The Noether Theorems in Context Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Invariant Theory of Matrices
UNIVERSITY LECTURE SERIES VOLUME 69 The Invariant Theory of Matrices Corrado De Concini Claudio Procesi American Mathematical Society The Invariant Theory of Matrices 10.1090/ulect/069 UNIVERSITY LECTURE SERIES VOLUME 69 The Invariant Theory of Matrices Corrado De Concini Claudio Procesi American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Jordan S. Ellenberg Robert Guralnick William P. Minicozzi II (Chair) Tatiana Toro 2010 Mathematics Subject Classification. Primary 15A72, 14L99, 20G20, 20G05. For additional information and updates on this book, visit www.ams.org/bookpages/ulect-69 Library of Congress Cataloging-in-Publication Data Names: De Concini, Corrado, author. | Procesi, Claudio, author. Title: The invariant theory of matrices / Corrado De Concini, Claudio Procesi. Description: Providence, Rhode Island : American Mathematical Society, [2017] | Series: Univer- sity lecture series ; volume 69 | Includes bibliographical references and index. Identifiers: LCCN 2017041943 | ISBN 9781470441876 (alk. paper) Subjects: LCSH: Matrices. | Invariants. | AMS: Linear and multilinear algebra; matrix theory – Basic linear algebra – Vector and tensor algebra, theory of invariants. msc | Algebraic geometry – Algebraic groups – None of the above, but in this section. msc | Group theory and generalizations – Linear algebraic groups and related topics – Linear algebraic groups over the reals, the complexes, the quaternions. msc | Group theory and generalizations – Linear algebraic groups and related topics – Representation theory. msc Classification: LCC QA188 .D425 2017 | DDC 512.9/434–dc23 LC record available at https://lccn. loc.gov/2017041943 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. -
An Elementary Proof of the First Fundamental Theorem of Vector Invariant Theory
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 102, 556-563 (1986) An Elementary Proof of the First Fundamental Theorem of Vector Invariant Theory MARILENA BARNABEI AND ANDREA BRINI Dipariimento di Matematica, Universitri di Bologna, Piazza di Porta S. Donato, 5, 40127 Bologna, Italy Communicated by D. A. Buchsbaum Received March 11, 1985 1. INTRODUCTION For a long time, the problem of extending to arbitrary characteristic the Fundamental Theorems of classical invariant theory remained untouched. The technique of Young bitableaux, introduced by Doubilet, Rota, and Stein, succeeded in providing a simple combinatorial proof of the First Fundamental Theorem valid over every infinite field. Since then, it was generally thought that the use of bitableaux, or some equivalent device-as the cancellation lemma proved by Hodge after a suggestion of D. E. LittlewoodPwould be indispensable in any such proof, and that single tableaux would not suffice. In this note, we provide a simple combinatorial proof of the First Fun- damental Theorem of invariant theory, valid in any characteristic, which uses only single tableaux or “brackets,” as they were named by Cayley. We believe the main combinatorial lemma (Theorem 2.2) used in our proof can be fruitfully put to use in other invariant-theoretic settings, as we hope to show elsewhere. 2. A COMBINATORIAL LEMMA Let K be a commutative integral domain, with unity. Given an alphabet of d symbols x1, x2,..., xd and a positive integer n, consider the d. n variables (xi\ j), i= 1, 2 ,..., d, j = 1, 2 ,..., n, which are supposed to be algebraically independent. -
Right Ideals of a Ring and Sublanguages of Science
RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance. -
Arxiv:1810.05857V3 [Math.AG] 11 Jun 2020
HYPERDETERMINANTS FROM THE E8 DISCRIMINANT FRED´ ERIC´ HOLWECK AND LUKE OEDING Abstract. We find expressions of the polynomials defining the dual varieties of Grass- mannians Gr(3, 9) and Gr(4, 8) both in terms of the fundamental invariants and in terms of a generic semi-simple element. We restrict the polynomial defining the dual of the ad- joint orbit of E8 and obtain the polynomials of interest as factors. To find an expression of the Gr(4, 8) discriminant in terms of fundamental invariants, which has 15, 942 terms, we perform interpolation with mod-p reductions and rational reconstruction. From these expressions for the discriminants of Gr(3, 9) and Gr(4, 8) we also obtain expressions for well-known hyperdeterminants of formats 3 × 3 × 3 and 2 × 2 × 2 × 2. 1. Introduction Cayley’s 2 × 2 × 2 hyperdeterminant is the well-known polynomial 2 2 2 2 2 2 2 2 ∆222 = x000x111 + x001x110 + x010x101 + x100x011 + 4(x000x011x101x110 + x001x010x100x111) − 2(x000x001x110x111 + x000x010x101x111 + x000x100x011x111+ x001x010x101x110 + x001x100x011x110 + x010x100x011x101). ×3 It generates the ring of invariants for the group SL(2) ⋉S3 acting on the tensor space C2×2×2. It is well-studied in Algebraic Geometry. Its vanishing defines the projective dual of the Segre embedding of three copies of the projective line (a toric variety) [13], and also coincides with the tangential variety of the same Segre product [24, 28, 33]. On real tensors it separates real ranks 2 and 3 [9]. It is the unique relation among the principal minors of a general 3 × 3 symmetric matrix [18]. -
