BLAST Basic Local Alignment Search Tool
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bioinformatics 1: Lecture 3
Bioinformatics 1: Lecture 3 •Pairwise alignment •Substitution •Dynamic Programming algorithm Scoring matrix To prepare an alignment, we first consider the score for aligning (associating) any one character of the first sequence with any one character of the second sequence. A A G A C G T T T A G A C T 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 Exact match 0 0 1 0 0 1 0 0 0 0 1/0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 The cost of mutation is not a constant DNA: A change in the 3rd base in a codon, and sometimes the first base, sometimes conserves the amino acid. No selective pressure. Protein: A change in amino acids that are in the same chemical class conserve their chemical environment. For example: Lys to Arg is conservative because both a positively charged. Conservative amino acid changes N Lys <--> Arg C + N` N N` C N C + C C C N` C C C C O C O C C N N Ile <--> Leu C C C C C C C C O C O C C Ser <--> Thr Asp <--> Glu Asn <--> Gln If the “chemistry” of the sidechain is conserved, then the mutation is less likely to change structure/function. -
BASS: Approximate Search on Large String Databases
BASS: Approximate Search on Large String Databases Jiong Yang Wei Wang Philip Yu UIUC UNC Chapel Hill IBM [email protected] [email protected] [email protected] Abstract Similarity search on a string database can be classified into two categories: exact match and approximate match. The In this paper, we study the problem on how to build an index struc- search of exact match looks for substrings in the database, ture for large string databases to efficiently support various types of which is exactly identical to the query pattern while the search string matching without the necessity of mapping the substrings to of approximate match allows some types of imperfection such a numerical space (e.g., string B-tree and MRS-index) nor the re- as substitutions between certain symbols, some degree of mis- striction of in-memory practice (e.g., suffix tree and suffix array). alignment, and the presence of “wild-card” in the query pat- Towards this goal, we propose a new indexing scheme, BASS-tree, tern. We shall mention that supporting approximate match is to efficiently support general approximate substring match (in terms very important to many applications. For instance, biologists of certain symbol substitutions and misalignments) in sublinear time have observed that mutations between certain pair of amino on a large string database. The key idea behind the design is that all acids may occur at a noticeable probability in some proteins positions in each string are grouped recursively into a fully balanced and such a mutation usually does not alter the biological func- tree according to the similarities of the subsequent segments starting tion of the proteins. -
To Find Information About Arabidopsis Genes Leonore Reiser1, Shabari
UNIT 1.11 Using The Arabidopsis Information Resource (TAIR) to Find Information About Arabidopsis Genes Leonore Reiser1, Shabari Subramaniam1, Donghui Li1, and Eva Huala1 1Phoenix Bioinformatics, Redwood City, CA USA ABSTRACT The Arabidopsis Information Resource (TAIR; http://arabidopsis.org) is a comprehensive Web resource of Arabidopsis biology for plant scientists. TAIR curates and integrates information about genes, proteins, gene function, orthologs gene expression, mutant phenotypes, biological materials such as clones and seed stocks, genetic markers, genetic and physical maps, genome organization, images of mutant plants, protein sub-cellular localizations, publications, and the research community. The various data types are extensively interconnected and can be accessed through a variety of Web-based search and display tools. This unit primarily focuses on some basic methods for searching, browsing, visualizing, and analyzing information about Arabidopsis genes and genome, Additionally we describe how members of the community can share data using TAIR’s Online Annotation Submission Tool (TOAST), in order to make their published research more accessible and visible. Keywords: Arabidopsis ● databases ● bioinformatics ● data mining ● genomics INTRODUCTION The Arabidopsis Information Resource (TAIR; http://arabidopsis.org) is a comprehensive Web resource for the biology of Arabidopsis thaliana (Huala et al., 2001; Garcia-Hernandez et al., 2002; Rhee et al., 2003; Weems et al., 2004; Swarbreck et al., 2008, Lamesch, et al., 2010, Berardini et al., 2016). The TAIR database contains information about genes, proteins, gene expression, mutant phenotypes, germplasms, clones, genetic markers, genetic and physical maps, genome organization, publications, and the research community. In addition, seed and DNA stocks from the Arabidopsis Biological Resource Center (ABRC; Scholl et al., 2003) are integrated with genomic data, and can be ordered through TAIR. -
Computational Biology Lecture 8: Substitution Matrices Saad Mneimneh
