Sensory Neurons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TEST YOUR TASTE Featuring a “Class Experiment” and “Try Your Own Experiment” TEACHER GUIDE
NEUROSCIENCE FOR KIDS http://faculty.washington.edu/chudler/neurok.html OUR CHEMICAL SENSES: TASTE TEST YOUR TASTE Featuring a “Class Experiment” and “Try Your Own Experiment” TEACHER GUIDE WHAT STUDENTS WILL DO · predict and then determine their ability to identify food samples by taste alone (holding the nose) and then by taste plus smell · collect all class data on identifying food samples and calculate the percentage of correct and incorrect answers for each method (with and without smell) · list factors that affect our ability to identify substances by taste · discuss the functions of the sense of taste · draw a simple diagram of the neural “circuitry” from the taste receptors to the brain · learn how to design experiments that include asking specific questions, defining control conditions, and changing one variable at a time · devise their own experiments to extend the study of the sense of taste SUGGESTED TIMES for these activities: 45 minutes for discussing background concepts and introducing the activities; 45 minutes for the “Class Experiment;” and 45 minutes for “Try Your Own Experiment.” 1 SETTING UP THE LAB Supplies For the Introduction to the Lab Activities Taste papers: control papers sodium benzoate papers phenylthiourea papers Source: Carolina Biological Supply Company, 1-800-334-5551 (or other biological or chemical supply companies) For the Class Experiment Food items, cut into identical chunks, about one to two-centimeter cubes. Food cubes should be prepared ahead of time by a person wearing latex gloves and using safe preparation techniques. Store the cubes in small lidded containers, in the refrigerator. Prepare enough for each student group to have containers of four or five of the following items, or seasonal items easily available. -
How Does the Balance System Work?
How Does the Balance System Work? Author: Shannon L.G. Hoffman, PT, DPt Sara MacDowell PT, DPT Fact Sheet Many systems work together to help you keep your balance. The goal is to keep your body and vision stable Peripheral Sensory Systems: 1) Vision: Your vision helps you see where your head and body are in rela- tion to the world around you. 2) Somatosensory/Proprioception: We use the feeling from our feet against the ground as well as special sensors in our joints to know where our feet and legs are positioned. It also tells how your head is oriented to your neck and shoulders. Produced by 3) Vestibular system: Balance organs in the inner ear tell the brain about the movements and position of your head. There are 3 canals in each ear that sense when you move your head and help keep your vision clear. Central Processing: Information from these 3 systems is sent to the brain for processing. The brain stem also gets information from other parts of the brain called the cerebellum and cerebral cortex, mostly about past experiences that have A Special Interest affected your sense of balance. Your brain can control balance by using Group of the information that is most important for a certain situation. For example, in the dark, when you can’t use your vision, your brain will use more information from your legs and feet and your inner ear. If you are walking on a sandy beach during the day, you can’t trust your feet on the ground and your brain will use your eyes and inner ear more. -
SENSORY MOTOR COORDINATION in ROBONAUT Richard Alan Peters
SENSORY MOTOR COORDINATION IN ROBONAUT 5 Richard Alan Peters 11 Vanderbilt University School of Engineering JSC Mail Code: ER4 30 October 2000 Robert 0. Ambrose Robotic Systems Technology Branch Automation, Robotics, & Simulation Division Engineering Directorate Richard Alan Peters II Robert 0. Ambrose SENSORY MOTOR COORDINATION IN ROBONAUT Final Report NASNASEE Summer Faculty Fellowship Program - 2000 Johnson Space Center Prepared By: Richard Alan Peters II, Ph.D. Academic Rank: Associate Professor University and Department: Vanderbilt University Department of Electrical Engineering and Computer Science Nashville, TN 37235 NASNJSC Directorate: Engineering Division: Automation, Robotics, & Simulation Branch: Robotic Systems Technology JSC Colleague: Robert 0. Ambrose Date Submitted: 30 October 2000 Contract Number: NAG 9-867 13-1 ABSTRACT As a participant of the year 2000 NASA Summer Faculty Fellowship Program, I worked with the engineers of the Dexterous Robotics Laboratory at NASA Johnson Space Center on the Robonaut project. The Robonaut is an articulated torso with two dexterous arms, left and right five-fingered hands, and a head with cameras mounted on an articulated neck. This advanced space robot, now dnven only teleoperatively using VR gloves, sensors and helmets, is to be upgraded to a thinking system that can find, in- teract with and assist humans autonomously, allowing the Crew to work with Robonaut as a (junior) member of their team. Thus, the work performed this summer was toward the goal of enabling Robonaut to operate autonomously as an intelligent assistant to as- tronauts. Our underlying hypothesis is that a robot can deveZop intelligence if it learns a set of basic behaviors ([.e., reflexes - actions tightly coupled to sensing) and through experi- ence learns how to sequence these to solve problems or to accomplish higher-level tasks. -
Nociceptors – Characteristics?
