Expert Evaluation of Aspects Related to Virtual Reality Systems and Suggestions for Future Studies

Total Page:16

File Type:pdf, Size:1020Kb

Expert Evaluation of Aspects Related to Virtual Reality Systems and Suggestions for Future Studies FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING Aleksi Seppänen Markus Hirsimäki Patrik Pyykkönen EXPERT EVALUATION OF ASPECTS RELATED TO VIRTUAL REALITY SYSTEMS AND SUGGESTIONS FOR FUTURE STUDIES Bachelor’s Thesis Degree Programme in Computer Science and Engineering June 2020 Seppänen A., Hirsimäki M., Pyykkönen P. (2020) Expert Evaluation of Aspects Related to Virtual Reality Systems and Suggestions for Future Studies. University of Oulu, Degree Programme in Computer Science and Engineering, 75 p. ABSTRACT In this bachelor’s thesis, we review existing quantitative and qualitative research on virtual reality systems. We then present suggestions for performing a future study to combine the objective and subjective measurements of virtual reality experience. Additionally, we adapted an existing heuristics-based expert evaluation method to suit evaluating virtual reality systems. Using our method, we performed the expert evaluation on a selection of five modern consumer virtual reality systems to understand the connections between the subjective experience and the physical variables related to the virtual reality system. From this evaluation, we present findings that are used to construct discussion and to draw conclusions on these said connections. We found the most prominent conclusion to be that the experience of virtual reality is highly subjective and dependent on the content being viewed in virtual reality. Additionally, we concluded that some of the most important aspects in need of improvement are display resolution, lens design, user ergonomics, and lack of wirelessness. Finally, we state that two optimization problems are present; the first one being the optimization required to design a virtual reality system and the second one being the act of choosing a system to match a consumer’s preferred content. Keywords: Virtual reality, head-mounted display, user experience, subjective, consumer, suggestion Seppänen A., Hirsimäki M., Pyykkönen P. (2020) Asiantuntija-arviointi virtuaalitodellisuusjärjestelmiin liittyvistä tekijöistä ja ehdotuksia tuleville tutkimuksille. Oulun yliopisto, Tietotekniikan tutkinto-ohjelma, 75 s. TIIVISTELMÄ Tässä kandidaatin tutkielmassa käymme läpi aiempaa kvantitatiivista ja kvalitatiivista tutkimusta virtuaalitodellisuusjärjestelmistä. Esitämme myös ehdotuksia myöhempää tutkimusta varten virtuaalitodellisuuteen liittyvien objektiivisten ja subjektiivisten mittausten yhdistämiseksi. Tämän lisäksi adaptoimme aiemman heuristiikkapohjaisen asiantuntija-arvioinnin sopimaan virtuaalitodellisuusjärjestelmien arviointiin. Käyttäen metodiamme toteutimme asiantuntija-arvioinnin viidellä modernilla kuluttajakäyttöön tarkoitetulla virtuaalitodellisuusjärjestelmällä ymmärtääksemme yhteyksiä subjektiivisen kokemuksen ja niiden fysikaalisten muuttujien välillä, jotka liittyvät virtuaalitodellisuusjärjestelmiin. Esitämme tämän asiantuntija-arvioinnin löydöksiä, ja luomme niiden avulla keskustelua, jonka avulla teemme mainittuihin yhteyksiin liittyviä johtopäätöksiä. Tärkein johtopäätöksemme oli se, että virtuaalitodellisuuden kokemus on erittäin subjektiivinen ja riippuvainen siitä sisällöstä, jota virtuaalitodellisuudessa koetaan. Aiemman lisäksi toteamme, että merkittävimpiä kehitystä kaipaavia osa-alueita ovat näytön resoluutio, linssien suunnittelu, käyttäjäergonomia ja langattomuuden puute. Viimeisenä totesimme, että virtuaalitodellisuusjärjestelmiin liittyy kaksi optimointiongelmaa; ensimmäinen liittyy järjestelmän suunnittelussa tapahtuvaan optimointiin, ja toinen liittyy sellaisen järjestelmän valitsemiseen, joka sopii kunkin kuluttajan suosimaan tarkoitukseen. Avainsanat: Virtuaalitodellisuus, virtuaalitodellisuuslasit, käyttäjäkokemus, subjektiivinen, kuluttaja, ehdotus TABLE OF CONTENTS ABSTRACT TIIVISTELMÄ TABLE OF CONTENTS FOREWORD LIST OF ABBREVIATIONS 1. INTRODUCTION....................................................................................... 8 1.1. History and Motivation........................................................................ 8 1.2. Examples of Current Consumer VR Systems ........................................ 9 1.3. Purpose, Objective and Scope.............................................................. 11 1.4. Contributions...................................................................................... 11 2. BACKGROUND AND RELATED WORK .................................................. 12 2.1. Displays ............................................................................................. 12 2.2. Lenses................................................................................................ 