Machine Learning Inspired Synthetic Biology: Neuromorphic Computing in Mammalian Cells by Andrew Moorman

Total Page:16

File Type:pdf, Size:1020Kb

Machine Learning Inspired Synthetic Biology: Neuromorphic Computing in Mammalian Cells by Andrew Moorman Machine Learning Inspired Synthetic Biology: Neuromorphic Computing in Mammalian Cells by Andrew Moorman B.Arch. Cornell University, 2017 Submitted to the MIT Department of Architecture and the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degrees of Master of Science in Architecture Studies and Master of Science in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology February 2020 © 2020 Massachusetts Institute of Technology. All rights reserved Signature of Author .............................................................................................................................................. MIT Department of Architecture MIT Department of Electrical Engineering and Computer Science January 17, 2020 Certified by ........................................................................................................................................................... Ron Weiss Professor of Biological Engineering and Electrical Engineering and Computer Science Thesis Supervisor Certified by ........................................................................................................................................................... Skylar Tibbits Associate Professor of Architecture Thesis Supervisor Accepted by .......................................................................................................................................................... Leslie K. Norford Professor of Building Technology Chair, Department Committee on Graduate Students Accepted by .......................................................................................................................................................... Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science Chair, Department Committee on Graduate Students 2 Machine Learning Inspired Synthetic Biology: Neuromorphic Computing in Mammalian Cells by Andrew Moorman Submitted to the Department of Architecture and Department of Electrical Engineering and Computer Science on February 17, 2020, in partial fulllment of the requirements for the degrees of Master of Science in Electrical Engineering and Computer Science and Master of Science in Architecture Studies Abstract Synthetic biologists seek to collect, rene, and repackage nature so that it’s easier to design new and reliable biological systems, typically at the cellular or multicellular level. These redesigned systems are often referred to as “biological circuits,” for their ability to perform operations on biomolecular signals, rather than electrical signals, and for their aim to behave as predictably and modularly as would integrated circuits in a computer. In natural and synthetic biological systems, the abstraction of these circuits’ behaviors to dig- ital computation is often appropriate, especially in decision-making settings wherein the output is selected to coordinate a discrete set of outcomes, e.g. developmental networks or disease-state classication circuits. However, there are challenges in engineering entire genetic systems that mimic digital logic. Biological molecules do not generally exist at only two possible concentra- tions but vary over an analog range of concentrations, and are ordinarily uncompartmentalized in the cell. As a result, scaling biological circuits which rely on digital logic schemes can prove dicult in practice. Neuromorphic devices represent a promising computing paradigm which aims to reproduce desirable, high-level characteristics inspired by how the brain processes information - features like tunable signal processing and resource ecient scaling. They are a versatile substrate for compu- tation, and, in engineered biological systems, marry the practical benets of digital and analog signal processing. As the decision-making intelligence of engineered-cell therapies, neuromor- phic gene circuits could replace digital logic schemes with a modular and reprogrammable ana- log template, allowing for more sophisticated computation using fewer resources. This template could then be adapted either externally or autonomously in long-term single cell medicine. Here, I describe the implementation of in-vivo neuromorphic circuits in human cell culture models as a proof-of-concept for their application to personalized medicine. While biology has long served as inspiration for the articial intelligence community, this work will help launch a new, interactive relationship between the two elds, in which nature of- 3 fers more to AI than a helpful metaphor. Synthetic biology provides a rigorous framework to actively probe how learning systems work in living things, closing the loop between traditional machine learning and naturally intelligent systems. This thesis oers a starting point from which to pursue cell therapeutic strategies and multi-step genetic dierentiation programs, while expos- ing the inherent learning capabilities of biology (e.g., self-repair, operation in noisy environments, etc.). Simultaneously, the results included lay groundwork to analyze the role of