Emmy Noether: the Mother of Modern Algebra Reviewed by Benno Artmann
Book Review Emmy Noether: The Mother of Modern Algebra Reviewed by Benno Artmann Emmy Noether: The Mother of Modern Algebra The author has to be M. B. W. Tent content with rather A. K. Peters, 2008 general information US$29.00, 200 pages about “abstract al- ISBN-13:978-1568814308 gebra” and has to reduce the few ab- The catalogue of the Library of Congress classifies solutely necessary this book as juvenile literature, and in this respect mathematical defini- it may serve its intentions well. Beyond that, a per- tions to the capabili- son not familiar with Emmy Noether’s (1882–1935) ties of advanced high life and the academic and political situations in school students, as in Germany in the years between 1900 and 1935 may the case of an “ideal” profit from the general picture the book provides on page 89. of these times, even though it may sometimes not One thing, how- be easy to distinguish between facts and fiction. ever, that could eas- The chapters of the book are: I, Childhood; ily be corrected is to II, Studying at the University; III, The Young be found on pages Scholar; IV, Emmy Noether at Her Prime Time in 105–106. Here the author reports that the stu- Göttingen; and V, Exile. dents were “shuffling their feet loudly” when the The book is not an historical work in the aca- professor entered the classroom and did so again demic sense. By contrast, and in agreement with in appreciation at the end of the lecture. Just the her intentions, the author creates a lively picture opposite is right, as the reviewer remembers from more in the sense of a novel—letting various actors his own student days: One stamped the feet at the talk in direct speech, as well as providing as many beginning and end, but shuffling the feet was a anecdotes as she could get hold of and inventing sign of extreme displeasure during or at the end stories that in her opinion fit into the general of the hour. -
Amalie (Emmy) Noether
Amalie (Emmy) Noether Female Mathematicians By Ella - Emmy was born in 1882 and her father was a math professor at the University of Erlangen During her Life and that's one of the reason why she started to be interested in math - She couldn’t enroll in the college Erlangen because she was a woman but she did audit the classes. Also, when Emmy was on staff of Göttingen University but didn’t get paid to lecture like her male colleagues - At this time girls were only allowed University of Erlangen in Germany to go to "finishing school,” where they learn to teach. Emmy became certified to teach French and English but never did because she pursued mathematics. Emmay’s Accomplishments - Emmy Noether discovered the link between conservation laws and symmetries. Conservation laws is when a particular quantity must stay constant. For example, energy can’t be created or destroyed. Symmetries is the changes that can be made without changing the way the object looks or acts. For example, it doesn’t matter how you rotate or change the direction of a sphere it will always appear the same. - She also found noncommutative algebras which is when there is a specific order that numbers be multiplied to solve the equation. The Importance of her Accomplishments - The link between conservation laws and symmetries is called Noether’s Theorem. It is important because it gives us insight into conservation laws. Also, it is important because it shows scientists that repeating an experiment at different times won’t change the results. Timeline Left Germany to teach in America Received her Ph D Germany became an Born unsafe place to live for the college Erlangen a Jew like herself. -
1 INTRO Welcome to Biographies in Mathematics Brought to You From