13 2.3. Controllers ......................................................................................... 14 2.4. Tethered and Wireless Solutions .......................................................... 15 2.5. Audio................................................................................................. 15 2.6. Tracking............................................................................................. 15 2.6.1. Tracking Performance.............................................................. 17 2.7. User Experience ................................................................................. 17 2.7.1. Cybersickness and It’s Related Sicknesses ................................ 18 2.7.2. Motion-To-Photon Latency ...................................................... 19 2.7.3. Quality of Experience.............................................................. 22 2.7.4. Immersion .............................................................................. 23 2.8. Content .............................................................................................. 24 2.9. Industry and Consumer Standards ........................................................ 25 3. SUGGESTIONS FOR FUTURE STUDY..................................................... 26 3.1. Suggested Problem Statement and Research Question ........................... 26 3.2. Defining the Suggested Test Methodology............................................ 26 3.3. Defining the Suggested VR Systems to Be Used ................................... 27 3.4. Qualitative Test................................................................................... 27 3.4.1. Defining the Test Content......................................................... 27 3.4.2. Defining the Test Subjects........................................................ 28 3.4.3. Defining the Data Collection .................................................... 29 3.4.4. First Pilot Study ...................................................................... 29 3.4.5. Finalized Test Procedure.......................................................... 32 3.5. Quantitative Tests ............................................................................... 34 3.5.1. Defining the Measuring Equipment .......................................... 34 3.5.2. Defining the Variables to Be Measured ..................................... 34 4. EXPERT EVALUATION............................................................................. 35 4.1. Expert Evaluation Problem Statement and Research Question................ 35 4.2. Adaptation of the Method.................................................................... 35 4.3. Defining the VR-System to Be Used .................................................... 36 4.4. Defining the Test Tasks ....................................................................... 36 4.4.1. Task 1: Videos ........................................................................ 37 4.4.2. Task 2: Beat Saber................................................................... 37 4.4.3. Task 3: Richie’s Plank Experience............................................ 38 4.4.4. Task 4: SUPERHOT VR.......................................................... 40 4.4.5. Excluded Tasks ....................................................................... 40 4.5. Testing Environment ........................................................................... 41 4.6. Experts............................................................................................... 41 4.7. Detailed Testing Method ..................................................................... 42 4.7.1. Adapted Heuristics .................................................................. 43 4.7.2. Adapted Severity Classification ................................................ 44 5. RESULTS AND EVALUATION.................................................................. 45 5.1. Displays ............................................................................................. 45 5.2. Lenses................................................................................................ 45 5.3. Controllers ......................................................................................... 46 5.4. Tethered and Wireless Solutions .......................................................... 46 5.5. Audio................................................................................................. 47 5.6. Tracking............................................................................................. 48 5.7. User Experience ................................................................................. 48 5.8. Content .............................................................................................. 49 5.9. System Rankings ...............................................................................