machine learn- ing in medicine, where its dicult interpretability contradicts the need to guarantee stable, safe, and ecacious therapies. This thesis should not only spur future research in the use of these approaches for personalized medicine, but also broaden the landscape of academics who nd interest in and relevance to its concerns. Thesis Supervisor: Ron Weiss Title: Professor of Biological Engineering and Electrical Engineering and Computer Science Thesis Supervisor: Skylar Tibbits Title: Associate Professor of Architecture 4 Acknowledgments I would rst like to thank my thesis advisors Prof. Ron Weiss and Prof. Skylar Tibbits, whose doors and minds were always open despite the broad and somewhat audacious interdisciplinary scope of this topic. Only because of their patience, trust, and condence was I able to discover a new world of interest in biology. I would then like to acknowledge my colleagues in the MIT Weiss Lab. I especially thank Christian Cuba-Samaniego and Wenlong Xu for their contributions to the project SBIML, as well as to my growth as a synthetic biologist. I owe much of my progress and excitement in the eld to their inspiration and mentorship, and my sanity to their counseling during challenging times. I am grateful to the United States Department of Defense Advanced Research Projects Agency (DARPA)as well as MIT Department of Architecture for providing funding during my graduate education at MIT. I also acknowledge with gratitude the Department of Biological Engineering Administrators Olga Parkin and Darlene Ray for their persistence and help. I thank my sister, Aubry White, for her friendship and for adding four members to my family and support network, including Eli, Callen, and Isabel White, during my tenure at MIT. I must also thank my girlfriend, Jessica Jiang, whose unrelenting patience and companionship has been the foundation of my success. Finally, I must express my very profound gratitude to my parents Bob and Jody Moorman for providing me with unconditional support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you. Author Andrew Moorman 5 6 Contents 1 Introduction 15 1.1 What is Design in Synthetic Biology? . 15 1.2 Cells as Computers . 17 1.3 Non-Classical Computation in Dynamical Systems . 19 1.3.1 The Computational Behavior of Dynamical Systems . 19 1.3.2 Molecular Computation: A Simple Example . 21 1.4 Cell Therapies as Computations . 24 1.5 Neuromorphic Computing in Cell Therapies . 26 2 Molecular Neural Network Computing in Mammalian Cells 29 2.1 A Brief Review of Articial Neural Networks . 29 2.2 On Combinatorial Transcriptional Regulation . 30 2.2.1 A Brief Review of Transcriptional Regulation . 30 2.2.2 A Transcriptional Articial Neuron . 32 2.3 On Bio-Molecular Sequestration . 36 2.3.1 A Brief Review of Molecular Sequestration . 36 2.3.2 A Sequestration-Based Articial Neuron . 37 2.3.3 Sequestration-Based Molecular ANNs to Solve the XOR Problem . 40 2.4 Conclusions . 41 2.5 Methods . 43 2.6 Supplementary Proofs . 44 2.6.1 Sequestration-Based Biomolecular Perceptron Model . 44 2.6.2 Sequestration-Based Biomolecular Neural Network . 47 7 3 Molecular Learning and Adaptation in Mammalian Cells 51 3.1 A Genetic Circuit for Learning in Mammalian Cells . 53 3.1.1 Circuit Design . 53 3.1.2 Discussion . 54 3.1.3 Description of Model . 56 3.2 A Stability Analysis for Population-Scale Learning . 60 3.2.1 Preliminaries . 60 3.2.2 Stability Analysis of a Perceptron Ensemble . 64 4 Conclusion 67 A Tables 71 B Figures 73 8 List of Figures B-1 Personalized medicine increases in therapeutic precision from group level to single- cell ‘living drugs.’ . 74 B-2 Neuromorphic computing ts within the ‘Sense-Compute-Eect’ pipeline for engineered-cell therapies. 75 B-3 A general schematic for the operation of neuromorphic gene circuits in mam- malian cells. 76 B-4 Circuit design schematic for a three-input articial neuron computation using transcriptional regulation. 77 B-5 A general functional schematic for the computation performed by a hybrid pro- moter. 78 B-6 Steady state uorescence measurements for a three-input hybrid promoter cir- cuit with the corresponding log-scale reference computation. 79 B-7 Reaction diagrams for molecular binding and sequestration. 80 B-8 Pictorial depiction of molecular
Recommended publications
  • Biological Computation
    Portland State University PDXScholar Computer Science Faculty Publications and Presentations Computer Science 9-21-2010 Biological Computation Melanie Mitchell Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac Part of the Biology Commons, and the Computer Engineering Commons Let us know how access to this document benefits ou.y Citation Details Mitchell, Melanie, "Biological Computation" (2010). Computer Science Faculty Publications and Presentations. 2. https://pdxscholar.library.pdx.edu/compsci_fac/2 This Working Paper is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Biological Computation Melanie Mitchell SFI WORKING PAPER: 2010-09-021 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our external faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or funded by an SFI grant. ©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the author(s). It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright.