INTRO Welcome to Biographies in Mathematics brought to you from the campus of the University of Texas El Paso by students in my history of math class. My name is Tuesday Johnson and I'll be your host on this tour of time and place to meet the people behind the math. EPISODE 1: EMMY NOETHER There were two women I first learned of when I started college in the fall of 1990: Hypatia of Alexandria and Emmy Noether. While Hypatia will be the topic of another episode, it was never a question that I would have Amalie Emmy Noether as my first topic of this podcast. Emmy was born in Erlangen, Germany, on March 23, 1882 to Max and Ida Noether. Her father Max came from a family of wholesale hardware dealers, a business his grandfather started in Bruchsal (brushal) in the early 1800s, and became known as a great mathematician studying algebraic geometry. Max was a professor of mathematics at the University of Erlangen as well as the Mathematics Institute in Erlangen (MIE). Her mother, Ida, was from the wealthy Kaufmann family of Cologne. Both of Emmy’s parents were Jewish, therefore, she too was Jewish. (Judiasm being passed down a matrilineal line.) Though Noether is not a traditional Jewish name, as I am told, it was taken by Elias Samuel, Max’s paternal grandfather when in 1809 the State of Baden made the Tolerance Edict, which required Jews to adopt Germanic names. Emmy was the oldest of four children and one of only two who survived childhood. -
Emmy Noether, Greatest Woman Mathematician Clark Kimberling
Emmy Noether, Greatest Woman Mathematician Clark Kimberling Mathematics Teacher, March 1982, Volume 84, Number 3, pp. 246–249. Mathematics Teacher is a publication of the National Council of Teachers of Mathematics (NCTM). With more than 100,000 members, NCTM is the largest organization dedicated to the improvement of mathematics education and to the needs of teachers of mathematics. Founded in 1920 as a not-for-profit professional and educational association, NCTM has opened doors to vast sources of publications, products, and services to help teachers do a better job in the classroom. For more information on membership in the NCTM, call or write: NCTM Headquarters Office 1906 Association Drive Reston, Virginia 20191-9988 Phone: (703) 620-9840 Fax: (703) 476-2970 Internet: http://www.nctm.org E-mail: [email protected] Article reprinted with permission from Mathematics Teacher, copyright March 1982 by the National Council of Teachers of Mathematics. All rights reserved. mmy Noether was born over one hundred years ago in the German university town of Erlangen, where her father, Max Noether, was a professor of Emathematics. At that time it was very unusual for a woman to seek a university education. In fact, a leading historian of the day wrote that talk of “surrendering our universities to the invasion of women . is a shameful display of moral weakness.”1 At the University of Erlangen, the Academic Senate in 1898 declared that the admission of women students would “overthrow all academic order.”2 In spite of all this, Emmy Noether was able to attend lectures at Erlangen in 1900 and to matriculate there officially in 1904. -
Book Review for EMMY NOETHER – the Mother of Modern Algebra by M
MATHEMATICS TEACHING RESEARCH JOURNAL 18 SPRING/SUMMER 2019 Vol 11 no 1-2 Book Review for EMMY NOETHER – the mother of modern algebra by M. B. W. Tent Roy Berglund City Tech, Borough of Manhattan Community College of CUNY Title: Emmy Noether Author: M. B. W. Tent Publisher: A. K. Peters, Ltd. Publication Date: 2008 Number of Pages: 177 Format: Hardcover Special Features: Glossary Price: $29.00 ISBN: 978-1-56881-430-8 Reviewed on April 26, 2019 The story of Emmy Noether is one of “little unknown girl makes good and becomes famous”. Not a lot is known about Noether’s early life growing up, but it is abundantly clear that she was blessed with strong family ties in secure circumstances. Such an environment tends to foster success for the individual, whenever one or both parents are supportive and expose the child to positive cultural and educational influences. The author chose to describe Noether’s biographical life rather than her mathematical accomplishments. In consequence Noether’s achievements are lightly mentioned, but they are presented without any mathematical details. It would be illuminating to follow Noether’s thinking through her discoveries and to track her development to mathematical maturity. Emmy’s father, Max, was a mathematics professor in the college at Erlangen. Both parents tended to channel their daughter into preparation for domestic life as a wife and mother. However, Emmy was bright child, and solved puzzles and riddles of all kinds from an early age. She continually questioned her designated role as a girl, and queried her father why she, too, should not be a mathematician, ever resisting the rote of learning French, or of a musical instrument. -
Some Basic Biographical Facts About Emmy Noether (1882-1935), in Particular on the Discrimination Against Her As a Woman