Recommended publications
  • Oculus Rift CV1 (Model HM-A) Virtual Reality Headset System Report by Wilfried THERON March 2017
    Oculus Rift CV1 (Model HM-A) Virtual Reality Headset System report by Wilfried THERON March 2017 21 rue la Noue Bras de Fer 44200 NANTES - FRANCE +33 2 40 18 09 16 [email protected] www.systemplus.fr ©2017 by System Plus Consulting | Oculus Rift CV1 Head-Mounted Display (SAMPLE) 1 Table of Contents Overview / Introduction 4 Cost Analysis 83 o Executive Summary o Accessing the BOM o Main Chipset o PCB Cost o Block Diagram o Display Cost o Reverse Costing Methodology o BOM Cost – Main Electronic Board o BOM Cost – NIR LED Flex Boards Company Profile 9 o BOM Cost – Proximity Sensor Flex o Oculus VR, LLC o Housing Parts – Estimation o BOM Cost - Housing Physical Analysis 11 o Material Cost Breakdown by Sub-Assembly o Material Cost Breakdown by Component Category o Views and Dimensions of the Headset o Accessing the Added Value (AV) cost o Headset Opening o Main Electronic Board Manufacturing Flow o Fresnel Lens Details o Details of the Main Electronic Board AV Cost o NIR LED Details o Details of the System Assembly AV Cost o Microphone Details o Added-Value Cost Breakdown o Display Details o Manufacturing Cost Breakdown o Main Electronic Board Top Side – Global view Estimated Price Analysis 124 Top Side – High definition photo o Estimation of the Manufacturing Price Top Side – PCB markings Top Side – Main components markings Company services 128 Top Side – Main components identification Top Side – Other components markings Top Side – Other components identification Bottom Side – High definition photo o LED Driver Board o NIR LED Flex Boards o Proximity Sensor Flex ©2017 by System Plus Consulting | Oculus Rift CV1 Head-Mounted Display (SAMPLE) 2 OVERVIEW METHODOLOGY ©2017 by System Plus Consulting | Oculus Rift CV1 Head-Mounted Display (SAMPLE) 3 Executive Summary Overview / Introduction o Executive Summary This full reverse costing study has been conducted to provide insight on technology data, manufacturing cost and selling price of the Oculus Rift Headset* o Main Chipset supplied by Oculus VR, LLC (website).
    [Show full text]
  • Phobulus, Tratamiento De Fobias Con Realidad Virtual
    Universidad ORT Uruguay Facultad de Ingeniería Phobulus Tratamiento de fobias con realidad virtual Entregado como requisito para la obtención del título de Ingeniero en Sistemas Juan Martín Corallo – 172169 Christian Eichin – 173551 Santiago Pérez – 170441 Horacio Torrendell - 172844 Tutor: Nicolás Fornaro 2016 Declaración de autoría Nosotros, Juan Martín Corallo, Christian Eichin, Santiago Pérez y Horacio Torrendell, declaramos que el trabajo que se presenta en esa obra es de nuestra propia mano. Podemos asegurar que: La obra fue producida en su totalidad mientras realizábamos el proyecto de grado de fin de curso de la carrera Ingeniería en Sistemas; Cuando hemos consultado el trabajo publicado por otros, lo hemos atribuido con claridad; Cuando hemos citado obras de otros, hemos indicado las fuentes. Con excepción de estas citas, la obra es enteramente nuestra; En la obra, hemos acusado recibo de las ayudas recibidas; Cuando la obra se basa en trabajo realizado conjuntamente con otros, hemos explicado claramente qué fue contribuido por otros, y qué fue contribuido por nosotros; Ninguna parte de este trabajo ha sido publicada previamente a su entrega, excepto donde se han realizado las aclaraciones correspondientes. Fecha: 23 de Agosto, 2016. Juan Martín Corallo Christian Eichin Santiago Pérez Horacio Torrendell 2 Agradecimientos En primer lugar queremos agradecer al tutor del proyecto, MSc. Nicolás Fornaro, por acompañarnos y ayudarnos con entusiasmo desde el principio del mismo. Siempre estuvo disponible con la mejor voluntad para resolver dudas en reuniones o vía medios electrónicos, y guiarnos en todo lo referente al proyecto. Queremos agradecer también a los miembros del laboratorio ORT Software Factory, Dr.