Computational Biology Lecture 8: Substitution matrices Saad Mneimneh As we have introduced last time, simple scoring schemes like +1 for a match, -1 for a mismatch and -2 for a gap are not justifiable biologically, especially for amino acid sequences (proteins). Instead, more elaborated scoring functions are used. These scores are usually obtained as a result of analyzing chemical properties and statistical data for amino acids and DNA sequences. For example, it is known that same size amino acids are more likely to be substituted by one another. Similarly, amino acids with same affinity to water are likely to serve the same purpose in some cases. On the other hand, some mutations are not acceptable (may lead to demise of the organism). PAM and BLOSUM matrices are amongst results of such analysis. We will see the techniques through which PAM and BLOSUM matrices are obtained. Substritution matrices Chemical properties of amino acids govern how the amino acids substitue one another. In principle, a substritution matrix s, where sij is used to score aligning character i with character j, should reflect the probability of two characters substituing one another. The question is how to build such a probability matrix that closely maps reality? Different strategies result in different matrices but the central idea is the same. If we go back to the concept of a high scoring segment pair, theory tells us that the alignment (ungapped) given by such a segment is governed by a limiting distribution such that ¸sij qij = pipje where: ² s is the subsitution matrix used ² qij is the probability of observing character i aligned with character j ² pi is the probability of occurrence of character i Therefore, 1 qij sij = ln ¸ pipj This formula for sij suggests a way to constrcut the matrix s. -
Homology & Alignment
Protein Bioinformatics Johns Hopkins Bloomberg School of Public Health 260.655 Thursday, April 1, 2010 Jonathan Pevsner Outline for today 1. Homology and pairwise alignment 2. BLAST 3. Multiple sequence alignment 4. Phylogeny and evolution Learning objectives: homology & alignment 1. You should know the definitions of homologs, orthologs, and paralogs 2. You should know how to determine whether two genes (or proteins) are homologous 3. You should know what a scoring matrix is 4. You should know how alignments are performed 5. You should know how to align two sequences using the BLAST tool at NCBI 1 Pairwise sequence alignment is the most fundamental operation of bioinformatics • It is used to decide if two proteins (or genes) are related structurally or functionally • It is used to identify domains or motifs that are shared between proteins • It is the basis of BLAST searching (next topic) • It is used in the analysis of genomes myoglobin Beta globin (NP_005359) (NP_000509) 2MM1 2HHB Page 49 Pairwise alignment: protein sequences can be more informative than DNA • protein is more informative (20 vs 4 characters); many amino acids share related biophysical properties • codons are degenerate: changes in the third position often do not alter the amino acid that is specified • protein sequences offer a longer “look-back” time • DNA sequences can be translated into protein, and then used in pairwise alignments 2 Find BLAST from the home page of NCBI and select protein BLAST… Page 52 Choose align two or more sequences… Page 52 Enter the two sequences (as accession numbers or in the fasta format) and click BLAST. -
Assembly Exercise
Assembly Exercise Turning reads into genomes Where we are • 13:30-14:00 – Primer Design to Amplify Microbial Genomes for Sequencing • 14:00-14:15 – Primer Design Exercise • 14:15-14:45 – Molecular Barcoding to Allow Multiplexed NGS • 14:45-15:15 – Processing NGS Data – de novo and mapping assembly • 15:15-15:30 – Break • 15:30-15:45 – Assembly Exercise • 15:45-16:15 – Annotation • 16:15-16:30 – Annotation Exercise • 16:30-17:00 – Submitting Data to GenBank Log onto ILRI cluster • Log in to HPC using ILRI instructions • NOTE: All the commands here are also in the file - assembly_hands_on_steps.txt • If you are like me, it may be easier to cut and paste Linux commands from this file instead of typing them in from the slides Start an interactive session on larger servers • The interactive command will start a session on a server better equipped to do genome assembly $ interactive • Switch to csh (I use some csh features) $ csh • Set up Newbler software that will be used $ module load 454 A norovirus sample sequenced on both 454 and Illumina • The vendors use different file formats unknown_norovirus_454.GACT.sff unknown_norovirus_illumina.fastq • I have converted these files to additional formats for use with the assembly tools unknown_norovirus_454_convert.fasta unknown_norovirus_454_convert.fastq unknown_norovirus_illumina_convert.fasta Set up and run the Newbler de novo assembler • Create a new de novo assembly project $ newAssembly de_novo_assembly • Add read data to the project $ addRun de_novo_assembly unknown_norovirus_454.GACT.sff -