Some basic biographical facts about Emmy Noether (1882-1935), in particular on the discrimination against her as a woman LMS-IMA Joint Meeting: Noether Celebration De Morgan House, Tuesday, 11 September, 2018 Reinhard Siegmund-Schultze (University of Agder, Kristiansand, Norway) ABSTRACT Although it has been repeatedly underlined that Emmy Noether had to face threefold discrimination in political, racist and sexist respects the last- mentioned discrimination of the three is probably best documented. The talk provides some basic biographical facts about Emmy Noether with an emphasis on the discrimination against her as a woman, culminating for the first time in the struggles about her teaching permit (habilitation) 1915-1919 (main source C. Tollmien). Another focus of the talk will be on the later period of her life, in particular the failed appointment in Kiel (1928), her Born: 23 March 1882 in Erlangen, dismissal as a Jew in 1933 and her last years in the Bavaria, Germany U.S. Died: 14 April 1935 in Bryn Mawr, Pennsylvania, USA Older sources Obituaries by colleagues and students: van der Waerden, Hermann Weyl, P.S. Aleksandrov. Historians: Three women: Auguste Dick (1970, Engl.1981), Constance Reid (Hilbert 1970), and Cordula Tollmien (e.g. 1991 on Noether’s Habilitation); plus Norbert Schappacher (1987). Most material in German, Clark Kimberling (1972) in American Mathematical Monthly mostly translating from Dick and obituaries. Newer Sources Again mostly by women biographers, such as Renate Tobies (2003), Cordula Tollmien (2015), and Mechthild Koreuber (2015). The book below, of which the English version is from 2011, discusses the papers relevant for physics: After going through a girls school she took in 1900 a state exam to become a teacher in English and French at Bavarian girls schools. -
The Invariant Theory of Binary Forms
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 10, Number 1, January 1984 THE INVARIANT THEORY OF BINARY FORMS BY JOSEPH P. S. KUNG1 AND GIAN-CARLO ROTA2 Dedicated to Mark Kac on his seventieth birthday Table of Contents 1. Introduction 2. Umbral Notation 2.1 Binary forms and their covariants 2.2 Umbral notation 2.3 Changes of variables 3. The Fundamental Theorems 3.1 Bracket polynomials 3.2 The straightening algorithm 3.3 The second fundamental theorem 3.4 The first fundamental theorem 4. Covariants in Terms of the Roots 4.1 Homogenized roots 4.2 Tableaux in terms of roots 4.3 Covariants and differences 4.4 Hermite's reciprocity law 5. Apolarity 5.1 The apolar covariant 5.2 Forms apolar to a given form 5.3 Sylvester's theorem 5.4 The Hessian and the cubic 6. The Finiteness Theorem 6.1 Generating sets of covariants 6.2 Circular straightening 6.3 Elemental bracket monomials 6.4 Reduction of degree 6.5 Gordan's lemma 6.6 The binary cubic 7. Further Work References 1. Introduction. Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics. During its long eclipse, the language of modern algebra was developed, a sharp tool now at long last being applied to the very Received by the editors May 26, 1983. 1980 Mathematics Subject Classification. Primary 05-02, 13-02, 14-02, 15-02. 1 Supported by a North Texas State University Faculty Research Grant. -
GEOMETRIC INVARIANT THEORY and FLIPS Ever Since the Invention
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 9, Number 3, July 1996 GEOMETRIC INVARIANT THEORY AND FLIPS MICHAEL THADDEUS Ever since the invention of geometric invariant theory, it has been understood that the quotient it constructs is not entirely canonical, but depends on a choice: the choice of a linearization of the group action. However, the founders of the subject never made a systematic study of this dependence. In light of its fundamental and elementary nature, this is a rather surprising gap, and this paper will attempt to fill it. In one sense, the question can be answered almost completely. Roughly, the space of all possible linearizations is divided into finitely many polyhedral chambers within which the quotient is constant (2.3), (2.4), and when a wall between two chambers is crossed, the quotient undergoes a birational transformation which, under mild conditions, is a flip in the sense of Mori (3.3). Moreover, there are sheaves of ideals on the two quotients whose blow-ups are both isomorphic to a component of the fibred product of the two quotients over the quotient on the wall (3.5). Thus the two quotients are related by a blow-up followed by a blow-down. The ideal sheaves cannot always be described very explicitly, but there is not much more to say in complete generality. To obtain more concrete results, we require smoothness, and certain conditions on the stabilizers which, though fairly strong, still include many interesting examples. The heart of the paper, 4and 5, is devoted to describing the birational transformations between quotients§§ as explicitly as possible under these hypotheses.