    [Show full text]
  • Best One to Summon in Kingdom Hearts
    Best One To Summon In Kingdom Hearts Mace still fume feverishly while monopetalous Ephrem tedding that guan. Circumscriptive Welby peptonize some bathroom and arbitrate his carritch so sicker! Prent rice her recliners isochronally, fundamental and unwatered. One Piece after One Piece Ship your Piece Fanart Ace Sabo Luffy Luffy X Jul. Can tilt the all-powerful energy source Kingdom Hearts. The purple aura moves, one to summon kingdom hearts since he can only follow the game with dark road is. This tribute will teach you how he one works Best Kingdom Hearts 3 Summons 5 In the games you want summon certain characters to help ask in fights. Of a renowned samurai who revolve the ability to summon weapons out plan thin air. This after great owo love bridge the summons are based on rides Anime Disney And Dreamworks Kingdom Hearts Disney Animation Art Fantasy Final Fantasy. Kingdom Hearts III Re Mind Limit Cut down Guide RPG Site. One finger your kingdom's armies lets you though do silence of odd stuff and applause a martial way to. Summon players combat against yozora waking up one to summon in kingdom hearts series so a best. Cast thundaga to let us to defeat if sora can be? Reset mating potion ark Fiarc. When Dark Inferno summons spheres it will disappear from my field. Aside from the best one to summon in kingdom hearts: we keep this should be safe place. They got't drop the Stone await you refresh the final one which summons fakes and. Kingdom Hearts Sora's 10 Best Team Attacks Ranked.
    [Show full text]
  • 647 Virtual Anatomy: Expanding Veterinary Student Learning
    647 VIRTUAL PROJECTS DOI: dx.doi.org/10.5195/jmla.2020.1057 Virtual Anatomy: expanding veterinary student learning Kyrille DeBose See end of article for author’s affiliation. Traditionally, there are three primary ways to learn anatomy outside the classroom. Books provide foundational knowledge but are limited in terms of object manipulation for deeper exploration. Three- dimensional (3D) software programs produced by companies including Biosphera, Sciencein3D, and Anatomage allow deeper exploration but are often costly, offered through restrictive licenses, or require expensive hardware. A new approach to teaching anatomy is to utilize virtual reality (VR) environments. The Virginia–Maryland College of Veterinary Medicine and University Libraries have partnered to create open education–licensed VR anatomical programs for students to freely download, access, and use. The first and most developed program is the canine model. After beta testing, this program was integrated into the first- year students’ physical examination labs in fall 2019. The VR program enabled students to walk through the VR dog model to build their conceptual knowledge of the location of certain anatomical features and then apply that knowledge to live animals. This article briefly discusses the history, pedagogical goals, system requirements, and future plans of the VR program to further enrich student learning experiences. Virtual Projects are published on an annual basis in the Journal of the Medical Library Association (JMLA) following an annual call for virtual projects in MLAConnect and announcements to encourage submissions from all types of libraries. An advisory committee of recognized technology experts selects project entries based on their currency, innovation, and contribution to health sciences librarianship.
    [Show full text]
  • Novel Approach to Measure Motion-To-Photon and Mouth-To-Ear Latency in Distributed Virtual Reality Systems
    Novel Approach to Measure Motion-To-Photon and Mouth-To-Ear Latency in Distributed Virtual Reality Systems Armin Becher∗, Jens Angerer†, Thomas Grauschopf? ∗ Technische Hochschule Ingolstadt † AUDI AG ? Technische Hochschule Ingolstadt Esplanade 10 Auto-Union-Straße 1 Esplanade 10 85049 Ingolstadt 85045 Ingolstadt 85049 Ingolstadt [email protected] [email protected] [email protected] Abstract: Distributed Virtual Reality systems enable globally dispersed users to interact with each other in a shared virtual environment. In such systems, different types of latencies occur. For a good VR experience, they need to be controlled. The time delay between the user’s head motion and the corresponding display output of the VR system might lead to adverse effects such as a reduced sense of presence or motion sickness. Additionally, high network latency among world- wide locations makes collaboration between users more difficult and leads to misunderstandings. To evaluate the performance and optimize dispersed VR solutions it is therefore important to mea- sure those delays. In this work, a novel, easy to set up, and inexpensive method to measure local and remote system latency will be described. The measuring setup consists of a microcontroller, a microphone, a piezo buzzer, a photosensor, and a potentiometer. With these components, it is possible to measure motion-to-photon and mouth-to-ear latency of various VR systems. By using GPS-receivers for timecode-synchronization it is also possible to obtain the end-to-end delays be- tween different worldwide locations. The described system was used to measure local and remote latencies of two HMD based distributed VR systems.