    [Show full text]
  • Dynamics of Information As Natural Computation
    Information 2011, 2, 460-477; doi:10.3390/info2030460 OPEN ACCESS information ISSN 2078-2489 www.mdpi.com/journal/information Article Dynamics of Information as Natural Computation Gordana Dodig Crnkovic Mälardalen University, School of Innovation, Design and Engineering, Sweden; E-Mail: [email protected] Received: 30 May 2011; in revised form: 13 July 2011 / Accepted: 19 July 2011 / Published: 4 August 2011 Abstract: Processes considered rendering information dynamics have been studied, among others in: questions and answers, observations, communication, learning, belief revision, logical inference, game-theoretic interactions and computation. This article will put the computational approaches into a broader context of natural computation, where information dynamics is not only found in human communication and computational machinery but also in the entire nature. Information is understood as representing the world (reality as an informational web) for a cognizing agent, while information dynamics (information processing, computation) realizes physical laws through which all the changes of informational structures unfold. Computation as it appears in the natural world is more general than the human process of calculation modeled by the Turing machine. Natural computing is epitomized through the interactions of concurrent, in general asynchronous computational processes which are adequately represented by what Abramsky names “the second generation models of computation” [1] which we argue to be the most general representation of information dynamics. Keywords: philosophy of information; information semantics; information dynamics; natural computationalism; unified theories of information; info-computationalism 1. Introduction This paper has several aims. Firstly, it offers a computational interpretation of information dynamics of the info-computational universe [2,3].
    [Show full text]
  • Natural Computing Conclusion
    Introduction Natural Computing Conclusion Natural Computing Dr Giuditta Franco Department of Computer Science, University of Verona, Italy [email protected] For the logistics of the course, please see the syllabus Dr Giuditta Franco Slides Natural Computing 2017 Introduction Natural Computing Natural Computing Conclusion Natural Computing Natural (complex) systems work as (biological) information elaboration systems, by sophisticated mechanisms of goal-oriented control, coordination, organization. Computational analysis (mat modeling) of life is important as observing birds for designing flying objects. "Informatics studies information and computation in natural and artificial systems” (School of Informatics, Univ. of Edinburgh) Computational processes observed in and inspired by nature. Ex. self-assembly, AIS, DNA computing Ex. Internet of things, logics, programming, artificial automata are not natural computing. Dr Giuditta Franco Slides Natural Computing 2017 Introduction Natural Computing Natural Computing Conclusion Bioinformatics versus Infobiotics Applying statistics, performing tools, high technology, large databases, to analyze bio-logical/medical data, solve problems, formalize/frame natural phenomena. Ex. search algorithms to recover genomic/proteomic data, to process them, catalogue and make them publically accessible, to infer models to simulate their dynamics. Identifying informational mechanisms underlying living systems, how they assembled and work, how biological information may be defined, processed, decoded. New
    [Show full text]
  • A Computational Model Inspired by Gene Regulatory Networks
    Rui Miguel Lourenço Lopes A Computational Model Inspired by Gene Regulatory Networks Doctoral thesis submitted to the Doctoral Program in Information Science and Technology, supervised by Full Professor Doutor Ernesto Jorge Fernandes Costa, and presented to the Department of Informatics Engineering of the Faculty of Sciences and Technology of the University of Coimbra. January 2015 A Computational Model Inspired by Gene Regulatory Networks A thesis submitted to the University of Coimbra in partial fulfillment of the requirements for the Doctoral Program in Information Science and Technology by Rui Miguel Lourenço Lopes [email protected] Department of Informatics Engineering Faculty of Sciences and Technology University of Coimbra Coimbra, January 2015 Financial support by Fundação para a Ciência e a Tecnologia, through the PhD grant SFRH/BD/69106/2010. A Computational Model Inspired by Gene Regulatory Networks ©2015 Rui L. Lopes ISBN 978-989-20-5460-5 Cover image: Composition of a Santa Fe trail program evolved by ReNCoDe overlaid on the ancestors, with a 3D model of the DNA crystal structure (by Paul Hakimata). This dissertation was prepared under the supervision of Ernesto J. F. Costa Full Professor of the Department of Informatics Engineering of the Faculty of Sciences and Tecnology of the University of Coimbra In loving memory of my father. Acknowledgements Thank you very much to Prof. Ernesto Costa, for his vision on research and education, for all the support and contributions to my ideas, and for the many life stories that always lighten the mood. Thank you also to Nuno Lourenço for the many discussions, shared books, and his constant helpfulness.