Nociceptors – characteristics? • ? • ? • ? • ? • ? • ? Nociceptors - true/false No – pain is an experience NonociceptornotNoNo – –all nociceptors– TRPV1 nociceptorsC fibers somata is areexpressed may alsoin have • Nociceptors are pain fibers typically associated with Typically yes, but therelowsensorynociceptorsinhave manyisor ahigh efferentsemantic gangliadifferent thresholds and functions mayproblemnot cells, all befor • All C fibers are nociceptors nociceptoractivationsmallnociceptorsincluding or large non-neuronalactivation are in Cdiameter fibers tissue • Nociceptors have small diameter somata • All nociceptors express TRPV1 channels • Nociceptors have high thresholds for response • Nociceptors have only afferent (sensory) functions • Nociceptors encode stimuli into the noxious range Nociceptors – outline Why are nociceptors important? What’s a nociceptor? Nociceptor properties – somata, axons, content, etc. Nociceptors in skin, muscle, joints & viscera Mechanically-insensitive nociceptors (sleeping or silent) Microneurography Heterogeneity Why are nociceptors important? • Pain relief when remove afferent drive • Afferent is more accessible • With peripherally restricted intervention, can avoid many of the most deleterious side effects Widespread hyperalgesia in irritable bowel syndrome is dynamically maintained by tonic visceral impulse input …. Price DD, Craggs JG, Zhou Q, Verne GN, et al. Neuroimage 47:995-1001, 2009 IBS IBS rectal rectal placebo lidocaine rectal lidocaine Time (min) Importantly, areas of somatic referral were -
Cortex Necessary for Pain — but Not in Sense That Matters
Shriver, Adam J. (2016) Cortex necessary for pain — but not in sense that matters. Animal Sentience 3(27) DOI: 10.51291/2377-7478.1051 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact [email protected]. Animal Sentience 2016.034: Shriver Commentary on Key on Fish Pain Cortex necessary for pain — but not in sense that matters Commentary on Key on Fish Pain Adam Shriver Center for Neuroscience and Society University of Pennsylvania Abstract: Certain cortical regions are necessary for pain in humans in the sense that, at particular times, they play a direct role in pain. However, it is not true that they are necessary in the more important sense that pain is never possible in humans without them. There are additional details from human lesion studies concerning functional plasticity that undermine Key’s (2016) interpretation. Moreover, no one has yet identified any specific behaviors that mammalian cortical pain regions make possible that are absent in fish. Keywords: pain, sentience, neuroethics, cortical regions, affect, fish, mammals, vertebrates, consciousness, brain plasticity Adam Shriver [email protected] is a fellow at the Center for Neuroscience and Society at the University of Pennsylvania. He is an ethicist and a philosopher of cognitive science who studies the neuroscience of affective states that contribute to subjective well-being. http://medicalethics.med.upenn.edu/people/administration/adam- shriver Key’s (2016) target article, “Why fish do not feel pain” is the strongest yet in a series of recent papers arguing that fish are incapable of consciously experiencing pain. -
Sensory Change Following Motor Learning
A. M. Green, C. E. Chapman, J. F. Kalaska and F. Lepore (Eds.) Progress in Brain Research, Vol. 191 ISSN: 0079-6123 Copyright Ó 2011 Elsevier B.V. All rights reserved. CHAPTER 2 Sensory change following motor learning { k { { Andrew A. G. Mattar , Sazzad M. Nasir , Mohammad Darainy , and { } David J. Ostry , ,* { Department of Psychology, McGill University, Montréal, Québec, Canada { Shahed University, Tehran, Iran } Haskins Laboratories, New Haven, Connecticut, USA k The Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA Abstract: Here we describe two studies linking perceptual change with motor learning. In the first, we document persistent changes in somatosensory perception that occur following force field learning. Subjects learned to control a robotic device that applied forces to the hand during arm movements. This led to a change in the sensed position of the limb that lasted at least 24 h. Control experiments revealed that the sensory change depended on motor learning. In the second study, we describe changes in the perception of speech sounds that occur following speech motor learning. Subjects adapted control of speech movements to compensate for loads applied to the jaw by a robot. Perception of speech sounds was measured before and after motor learning. Adapted subjects showed a consistent shift in perception. In contrast, no consistent shift was seen in control subjects and subjects that did not adapt to the load. These studies suggest that motor learning changes both sensory and motor function. Keywords: motor learning; sensory plasticity; arm movements; proprioception; speech motor control; auditory perception. Introduction the human motor system and, likewise, to skill acquisition in the adult nervous system. -
Does Serotonin Deficiency Lead to Anosmia, Ageusia, Dysfunctional Chemesthesis and Increased Severity of Illness in COVID-19?