    [Show full text]
  • Virtual Reality Sickness During Immersion: an Investigation of Potential Obstacles Towards General Accessibility of VR Technology
    Examensarbete 30hp August 2016 Virtual Reality sickness during immersion: An investigation of potential obstacles towards general accessibility of VR technology. A controlled study for investigating the accessibility of modern VR hardware and the usability of HTC Vive’s motion controllers. Dongsheng Lu Abstract People call the year of 2016 as the year of virtual reality. As the world leading tech giants are releasing their own Virtual Reality (VR) products, the technology of VR has been more available than ever for the mass market now. However, the fact that the technology becomes cheaper and by that reaches a mass-market, does not in itself imply that long-standing usability issues with VR have been addressed. Problems regarding motion sickness (MS) and motion control (MC) has been two of the most important obstacles for VR technology in the past. The main research question of this study is: “Are there persistent universal access issues with VR related to motion control and motion sickness?” In this study a mixed method approach has been utilized for finding more answers related to these two important aspects. A literature review in the area of VR, MS and MC was followed by a quantitative controlled study and a qualitative evaluation. 32 participants were carefully selected for this study, they were divided into different groups and the quantitative data collected from them were processed and analyzed by using statistical test. An interview was also carried out with all of the participants of this study in order to gather more details about the usability of the motion controllers used in this study.
    [Show full text]
  • Oculus Rift CV1 Teardown Anleitung Nr: 60612 - Entwurf: 2018-07-21
    Oculus Rift CV1 Teardown Anleitung Nr: 60612 - Entwurf: 2018-07-21 Oculus Rift CV1 Teardown Teardown des Oculus Rift CV1 (Consumer Version 1) durchgeführt den 29. März 2016 Geschrieben von: Evan Noronha Dieses Dokument wurde am 2020-11-17 03:55:00 PM (MST) erstellt. © iFixit — CC BY-NC-SA de.iFixit.com Seite 1 von 20 Oculus Rift CV1 Teardown Anleitung Nr: 60612 - Entwurf: 2018-07-21 EINLEITUNG Seit vor vier Jahren Oculus ein VR-Headset ankündigte, hat iFixit die beiden Entwicklerversionen erfolgreich auseinander und wieder zusammen gebaut. Nun haben wir endlich die Consumerversion zum Teardown bekommen und können euch verraten was gleich blieb und was sich geändert hat. Schnappt euch euer Werkzeug und kommt mit uns an die Werkbank: Wir bauen das Oculus Rift auseinander Falls es euch gefällt, gebt uns ein Like auf Facebook, Instagram, oder Twitter. [video: https://youtu.be/zfZx_jthHM4] WERKZEUGE: Phillips #1 Screwdriver (1) T3 Torx Screwdriver (1) iFixit Opening Tools (1) Spudger (1) Dieses Dokument wurde am 2020-11-17 03:55:00 PM (MST) erstellt. © iFixit — CC BY-NC-SA de.iFixit.com Seite 2 von 20 Oculus Rift CV1 Teardown Anleitung Nr: 60612 - Entwurf: 2018-07-21 Schritt 1 — Oculus Rift CV1 Teardown Wir haben bereits das DK1 und das DK2 auseinandergebaut und sind nun gespannt was das CV1 kann. Die Spezifikationen soweit: Zwei OLED Displays mit einer Auflösung von ingesamt 2160 x 1200 Bildwiederholrate von 90 Hz Beschleunigungssensor, Gyroscope und Magnetometer 360° Headset-Tracking mit der Constellation Infrarot Kamera Horizontales Blickfeld von mehr als 100º Die Motion Controller, genannt Oculus Touch, werden später im Jahr 2016 veröffentlicht.
