing Chen Dissertation Submitted to the Faculty of Chemistry and Biochemistry In Candidacy for the Degree of Doctor Rerum Naturalium (Dr. rer. nat) Accomplished at Medizinisches Proteom-Center Ruhr-Universität Bochum, Germany 03. 2015, Bochum Statement in Lieu of Oath I hereby declare that I have accomplished the thesis independently and did not submit to any other faculty or refer to more than the publications listed in the references. The digital figures contain only original data and no modification was added. There are altogether 5 identical copies of my dissertation. __________________________ Jing Chen I Referee: Prof. Dr. Katrin Marcus Co-referee: Dr. Dirk Wolters II Acknowledgement I would like to express my deep and sincere gratitude to Prof. Dr. Katrin Marcus, director of the Medizinische Proteom-Center, for her friendly invitation to the working group, for the great opportunity working in the interesting research field, for her dedication in supervising of my project execution and her unconditional help at the end of my Ph.D. I am very grateful to Dr. Dirk Wolters for his kind acceptance of attending and co- judging my dissertation. I owe my sincere gratitude to Dr. Stefan Helling, for his outstanding mentoring to this work. His valuable advice is deciding. Hadn’t for his endeavor in discussing and clearing my confusion at all times, I wouldn’t have managed to accomplish the work. I know Prof. Dr. Börje Sellergren, my collaboration partner at biomedical science in Malmö University, Sweden the longest.
    [Show full text]
  • Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller Or Filler for Male (In)Fertility?
    Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology Volume 2010, Article ID 936569, 18 pages doi:10.1155/2010/936569 Review Article Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? Paulo Navarro-Costa,1, 2, 3 Carlos E. Plancha,2 and Joao˜ Gonc¸alves1 1 Departamento de Gen´etica, Instituto Nacional de Saude´ Dr. Ricardo Jorge, 1649-016 Lisboa, Portugal 2 Faculdade de Medicina de Lisboa, Instituto de Histologia e Biologia do Desenvolvimento, 1649-028 Lisboa, Portugal 3 Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, 1649-028 Lisboa, Portugal Correspondence should be addressed to Paulo Navarro-Costa, [email protected] Received 17 December 2009; Accepted 23 April 2010 Academic Editor: Brynn Levy Copyright © 2010 Paulo Navarro-Costa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The azoospermia factor (AZF) regions consist of three genetic domains in the long arm of the human Y chromosome referred to as AZFa, AZFb and AZFc. These are of importance for male fertility since they are home to genes required for spermatogenesis. In this paper a comprehensive analysis of AZF structure and gene content will be undertaken. Particular care will be given to the molecular mechanisms underlying the spermatogenic impairment phenotypes associated to AZF deletions. Analysis of the 14 different AZF genes or gene families argues for the existence of functional asymmetries between the determinants; while some are prominent players in spermatogenesis, others seem to modulate more subtly the program.
    [Show full text]
  • Table S3a Table
    Table S3a C2 KEGG Geneset Genesets enriched and upregulated in responders (FDR <0.25) Genesets enriched and upregulated in non-responders (FDR <0.25) HSA04610_COMPLEMENT_AND_COAGULATION_CASCADES HSA00970_AMINOACYL_TRNA_BIOSYNTHESIS HSA04640_HEMATOPOIETIC_CELL_LINEAGE HSA05050_DENTATORUBROPALLIDOLUYSIAN_ATROPHY HSA04060_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION HSA04514_CELL_ADHESION_MOLECULES HSA04650_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY HSA04630_JAK_STAT_SIGNALING_PATHWAY HSA03320_PPAR_SIGNALING_PATHWAY HSA04080_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION HSA00980_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 HSA00071_FATTY_ACID_METABOLISM HSA04660_T_CELL_RECEPTOR_SIGNALING_PATHWAY HSA04612_ANTIGEN_PROCESSING_AND_PRESENTATION HSA04662_B_CELL_RECEPTOR_SIGNALING_PATHWAY HSA04920_ADIPOCYTOKINE_SIGNALING_PATHWAY HSA00120_BILE_ACID_BIOSYNTHESIS HSA04670_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION HSA00641_3_CHLOROACRYLIC_ACID_DEGRADATION HSA04020_CALCIUM_SIGNALING_PATHWAY HSA04940_TYPE_I_DIABETES_MELLITUS HSA04512_ECM_RECEPTOR_INTERACTION HSA00010_GLYCOLYSIS_AND_GLUCONEOGENESIS HSA02010_ABC_TRANSPORTERS_GENERAL HSA04664_FC_EPSILON_RI_SIGNALING_PATHWAY HSA04710_CIRCADIAN_RHYTHM HSA04510_FOCAL_ADHESION HSA04810_REGULATION_OF_ACTIN_CYTOSKELETON HSA00410_BETA_ALANINE_METABOLISM HSA01040_POLYUNSATURATED_FATTY_ACID_BIOSYNTHESIS HSA00532_CHONDROITIN_SULFATE_BIOSYNTHESIS HSA04620_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY HSA04010_MAPK_SIGNALING_PATHWAY HSA00561_GLYCEROLIPID_METABOLISM HSA00053_ASCORBATE_AND_ALDARATE_METABOLISM HSA00590_ARACHIDONIC_ACID_METABOLISM
    [Show full text]
  • Accurate Prediction of Kinase-Substrate Networks Using
    bioRxiv preprint doi: https://doi.org/10.1101/865055; this version posted December 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Accurate Prediction of Kinase-Substrate Networks Using Knowledge Graphs V´ıtNov´aˇcek1∗+, Gavin McGauran3, David Matallanas3, Adri´anVallejo Blanco3,4, Piero Conca2, Emir Mu~noz1,2, Luca Costabello2, Kamalesh Kanakaraj1, Zeeshan Nawaz1, Sameh K. Mohamed1, Pierre-Yves Vandenbussche2, Colm Ryan3, Walter Kolch3,5,6, Dirk Fey3,6∗ 1Data Science Institute, National University of Ireland Galway, Ireland 2Fujitsu Ireland Ltd., Co. Dublin, Ireland 3Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland 4Department of Oncology, Universidad de Navarra, Pamplona, Spain 5Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland 6School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland ∗ Corresponding authors ([email protected], [email protected]). + Lead author. 1 bioRxiv preprint doi: https://doi.org/10.1101/865055; this version posted December 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Phosphorylation of specific substrates by protein kinases is a key control mechanism for vital cell-fate decisions and other cellular pro- cesses. However, discovering specific kinase-substrate relationships is time-consuming and often rather serendipitous.