    [Show full text]
  • Molecular and Neural Computation
    CSE590b: Molecular and neural computation Georg Seelig 1 Administrative Georg Seelig Grading: Office: CSE 228 30% class participation: ask questions. It’s more [email protected] fun if it’s interactive. TA: Kevin Oishi 30% Homework: Due at the end of class one week after they are handed out. Late policy: -10% each day for the first 3 days, then not accepted 40% Class project: A small design project using one (or several) of the design and simulation tools that will be introduced in class [email protected] Books: There is no single book that covers the material in this class. Any book on molecular biology and on neural computation might be helpful to dig deeper. https://www.coursera.org/course/compneuro 2 Computation can be embedded in many substrates Computaon controls physical Alternave physical substrates substrates (output of computaon is can be used to make computers the physical substrate) The molecular programming project The history of computing has taught us two things: first, that the principles of computing can be embodied in a wide variety of physical substrates from gears and springs to transistors, and second that the mastery of a new physical substrate for computing has the potential to transform technology. Another revolution is just beginning, one that will result in new types of programmable systems based on molecules. Like the previous revolutions, this “molecular programming revolution” will take much of its theory from computer science, but will require reformulation of familiar concepts such as programming languages and compilers, data structures and algorithms, resources and complexity, concurrency and stochasticity, correctness and robustness.
    [Show full text]
  • The Many Facets of Natural Computing
    The Many Facets of Natural Computing Lila Kari0 Grzegorz Rozenberg Department of Computer Science Leiden Inst. of Advanced Computer Science University of Western Ontario Leiden University, Niels Bohrweg 1 London, ON, N6A 5B7, Canada 2333 CA Leiden, The Netherlands [email protected] Department of Computer Science University of Colorado at Boulder Boulder, CO 80309, USA [email protected] “Biology and computer science - life and computation - are various natural phenomena. Thus, rather than being over- related. I am confident that at their interface great discoveries whelmed by particulars, it is our hope that the reader will await those who seek them.” (L.Adleman, [3]) see this article as simply a window onto the profound rela- tionship that exists between nature and computation. There is information processing in nature, and the natu- 1. FOREWORD ral sciences are already adapting by incorporating tools and Natural computing is the field of research that investi- concepts from computer science at a rapid pace. Conversely, gates models and computational techniques inspired by na- a closer look at nature from the point of view of information ture and, dually, attempts to understand the world around processing can and will change what we mean by computa- us in terms of information processing. It is a highly in- tion. Our invitation to you, fellow computer scientists, is to terdisciplinary field that connects the natural sciences with take part in the uncovering of this wondrous connection.1 computing science, both at the level of information tech- nology and at the level of fundamental research, [98]. As a matter of fact, natural computing areas and topics come in many flavours, including pure theoretical research, algo- 2.
    [Show full text]
  • Info-Computational Philosophy of Nature
    Alan Turing’s Legacy: Info-Computational Philosophy of Nature Gordana Dodig-Crnkovic1 Abstract. Alan Turing’s pioneering work on computability, and Turing did not originally claim that the physical system his ideas on morphological computing support Andrew Hodges’ producing patterns actually performs computation through view of Turing as a natural philosopher. Turing’s natural morphogenesis. Nevertheless, from the perspective of info- philosophy differs importantly from Galileo’s view that the book computationalism, [3,4] argues that morphogenesis is a process of nature is written in the language of mathematics (The of morphological computing. Physical process, though not Assayer, 1623). Computing is more than a language of nature as computational in the traditional sense, presents natural computation produces real time physical behaviors. This article (unconventional), physical, morphological computation. presents the framework of Natural Info-computationalism as a contemporary natural philosophy that builds on the legacy of An essential element in this process is the interplay between the Turing’s computationalism. Info-computationalism is a synthesis informational structure and the computational process – of Informational Structural Realism (the view that nature is a information self-structuring. The process of computation web of informational structures) and Natural Computationalism implements physical laws which act on informational structures. (the view that nature physically computes its own time Through the process of computation, structures change their development). It presents a framework for the development of a forms, [5]. All computation on some level of abstraction is unified approach to nature, with common interpretation of morphological computation – a form-changing/form-generating inanimate nature as well as living organisms and their social process, [4].