Does serotonin deficiency lead to anosmia, ageusia, dysfunctional chemesthesis and increased severity of illness in COVID-19? Amarnath Sen 40 Jadunath Sarbovouma Lane, Kolkata 700035, India, E-mail: [email protected] ABSTRACT Anosmia, ageusia and impaired chemesthetic sensations are quite common in coronavirus patients. Different mechanisms have been proposed to explain the anosmia and ageusia in COVID-19, though for reversible anosmia and ageusia, which are resolved quickly, the proposed mechanisms seem to be incomplete. In addition, the reason behind the impaired chemesthetic sensations in some coronavirus patients remains unknown. It is proposed that coronavirus patients suffer from depletion of tryptophan (an essential amino acid), as ACE2, a key element in the process of absorption of tryptophan from the food, is significantly reduced due to the attack of coronavirus, which use ACE2 as the receptor for its entry into the host cells. The depletion of tryptophan should lead to a deficit of serotonin (5-HT) in SARS-COV- 2 patients because tryptophan is the precursor in the synthesis of 5-HT. Such 5-HT deficiency can give rise to anosmia, ageusia and dysfunctional chemesthesis in COVID-19, given the fact that 5-HT is an important neuromodulator in the olfactory neurons and taste receptor cells and 5-HT also enhances the nociceptor activity of transient receptor potential channels (TRP channels) responsible for the chemesthetic sensations. In addition, 5-HT deficiency is expected to worsen silent hypoxemia and depress hypoxic pulmonary vasoconstriction (a protective reflex) leading to an increased severity of the disease and poor outcome. Melatonin, a potential adjuvant in the treatment of COVID-19, which can tone down cytokine storm, is produced from 5-HT and is expected to decrease due to the deficit of 5-HT in the coronavirus patients. -
Dollars and Sense
GET MONEY SMARTS Take Your First Steps To A Promising Financial Future! Brought to you by MGSLP Table of Contents Introduction & Goals 1 Section 1: Beginning Sound Money Management Beginning Money Management 5 Savings Accounts 6 Checking Accounts 7 Paychecks 13 Increasing Your Gross Pay 14 Researching Careers 15 Earning Power 16 Section 2: Budgeting Starting a Budget 18 High School Budget 19 College Budget 21 Saving Money While in College 23 Budgeting after College 24 Being Money Wise 25 Section 3: Credit and Credit Cards All About Credit 27 Vehicle Loans 28 Credit Cards 30 Controlling Credit Card Usage 33 Credit Reports 34 Credit Scores 38 Maintaining Good Credit 39 Improving Credit 40 Section 4: Higher Education and Financial Aid Montana Colleges & Universities 45 FAFSA 47 Types of Financial Aid 49 Scholarships 50 Student Loans 51 Direct Loans & Limits 52 Private Loans 54 Student Loan Payment Chart 55 Save Money on Student Loans 56 Section 5: Student Loan Repayment Managing Student Loan Repayment 58 Understanding Student Loan Repayment 59 Loan Consolidation 61 Loan Forgiveness 62 Loan Default 64 Pledge 65 Introduction The Office of the Commissioner of Higher Education and the Montana University System-Office of Student Financial Services, is committed to providing tools that enable financial responsibility. We encourage you to receive education and training that may increase your earning potential as you move into the future. The purpose of this publication is to provide a resource that will help develop financial literacy skills. We -
Ion Channels of Nociception
International Journal of Molecular Sciences Editorial Ion Channels of Nociception Rashid Giniatullin A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland; Rashid.Giniatullin@uef.fi; Tel.: +358-403553665 Received: 13 May 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: The special issue “Ion Channels of Nociception” contains 13 articles published by 73 authors from different countries united by the main focusing on the peripheral mechanisms of pain. The content covers the mechanisms of neuropathic, inflammatory, and dental pain as well as pain in migraine and diabetes, nociceptive roles of P2X3, ASIC, Piezo and TRP channels, pain control through GPCRs and pharmacological agents and non-pharmacological treatment with electroacupuncture. Keywords: pain; nociception; sensory neurons; ion channels; P2X3; TRPV1; TRPA1; ASIC; Piezo channels; migraine; tooth pain Sensation of pain is one of the fundamental attributes of most species, including humans. Physiological (acute) pain protects our physical and mental health from harmful stimuli, whereas chronic and pathological pain are debilitating and contribute to the disease state. Despite active studies for decades, molecular mechanisms of pain—especially of pathological pain—remain largely unaddressed, as evidenced by the growing number of patients with chronic forms of pain. There are, however, some very promising advances emerging. A new field of pain treatment via neuromodulation is quickly growing, as well as novel mechanistic explanations unleashing the efficiency of traditional techniques of Chinese medicine. New molecular actors with important roles in pain mechanisms are being characterized, such as the mechanosensitive Piezo ion channels [1]. Pain signals are detected by specialized sensory neurons, emitting nerve impulses encoding pain in response to noxious stimuli. -
Equilibrioception: a Method to Evaluate the Sense of Balance