    [Show full text]
  • Hormone and Inhibitor Treatment T47DM Cells Were Used for All Experiments Unless Otherwise Stated
    Extended Data Extended Materials Methods Cell culture; hormone and inhibitor treatment T47DM cells were used for all experiments unless otherwise stated. For hormone induction experiments, cells were grown in RPMI medium without Phenol Red, supplemented with 10% dextran-coated charcoal-treated FBS (DCC/FBS) after 24 h in serum-free conditions; cells were incubated with R5020 (10 nM) or vehicle (ethanol) as described (Vicent et al. 2011). For hormone induction experiments in MCF7 cells a similar procedure was performed; cells were grown in DMEM medium without Phenol Red, supplemented with 10% dextran-coated charcoal-treated FBS (DCC/FBS) after 24 h in serum-free conditions; cells were incubated with Estradiol (10 nM) or vehicle (ethanol). PARG and PARP inhibition were carried out via incubating cells with 5uM TA (tannic acid) or 10uM 3AB (3-amino-benzamide) respectively 1 hour prior to hormone treatment. All transfections were performed using Lipofectamine2000 (Invitrogen) according to manufacturers instructions. PAR-capture ELISA Hormone and or inhibitor treatments were carried out as described, and sample preparation was carried out as follows: At the required time point, cells were washed twice with ice-cold PBS and scraped in lysis buffer (0.4 M NaCl, 1% Triton X-100) plus protease inhibitors. Cell suspensions were then incubated for 30 min on ice with periodic vortexing. The disrupted cell suspension was centrifuged at 10,000g for 10 min at 4°C, and the supernatant was recovered, snap-frozen, and stored at 80°C until required. Ninety-six-well black-walled plates were incubated with 2 ng/mL anti-PAR monoclonal antibody (Trevigen) in 50 mM sodium carbonate (pH 7.6) overnight at 4°C.
    [Show full text]
  • A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
    Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like
    [Show full text]
  • Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller Or Filler for Male (In)Fertility?
    Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology Volume 2010, Article ID 936569, 18 pages doi:10.1155/2010/936569 Review Article Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? Paulo Navarro-Costa,1, 2, 3 Carlos E. Plancha,2 and Joao˜ Gonc¸alves1 1 Departamento de Gen´etica, Instituto Nacional de Saude´ Dr. Ricardo Jorge, 1649-016 Lisboa, Portugal 2 Faculdade de Medicina de Lisboa, Instituto de Histologia e Biologia do Desenvolvimento, 1649-028 Lisboa, Portugal 3 Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, 1649-028 Lisboa, Portugal Correspondence should be addressed to Paulo Navarro-Costa, [email protected] Received 17 December 2009; Accepted 23 April 2010 Academic Editor: Brynn Levy Copyright © 2010 Paulo Navarro-Costa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The azoospermia factor (AZF) regions consist of three genetic domains in the long arm of the human Y chromosome referred to as AZFa, AZFb and AZFc. These are of importance for male fertility since they are home to genes required for spermatogenesis. In this paper a comprehensive analysis of AZF structure and gene content will be undertaken. Particular care will be given to the molecular mechanisms underlying the spermatogenic impairment phenotypes associated to AZF deletions. Analysis of the 14 different AZF genes or gene families argues for the existence of functional asymmetries between the determinants; while some are prominent players in spermatogenesis, others seem to modulate more subtly the program.