B.Sc. (Hons.) Biotech BIOT 3013 Unit-5 Satarudra P Singh
B.Sc. (Hons.) Biotechnology Core Course 13: Basics of Bioinformatics and Biostatistics (BIOT 3013 ) Unit 5: Sequence Alignment and database searching Dr. Satarudra Prakash Singh Department of Biotechnology Mahatma Gandhi Central University, Motihari Challenges in bioinformatics 1. Obtain the genome of an organism. 2. Identify and annotate genes. 3. Find the sequences, three dimensional structures, and functions of proteins. 4. Find sequences of proteins that have desired three dimensional structures. 5. Compare DNA sequences and proteins sequences for similarity. 6. Study the evolution of sequences and species. Sequence alignments lie at the heart of all bioinformatics Definition of Sequence Alignment • Sequence alignment is the procedure of comparing two or more sequences by searching for a series of individual characters or character patterns that are in the same order in the sequences. LGPSSKQTGKGS - SRIWDN Global Alignment LN – ITKSAGKGAIMRLFDA --------TGKG --------- Local Alignment --------AGKG --------- • In global alignment, an attempt is made to align the entire sequences, as many characters as possible. • In local alignment, stretches of sequence with the highest density of matches are given the highest priority, thus generating one or more islands of matches in the aligned sequences. • Eg: problem of locating the famous TATAAT - box (a bacterial promoter) in a piece of DNA. Method for pairwise sequence Alignment: Dynamic Programming • Global Alignment: Needleman- Wunsch Algorithm • Local Alignment: Smith-Waterman Algorithm Needleman & Wunsch algorithm : Global alignment • There are three major phases: 1. initialization 2. Fill 3. Trace back. • Initialization assign values for the first row and column. • The score of each cell is set to the gap score multiplied by the distance from the origin. -
Parameter Advising for Multiple Sequence Alignment
PARAMETER ADVISING FOR MULTIPLE SEQUENCE ALIGNMENT by Daniel Frank DeBlasio Copyright c Daniel Frank DeBlasio 2016 A Dissertation Submitted to the Faculty of the DEPARTMENT OF COMPUTER SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2016 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the disser- tation prepared by Daniel Frank DeBlasio, entitled Parameter Advising for Multiple Sequence Alignment and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Date: 15 April 2016 John Kececioglu Date: 15 April 2016 Alon Efrat Date: 15 April 2016 Stephen Kobourov Date: 15 April 2016 Mike Sanderson Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. Date: 15 April 2016 Dissertation Director: John Kececioglu 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, pro- vided that accurate acknowledgment of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the copyright holder. -
Pairwise Statistical Significance of Local Sequence Alignment Using Sequence-Specific and Position-Specific Substitution Matrices
194 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 1, JANUARY/FEBRUARY 2011 Pairwise Statistical Significance of Local Sequence Alignment Using Sequence-Specific and Position-Specific Substitution Matrices Ankit Agrawal and Xiaoqiu Huang Abstract—Pairwise sequence alignment is a central problem in bioinformatics, which forms the basis of various other applications. Two related sequences are expected to have a high alignment score, but relatedness is usually judged by statistical significance rather than by alignment score. Recently, it was shown that pairwise statistical significance gives promising results as an alternative to database statistical significance for getting individual significance estimates of pairwise alignment scores. The improvement was mainly attributed to making the statistical significance estimation process more sequence-specific and database-independent. In this paper, we use sequence-specific and position-specific substitution matrices to derive the estimates of pairwise statistical significance, which is expected to use more sequence-specific information in estimating pairwise statistical significance. Experiments on a benchmark database with sequence-specific substitution matrices at different levels of sequence-specific contribution were conducted, and results confirm that using sequence-specific substitution matrices for estimating pairwise statistical significance is significantly better than using a standard matrix like BLOSUM62, and than database statistical significance estimates -
The Uniprot Knowledgebase BLAST
