Validation of the Sea Ice Surface Albedo Scheme of the Regional
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Climate Models and Their Evaluation
8 Climate Models and Their Evaluation Coordinating Lead Authors: David A. Randall (USA), Richard A. Wood (UK) Lead Authors: Sandrine Bony (France), Robert Colman (Australia), Thierry Fichefet (Belgium), John Fyfe (Canada), Vladimir Kattsov (Russian Federation), Andrew Pitman (Australia), Jagadish Shukla (USA), Jayaraman Srinivasan (India), Ronald J. Stouffer (USA), Akimasa Sumi (Japan), Karl E. Taylor (USA) Contributing Authors: K. AchutaRao (USA), R. Allan (UK), A. Berger (Belgium), H. Blatter (Switzerland), C. Bonfi ls (USA, France), A. Boone (France, USA), C. Bretherton (USA), A. Broccoli (USA), V. Brovkin (Germany, Russian Federation), W. Cai (Australia), M. Claussen (Germany), P. Dirmeyer (USA), C. Doutriaux (USA, France), H. Drange (Norway), J.-L. Dufresne (France), S. Emori (Japan), P. Forster (UK), A. Frei (USA), A. Ganopolski (Germany), P. Gent (USA), P. Gleckler (USA), H. Goosse (Belgium), R. Graham (UK), J.M. Gregory (UK), R. Gudgel (USA), A. Hall (USA), S. Hallegatte (USA, France), H. Hasumi (Japan), A. Henderson-Sellers (Switzerland), H. Hendon (Australia), K. Hodges (UK), M. Holland (USA), A.A.M. Holtslag (Netherlands), E. Hunke (USA), P. Huybrechts (Belgium), W. Ingram (UK), F. Joos (Switzerland), B. Kirtman (USA), S. Klein (USA), R. Koster (USA), P. Kushner (Canada), J. Lanzante (USA), M. Latif (Germany), N.-C. Lau (USA), M. Meinshausen (Germany), A. Monahan (Canada), J.M. Murphy (UK), T. Osborn (UK), T. Pavlova (Russian Federationi), V. Petoukhov (Germany), T. Phillips (USA), S. Power (Australia), S. Rahmstorf (Germany), S.C.B. Raper (UK), H. Renssen (Netherlands), D. Rind (USA), M. Roberts (UK), A. Rosati (USA), C. Schär (Switzerland), A. Schmittner (USA, Germany), J. Scinocca (Canada), D. Seidov (USA), A.G. -
Chapter 3. Modelling the Climate System
Introduction to climate dynamics and climate modelling - http://www.climate.be/textbook Chapter 3. Modelling the climate system 3.1 Introduction 3.1.1 What is a climate model ? In general terms, a climate model could be defined as a mathematical representation of the climate system based on physical, biological and chemical principles (Fig. 3.1). The equations derived from these laws are so complex that they must be solved numerically. As a consequence, climate models provide a solution which is discrete in space and time, meaning that the results obtained represent averages over regions, whose size depends on model resolution, and for specific times. For instance, some models provide only globally or zonally averaged values while others have a numerical grid whose spatial resolution could be less than 100 km. The time step could be between minutes and several years, depending on the process studied. Even for models with the highest resolution, the numerical grid is still much too coarse to represent small scale processes such as turbulence in the atmospheric and oceanic boundary layers, the interactions of the circulation with small scale topography features, thunderstorms, cloud micro-physics processes, etc. Furthermore, many processes are still not sufficiently well-known to include their detailed behaviour in models. As a consequence, parameterisations have to be designed, based on empirical evidence and/or on theoretical arguments, to account for the large-scale influence of these processes not included explicitly. Because these parameterisations reproduce only the first order effects and are usually not valid for all possible conditions, they are often a large source of considerable uncertainty in models. -
Chapter 1 Ozone and Climate