    [Show full text]
  • Factors Regulating the Function and Assembly of the Sarcoglycan Complex in Brain
    Factors regulating the function and assembly of the sarcoglycan complex in brain A thesis submitted for the Degree of Doctor of Philosophy at Cardiff University School of Medicine Francesca Carlisle 2016 Supervised by Professor Derek Blake and Professor Anthony Isles Thesis summary Myoclonus dystonia (MD) is a neurogenic movement disorder that can be caused by mutations in the SGCE gene encoding ε-sarcoglycan. ε-sarcoglycan belongs to the sarcoglycan family of cell surface-localised, single-pass transmembrane proteins originally identified in muscle where they form a heterotetrameric subcomplex of the dystrophin- associated glycoprotein complex (DGC). Mutations in the SGCA, SGCB, SGCG and SGCD genes encoding α-, β-, γ- and δ-sarcoglycan cause limb-girdle muscular dystrophy (LGMD). There is no phenotypic overlap between MD and LGMD. LGMD-associated sarcoglycan mutations impair trafficking of the entire sarcoglycan complex to the cell surface and destabilise the DGC in muscle, while MD-associated mutations typically result in loss of ε- sarcoglycan from the cell surface. This suggests cell surface ε-sarcoglycan but not other sarcoglycans is required for normal brain function. To gain insight into ε-sarcoglycan’s function(s) in the brain, immunoaffinity purification was used to identify ε-sarcoglycan- interacting proteins. Ubiquitous and brain-specific ε-sarcoglycan isoforms co-purified with three other sarcoglycans including ζ-sarcoglycan (encoded by SGCZ) from the brain. Incorporation of an LGMD-associated β-sarcoglycan mutant into the brain sarcoglycan complex impaired the formation of the βδ-sarcoglycan core but failed to abrogate the association and trafficking of ε- and ζ-sarcoglycan in heterologous cells. Both ε-sarcoglycan isoforms also co-purified with β-dystroglycan, indicating inclusion in DGC-like complexes.
    [Show full text]
  • Pathogenic Nssnps That Increase the Risks of Cancers Among the Orang
    www.nature.com/scientificreports OPEN Pathogenic nsSNPs that increase the risks of cancers among the Orang Asli and Malays Nurul Ain Khoruddin1,2, Mohd NurFakhruzzaman Noorizhab1,3, Lay Kek Teh1,3, Farida Zuraina Mohd Yusof1,2 & Mohd Zaki Salleh1,3* Single-nucleotide polymorphisms (SNPs) are the most common genetic variations for various complex human diseases, including cancers. Genome-wide association studies (GWAS) have identifed numerous SNPs that increase cancer risks, such as breast cancer, colorectal cancer, and leukemia. These SNPs were cataloged for scientifc use. However, GWAS are often conducted on certain populations in which the Orang Asli and Malays were not included. Therefore, we have developed a bioinformatic pipeline to mine the whole-genome sequence databases of the Orang Asli and Malays to determine the presence of pathogenic SNPs that might increase the risks of cancers among them. Five diferent in silico tools, SIFT, PROVEAN, Poly-Phen-2, Condel, and PANTHER, were used to predict and assess the functional impacts of the SNPs. Out of the 80 cancer-related nsSNPs from the GWAS dataset, 52 nsSNPs were found among the Orang Asli and Malays. They were further analyzed using the bioinformatic pipeline to identify the pathogenic variants. Three nsSNPs; rs1126809 (TYR), rs10936600 (LRRC34), and rs757978 (FARP2), were found as the most damaging cancer pathogenic variants. These mutations alter the protein interface and change the allosteric sites of the respective proteins. As TYR , LRRC34, and FARP2 genes play important roles in numerous cellular processes such as cell proliferation, diferentiation, growth, and cell survival; therefore, any impairment on the protein function could be involved in the development of cancer.
    [Show full text]
  • Ep 2811298 A1
    (19) TZZ __ _T (11) EP 2 811 298 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 10.12.2014 Bulletin 2014/50 G01N 33/53 (2006.01) G01N 33/542 (2006.01) (21) Application number: 13002949.9 (22) Date of filing: 07.06.2013 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Hall, Jonathan GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 4143 Dornach (CH) PL PT RO RS SE SI SK SM TR • Pradere, Ugo Designated Extension States: 8046 Zürich (CH) BA ME •Roos,Martina 8050 Zürich (CH) (71) Applicant: ETH Zurich 8092 Zurich (CH) (54) FRET-Method for identifying a biomolecule-modulating compound (57) The present invention relates to a method for the excitation energy spectrum of the fluorophore accep- identifying a compound modulating an interaction be- tor or the energy spectrum absorbed by the dark quench- tween two biomolecules or two domains of one biomol- er overlap at least partially. Preferably, the first and sec- ecule, the first biomolecule or first domain comprising at ond biomolecules are selected from the group consisting least one fluorophore donor and the second biomolecule of polypeptides, sugars, polynucleotides, polyamines or second domain comprising at least one fluorophore and lipids, and more preferably the first biomolecule is acceptor or a dark quencher, wherein the fluorophore selected from the group consisting of polypeptides inter- donor and fluorophore acceptor or the fluorophore donor acting with polynucleotides and the second biomolecule and dark quencher are spectrally paired such that the is selected from the group consisting of polynucleotides, energy spectrum emitted by.the fluorophore donor and preferably microRNAs (miRNA).
    [Show full text]