    [Show full text]
  • Examining Motion Sickness in Virtual Reality
    Masaryk University Faculty of Informatics Examining Motion Sickness in Virtual Reality Master’s Thesis Roman Lukš Brno, Fall 2017 Masaryk University Faculty of Informatics Examining Motion Sickness in Virtual Reality Master’s Thesis Roman Lukš Brno, Fall 2017 This is where a copy of the official signed thesis assignment and a copy ofthe Statement of an Author is located in the printed version of the document. Declaration Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Roman Lukš Advisor: doc. Fotis Liarokapis, PhD. i Acknowledgement I want to thank the following people who helped me: ∙ Fotis Liarokapis - for guidance ∙ Milan Doležal - for providing discount vouchers ∙ Roman Gluszny & Michal Sedlák - for advice ∙ Adam Qureshi - for advice ∙ Jakub Stejskal - for sharing ∙ people from Škool - for sharing ∙ various VR developers - for sharing their insights with me ∙ all participants - for participation in the experiment ∙ my parents - for supporting me during my studies iii Abstract Thesis is evaluating two visual methods and whether they help to alleviate motion sickness. The first method is the presence of a frame of reference (in form of a cockpit and a radial) and the second method is the visible path (in form of waypoints in the virtual environment). Four testing groups were formed. Two for each individual method, one combining both methods and one control group. Each group consisting of 15 subjects. It was a passive seated experience and Oculus Rift CV1 was used.
    [Show full text]
  • Hand Interface Using Deep Learning in Immersive Virtual Reality
    electronics Article DeepHandsVR: Hand Interface Using Deep Learning in Immersive Virtual Reality Taeseok Kang 1, Minsu Chae 1, Eunbin Seo 1, Mingyu Kim 2 and Jinmo Kim 1,* 1 Division of Computer Engineering, Hansung University, Seoul 02876, Korea; [email protected] (T.K.); [email protected] (M.C.); [email protected] (E.S.) 2 Program in Visual Information Processing, Korea University, Seoul 02841, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-760-4046 Received: 28 September 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: This paper proposes a hand interface through a novel deep learning that provides easy and realistic interactions with hands in immersive virtual reality. The proposed interface is designed to provide a real-to-virtual direct hand interface using a controller to map a real hand gesture to a virtual hand in an easy and simple structure. In addition, a gesture-to-action interface that expresses the process of gesture to action in real-time without the necessity of a graphical user interface (GUI) used in existing interactive applications is proposed. This interface uses the method of applying image classification training process of capturing a 3D virtual hand gesture model as a 2D image using a deep learning model, convolutional neural network (CNN). The key objective of this process is to provide users with intuitive and realistic interactions that feature convenient operation in immersive virtual reality. To achieve this, an application that can compare and analyze the proposed interface and the existing GUI was developed. Next, a survey experiment was conducted to statistically analyze and evaluate the positive effects on the sense of presence through user satisfaction with the interface experience.
    [Show full text]
  • Method for Estimating Display Lag in the Oculus Rift S and CV1
    Method for estimating display lag in the Oculus Rift S and CV1 Jason Feng Juno Kim Wilson Luu School of Optometry and Vision School of Optometry and Vision School of Optometry and Vision Science Science Science UNSW Sydney, Australia, UNSW Sydney, Australia, UNSW Sydney, Australia, [email protected] [email protected] [email protected] Stephen Palmisano School of Psychology University of Wollongong, Australia, [email protected] ABSTRACT for a change in angular head orientation (i.e., motion-to-photon delay). Indeed, high display lag has been found to generate We validated an optical method for measuring the display lag of perceived scene instability and reduce presence [Kim et al. 2018] modern head-mounted displays (HMDs). The method used a and increase cybersickness [Palmisano et al. 2017]. high-speed digital camera to track landmarks rendered on a New systems like the Oculus Rift CV1 and S reduce display display panel of the Oculus Rift CV1 and S models. We used an lag by invoking Asynchronous Time and Space Warp (ATW and Nvidia GeForce RTX 2080 graphics adapter and found that the ASW), which also significantly reduces perceived system lag by minimum estimated baseline latency of both the Oculus CV1 and users [Freiwald et al. 2018]. Here, we devised a method based on S was extremely short (~2 ms). Variability in lag was low, even a previous technique [Kim et al. 2015] to ascertain the best when the lag was systematically inflated. Cybersickness was approach to estimating display lag and its effects on induced with the small baseline lag and increased as this lag was cybersickness in modern VR HMDs.