    [Show full text]
  • Natural Computing Methods in Bioinformatics: a Survey
    Natural Computing Methods in Bioinformatics: A Survey Francesco Masulli a;b;¤ and Sushmita Mitra c aDepartment of Computer and Information Sciences, University of Genova, Via Dodecaneso 35, 16146 Genoa, ITALY. bCenter for Biotechnology, Temple University, 1900 N 12th Street Philadelphia PA 19122, USA. cMachine Intelligence Unit, Indian Statistical Institute, Kolkata 700 108, INDIA. Abstract Often data analysis problems in Bioinformatics concern the fusion of multisensor outputs or the fusion of multi-source information, where one must integrate dif- ferent kinds of biological data. Natural computing provides several possibilities in Bioinformatics, especially by presenting interesting nature-inspired methodologies for handling such complex problems. In this article we survey the role of natural computing in the domains of protein structure prediction, microarray data analysis and gene regulatory network generation. We utilize the learning ability of neural networks for adapting, uncertainty handling capacity of fuzzy sets and rough sets for modeling ambiguity, and the search potential of genetic algorithms for e±ciently traversing large search spaces. Key words: Natural Computing, Bioinformatics, protein structure prediction, microarray data analysis, biological networks modeling. 1 Introduction The 20th Century is frequently referred as the Century of Biology, given the huge developments of this scienti¯c area that concluded that century with the great success of the Human Genome Project [1,2] producing the full human DNA sequencing.
    [Show full text]
  • Handbook of Natural Computing
    Handbook of Natural Computing Springer Reference Editors • Main Editor – Grzegorz Rozenberg (LIACS, Leiden University, The Netherlands, and Computer Science Dept., University of Colorado, Boulder, USA) • Thomas Bäck (LIACS, Leiden University, The Netherlands) • Joost N. Kok (LIACS, Leiden University, The Netherlands) Details • 4 volumes, 2104 pp., published 08/12 • Printed Book: 978-3-540-92909-3 • eReference (online): 978-3-540-92910-9 • Printed Book + eReference: 978-3-540-92911-6 Overview Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, that is, it investigates models and computational tech- niques inspired by nature, and also it investigates, in terms of information processing, phenomena tak- ing place in nature. Examples of the first strand of research include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata in- spired by intercellular communication; swarm intelligence inspired by the behavior of groups of or- ganisms; artificial immune systems inspired by the natural immune system; artificial life systems in- spired by the properties of natural life in general; membrane computing inspired by the compart- mentalized ways in which cells process information; and amorphous computing inspired by morpho- genesis. Other examples of natural-computing paradigms are quantum computing and molecular com- puting, where the goal is to replace traditional electronic hardware by, for example, bioware in molec- ular computing. In quantum computing, one uses systems small enough to exploit quantum-mechani- cal phenomena to perform computations and to perform secure communications more efficiently than classical physics and, hence, traditional hardware allows.