Introduction to bioinformatics The UniProt Knowledgebase BLAST UniProtKB Basic Local Alignment Search Tool A CRITICAL GUIDE 1 Version: 1 August 2018 A Critical Guide to BLAST BLAST Overview This Critical Guide provides an overview of the BLAST similarity search tool, Briefly examining the underlying algorithm and its rise to popularity. Several WeB-based and stand-alone implementations are reviewed, and key features of typical search results are discussed. Teaching Goals & Learning Outcomes This Guide introduces concepts and theories emBodied in the sequence database search tool, BLAST, and examines features of search outputs important for understanding and interpreting BLAST results. On reading this Guide, you will Be aBle to: • search a variety of Web-based sequence databases with different query sequences, and alter search parameters; • explain a range of typical search parameters, and the likely impacts on search outputs of changing them; • analyse the information conveyed in search outputs and infer the significance of reported matches; • examine and investigate the annotations of reported matches, and their provenance; and • compare the outputs of different BLAST implementations and evaluate the implications of any differences. finding short words – k-tuples – common to the sequences Being 1 Introduction compared, and using heuristics to join those closest to each other, including the short mis-matched regions Between them. BLAST4 was the second major example of this type of algorithm, From the advent of the first molecular sequence repositories in and rapidly exceeded the popularity of FastA, owing to its efficiency the 1980s, tools for searching dataBases Became essential. DataBase searching is essentially a ‘pairwise alignment’ proBlem, in which the and Built-in statistics. -
Multiple Alignments, Blast and Clustalw
Multiple alignments, blast and clustalW 1. Blast idea: a. Filter out low complexity regions (tandem repeats… that sort of thing) [optional] b. Compile list of high-scoring strings (words, in BLAST jargon) of fixed length in query (threshold T) c. Extend alignments (highs scoring pairs) d. Report High Scoring pairs: score at least S (or an E value lower than some threshold) 2. Multiple Sequence Alignments: a. Attempts to extend dynamic programming techniques to multiple sequences run into problems after only a few proteins (8 average proteins were a problem early in 2000s) b. Heuristic approach c. Idea (Progressive Approach): i. homologous sequences are evolutionarily related ii. Build multiple alignment by series of pairwise alignments based off some phylogenetic tree (the initial tree or the guide tree ) iii. Add in more distantly related sequences d. Progressive Sequence alignment example: 1. NYLS & NKYLS: N YLS N(K|-)YLS NKYLS 2. NFS & NFLS: N YLS NF S NF(L|-)S NKYLS NFLS 3. N(K|-)YLS & NF(L|-)S N YLS N(K|-)(Y|F)(L|-)S NKYLS N YLS N F S N FLS e. Assessment: i. Works great for fairly similar sequences ii. Not so well for highly divergent ones f. Two Problems: i. local minimum problem: Algorithm greedily adds sequences based off of tree— might miss global solution ii. Alignment parameters: Mistakes (misaligned regions) early in procedure can’t be corrected later. g. ClustalW does multiple alignments and attempts to solve alignment parameter problem i. gap costs are dynamically varied based on position and amino acid ii. weight matrices are changed as the level of divergence between sequence increases (say going from PAM30 -> PAM60) iii. -
Deriving Amino Acid Exchange Matrices (II) and Multiple Sequence Alignment (I) Summarysummary Dayhoff’Sdayhoff’S PAMPAM--Matricesmatrices
IntroductionIntroduction toto bioinformaticsbioinformatics lecturelecture 88 Deriving amino acid exchange matrices (II) and Multiple sequence alignment (I) SummarySummary Dayhoff’sDayhoff’s PAMPAM--matricesmatrices Derived from global alignments of closely related sequences. Matrices for greater evolutionary distances are extrapolated from those for lesser ones. The number with the matrix (PAM40, PAM100) refers to the evolutionary distance; greater numbers are greater distances. Several later groups have attempted to extend Dayhoff's methodology or re-apply her analysis using later databases with more examples. Extensions of Dayhoff’s methodology: > Jones, Thornton and coworkers used the same methodology as Dayhoff but with modern databases (CABIOS 8:275). > Gonnett and coworkers (Science 256:1443) used a slightly different (but theoretically equivalent) methodology. > Henikoff & Henikoff (Proteins 17:49) compared these two newer versions of the PAM matrices with Dayhoff's originals. TheThe BLOSUMBLOSUM matricesmatrices ((BLOcksBLOcks SUbstitutionSUbstitution Matrix)Matrix) The BLOSUM series of matrices were created by Steve Henikoff and colleagues (PNAS 89:10915). Derived from local, un-gapped alignments of distantly related sequences. All matrices are directly calculated; no extrapolations are used. Again: the observed frequency of each pair is compared to the expected frequency (which is essentially the product of the frequencies of each residue in the dataset). Then: Log-odds matrix. TheThe BlocksBlocks DatabaseDatabase The Blocks Database contains multiple alignments of conserved regions in protein families. Blocks are multiply aligned un-gapped segments corresponding to the most highly conserved regions of proteins. The blocks for the BLOCKS database are made automatically by looking for the most highly conserved regions in groups of proteins represented in the PROSITE database.