    [Show full text]
  • Quality Criteria for Serious Games: Serious Part, Game Part, and Balance
    JMIR SERIOUS GAMES Caserman et al Viewpoint Quality Criteria for Serious Games: Serious Part, Game Part, and Balance Polona Caserman1, MSc; Katrin Hoffmann2, Dip (Sportwiss); Philipp Müller1, MSc; Marcel Schaub3; Katharina Straûburg1; Josef Wiemeyer2, Prof Dr rer med; Regina Bruder3, Prof Dr; Stefan Göbel1, PD Dr Ing 1Multimedia Communications Lab, Technical University of Darmstadt, Darmstadt, Germany 2Institute of Sport Science, Technical University of Darmstadt, Darmstadt, Germany 3Research Group Didactics of Mathematics, Technical University of Darmstadt, Darmstadt, Germany Corresponding Author: Polona Caserman, MSc Multimedia Communications Lab Technical University of Darmstadt Rundeturmstraûe 10 Darmstadt, 64289 Germany Phone: 49 6151 16 20391 Email: [email protected] Abstract Serious games are digital games that have an additional goal beyond entertainment. Recently, many studies have explored different quality criteria for serious games, including effectiveness and attractiveness. Unfortunately, the double mission of serious games, that is, simultaneous achievement of intended effects (serious part) and entertainment (game part), is not adequately considered in these studies. This paper aims to identify essential quality criteria for serious games. The fundamental goal of our research is to identify important factors of serious games and to adapt the existing principles and requirements from game-related literature to effective and attractive serious games. In addition to the review of the relevant literature, we also include workshop results. Furthermore, we analyzed and summarized 22 state-of-the-art serious games for education and health. The selected best-practice serious games either prove their effectiveness through scientific studies or by winning game awards. For the analysis of these games, we refer to ªDIN SPEC 91380 Serious Games Metadata Format.º A summarized text states quality criteria for both the serious and the game part, and especially the balance between them.
    [Show full text]
  • Level Design in Virtual Reality
    Level Design in Virtual Reality Veikka Saaristo BACHELOR’S THESIS November 2020 Degree Programme in Business Information Systems Game Development ABSTRACT Tampereen ammattikorkeakoulu Tampere University of Applied Sciences Degree Programme in Business Information Systems Game Development SAARISTO, VEIKKA: Level Design in Virtual Reality Bachelor's thesis 68 pages November 2020 This thesis studies level design methodology and best practices regarding both traditional and virtual reality level design, as well as the author’s own professional experience as a virtual reality level designer with the objective of creating a custom map extension to Half-Life: Alyx (Valve 2020). The purpose of this thesis was to introduce virtual reality level design and to display how virtual reality levels are designed and created through a documented example. The thesis focuses on methods and practices that are applicable to work outside of a specific engine or editor. Data was collected from various sources, including several online publications, the individual views of industry professionals, developer websites of headset fabricators, and from literature. The map extension was created as a part of this thesis. It was developed using Valve’s own Hammer editor, which enabled building the level based on an original design. In addition to theory, this thesis addresses the design and creation of this map extension, offering excerpts from the process in form of in-editor screenshots and descriptions. During the creation of this thesis, the superiority of the Hammer editor compared to other editors and game engines used before was noted due to its first-class built-in level design tools. Learning a new work environment from the beginning and the choice of virtual reality headset used in the development proved challenging as the older Oculus Rift headset caused issues while working with a game as new as the one used as the case study.
    [Show full text]