    [Show full text]
  • Biological Computation As the Revolution of Complex Engineered Systems
    Biological Computation as the Revolution of Complex Engineered Systems Nelson Alfonso Gómez Cruz and Carlos Eduardo Maldonado Modeling and Simulation Laboratory Universidad del Rosario Calle 14 No. 6-25, Bogotá, Colombia ABSTRACT: Provided that there is no theoretical frame for complex engineered systems (CES) as yet, this paper claims that bio-inspired engineering can help provide such a frame. Within CES bio-inspired systems play a key role. The disclosure from bio-inspired systems and biological computation has not been sufficiently worked out, however. Biological computation is to be taken as the processing of information by living systems that is carried out in polynomial time, i.e., efficiently; such processing however is grasped by current science and research as an intractable problem (for instance, the protein folding problem). A remark is needed here: P versus NP problems should be well defined and delimited but biological computation problems are not. The shift from conventional engineering to bio-inspired engineering needs bring the subject (or problem) of computability to a new level. Within the frame of computation, so far, the prevailing paradigm is still the Turing-Church thesis. In other words, conventional engineering is still ruled by the Church-Turing thesis (CTt). However, CES is ruled by CTt, too. Contrarily to the above, we shall argue here that biological computation demands a more careful thinking that leads us towards hypercomputation. Bio- inspired engineering and CES thereafter, must turn its regard toward biological computation. Thus, biological computation can and should be taken as the ground for engineering complex non-linear systems. Biological systems do compute in terms of hypercomputation, indeed.
    [Show full text]
  • Natural/Unconventional Computing and Its Philosophical Significance
    Entropy 2012, 14, 2408-2412; doi:10.3390/e14122408 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Editorial Natural/Unconventional Computing and Its Philosophical Significance Gordana Dodig Crnkovic 1,* and Raffaela Giovagnoli 2 1 Department of Computer Science and Networks, School of Innovation, Design and Engineering Mälardalen University, Västerås 721 23, Sweden 2 Department of Philosophy, Lateran University, Vatican City, Rome 00184, Italy; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +46-21-15-17-25. Received: 31 October 2012; in revised form: 21 November 2012 / Accepted: 26 November 2012 / Published: 27 November 2012 Abstract: In this special issue we present a selection of papers from the Symposium on Natural/Unconventional Computing and its Philosophical Significance, held during the AISB/IACAP 2012 World Congress in Birmingham (UK). This article is an editorial, introducing the special issue of the journal with the selected papers and the research program of Natural/Unconventional Computing. Keywords: natural computing; unconventional computing; computation beyond the Turing limit; unconventional models of computation 1. Introduction The AISB/IACAP 2012 World Congress combined the British Society for the Study of Artificial Intelligence and the Simulation of Behaviour (AISB) convention and the International Association for Computing and Philosophy (IACAP) conference honoring Alan Turing’s essential impact on the theory of computation, AI and philosophy of computing. The Congress was one of the events of the Alan Turing Year. Even though Turing is best known for his Logical Machine (the Turing machine) and the Turing test of a machine's ability to exhibit intelligent behavior, his contribution to the foundations of Entropy 2012, 14 2409 computation is significantly broader in scope.
    [Show full text]
  • Bioinformatics in the Post-Sequence Era
    review Bioinformatics in the post-sequence era Minoru Kanehisa1 & Peer Bork2 doi:10.1038/ng1109 In the past decade, bioinformatics has become an integral part of research and development in the biomedical sciences. Bioinformatics now has an essential role both in deciphering genomic, transcriptomic and proteomic data generated by high-throughput experimental technologies and in organizing information gathered from tra- ditional biology. Sequence-based methods of analyzing individual genes or proteins have been elaborated and expanded, and methods have been developed for analyzing large numbers of genes or proteins simultaneously, such as in the identification of clusters of related genes and networks of interacting proteins. With the complete genome sequences for an increasing number of organisms at hand, bioinformatics is beginning to provide both conceptual bases and practical methods for detecting systemic functional behaviors of the cell and the organism. http://www.nature.com/naturegenetics The exponential growth in molecular sequence data started in The single most important event was the arrival of the Internet, the early 1980s when methods for DNA sequencing became which has transformed databases and access to data, publica- widely available. The data were accumulated in databases such as tions and other aspects of information infrastructure. The Inter- GenBank, EMBL (European Molecular Biology Laboratory net has become so commonplace that it is hard to imagine that nucleotide sequence database), DDBJ (DNA Data Bank of we were living in a world without it only 10 years ago. The rise of Japan), PIR (Protein Information Resource) and SWISS-PROT, bioinformatics has been largely due to the diverse range of large- and computational methods were developed for data retrieval scale data that require sophisticated methods for handling and and analysis, including algorithms for sequence similarity analysis, but it is also due to the Internet, which has made both searches, structural predictions and functional predictions.
    [Show full text]