Equilibrioception: A Method To Evaluate The Sense Of Balance Matteo Cardaioli when perturbations occur. This ability to monitor and GFT maintain balance can be considered as a physiological Padova, Italy sense, so, as for the other senses, it is fair to assume [email protected] that healthy people can perceive and evaluate Marina Scattolin differences between balance states. The aim of this Department of General Psycology study is to investigate how changes in stabilometric Padova, Italy parametres are perceived by young, healthy adults. [email protected] Participants were asked to stand still on a Wii Balance Patrizia Bisiacchi Board (WBB) with feet in a constrained position; 13 Department of General Psycology trials of 30 s each were performed by each subject, the Padova, Italy order of Eyes Open (EO) and Eyes Closed (EC) trials [email protected] being semi-randomized. At the end of each trial (except the first one), participants were asked to judge if their performance was better or worse than the one in the immediately preceding trial. SwayPath ratio data were used to calculate the Just Noticeable Difference (JND) between two consecutive trials, which was of 0.2 when participants improved their performance from one trial Abstract to the next, and of 0.4 when performance on a trial was In this study, we present an algorithm for the worse than in the previous one. This “need” of a bigger assessment of one’s own perception of balance difference for the worsening to be perceived seems to (equilibrioception). Upright standing position is suggest a tendency towards overestimation of one’s maintained by continuous updating and integration of own balance. -
Diversification and Specialization of Touch Receptors in Skin
Downloaded from http://perspectivesinmedicine.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Diversification and Specialization of Touch Receptors in Skin David M. Owens1,2 and Ellen A. Lumpkin1,3 1Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York 10032 2Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032 3Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032 Correspondence: [email protected] Our skin is the furthest outpost of the nervous system and a primary sensor for harmful and innocuous external stimuli. As a multifunctional sensory organ, the skin manifests a diverse and highly specialized array of mechanosensitive neurons with complex terminals, or end organs, which are able to discriminate different sensory stimuli and encode this information for appropriate central processing. Historically, the basis for this diversity of sensory special- izations has been poorly understood. In addition, the relationship between cutaneous me- chanosensory afferents and resident skin cells, including keratinocytes, Merkel cells, and Schwann cells, during the development and function of tactile receptors has been poorly defined. In this article, we will discuss conserved tactile end organs in the epidermis and hair follicles, with a focus on recent advances in our understanding that have emerged from studies of mouse hairy skin. kin is our body’s protective covering and skills, including typing, feeding, and dressing Sour largest sensory organ. Unique among ourselves. Touch is also important for social ex- our sensory systems, the skin’s nervous system change, including pair bonding and child rear- www.perspectivesinmedicine.org gives rise to distinct sensations, including gentle ing (Tessier et al. -
The Human Balance System: a Complex Coordination Of
The Human Balance ANATOMY System: A Complex Coordination of Central and Peripheral Systems By Vestibular Disorders Association, with contributions by Mary Ann BALANCE Watson, MA, F. Owen Black, MD, FACS, and Matthew Crowson, MD To maintain balance we use input from our vision Good balance is often taken for granted. Most people don’t find it difficult (eyes), proprioception to walk across a gravel driveway, transition from walking on a sidewalk (muscles/joints), to grass, or get out of bed in the middle of the night without stumbling. and vestibular system However, with impaired balance such activities can be extremely fatiguing (inner ear). and sometimes dangerous. Symptoms that accompany the unsteadiness can include dizziness, vertigo, hearing and vision problems, and difficulty with concentration and memory. ARTICLE WHAT IS BALANCE? Balance is the ability to maintain the body’s center of mass over its base of support. 1 A properly functioning balance system allows humans to see clearly while moving, identify orientation with respect to gravity, determine direction and speed of movement, and make automatic postural adjustments to maintain posture and stability in various 036 conditions and activities. Balance is achieved and maintained by a complex set of sensorimotor control systems that include sensory input from vision (sight), DID THIS ARTICLE proprioception (touch), and the vestibular system (motion, equilibrium, HELP YOU? spatial orientation); integration of that sensory input; and motor output SUPPORT VEDA @ to the eye and body muscles. Injury, disease, certain drugs, or the aging VESTIBULAR.ORG process can affect one or more of these components. In addition to the contribution of sensory information, there may also be psychological factors that impair our sense of balance.