1 Ozone and Climate: A Review of Interconnections Coordinating Lead Authors John Pyle (UK), Theodore Shepherd (Canada) Lead Authors Gregory Bodeker (New Zealand), Pablo Canziani (Argentina), Martin Dameris (Germany), Piers Forster (UK), Aleksandr Gruzdev (Russia), Rolf Müller (Germany), Nzioka John Muthama (Kenya), Giovanni Pitari (Italy), William Randel (USA) Contributing Authors Vitali Fioletov (Canada), Jens-Uwe Grooß (Germany), Stephen Montzka (USA), Paul Newman (USA), Larry Thomason (USA), Guus Velders (The Netherlands) Review Editors Mack McFarland (USA) IPCC Boek (dik).indb 83 15-08-2005 10:52:13 84 IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System Contents EXECUTIVE SUMMARY 85 1.4 Past and future stratospheric ozone changes (attribution and prediction) 110 1.1 Introduction 87 1.4.1 Current understanding of past ozone 1.1.1 Purpose and scope of this chapter 87 changes 110 1.1.2 Ozone in the atmosphere and its role in 1.4.2 The Montreal Protocol, future ozone climate 87 changes and their links to climate 117 1.1.3 Chapter outline 93 1.5 Climate change from ODSs, their substitutes 1.2 Observed changes in the stratosphere 93 and ozone depletion 120 1.2.1 Observed changes in stratospheric ozone 93 1.5.1 Radiative forcing and climate sensitivity 120 1.2.2 Observed changes in ODSs 96 1.5.2 Direct radiative forcing of ODSs and their 1.2.3 Observed changes in stratospheric aerosols, substitutes 121 water vapour, methane and nitrous oxide 96 1.5.3 Indirect radiative forcing of ODSs 123 1.2.4 Observed temperature -
Tracking Climate Models
TRACKING CLIMATE MODELS CLAIRE MONTELEONI*, GAVIN SCHMIDT**, AND SHAILESH SAROHA*** Abstract. Climate models are complex mathematical models designed by meteorologists, geo- physicists, and climate scientists to simulate and predict climate. Given temperature predictions from the top 20 climate models worldwide, and over 100 years of historical temperature data, we track the changing sequence of which model currently predicts best. We use an algorithm due to Monteleoni and Jaakkola that models the sequence of observations using a hierarchical learner, based on a set of generalized Hidden Markov Models (HMM), where the identity of the current best climate model is the hidden variable. The transition probabilities between climate models are learned online, simultaneous to tracking the temperature predictions. On historical data, our online learning algorithm's average prediction loss nearly matches that of the best performing climate model in hindsight. Moreover its performance surpasses that of the average model predic- tion, which was the current state-of-the-art in climate science, the median prediction, and least squares linear regression. We also experimented on climate model predictions through the year 2098. Simulating labels with the predictions of any one climate model, we found significantly im- proved performance using our online learning algorithm with respect to the other climate models, and techniques. 1. Introduction The threat of climate change is one of the greatest challenges currently facing society. With the increased threats of global warming, and the increasing severity of storms and natural disasters, improving our understanding of the climate system has become an international priority. This system is characterized by complex and structured phenomena that are imperfectly observed and even more imperfectly simulated. -
Verification of a New NOAA/NSIDC Passive Microwave Sea-Ice
RESEARCH/REVIEW ARTICLE Verification of a new NOAA/NSIDC passive microwave sea-ice concentration climate record Walter N. Meier,1 Ge Peng,2,3 Donna J. Scott4 & Matt H. Savoie4 1 Cryospheric Sciences Lab, Code 615, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD 20771, USA 2 Cooperative Institute for Climate and Satellites, North Carolina State University, Raleigh, NC, USA 3 Remote Sensing and Applications Division, National Oceanic and Atmospheric Administration National Climatic Data Center, 151 Patton Avenue, Asheville, NC 28801, USA 4 National Snow and Ice Data Center, University of Colorado, UCB 449, Boulder CO 80309, USA Keywords Abstract Sea ice; Arctic and Antarctic oceans; climate data record; evaluation; passive A new satellite-based passive microwave sea-ice concentration product microwave remote sensing. developed for the National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) programme is evaluated via comparison with Correspondence other passive microwave-derived estimates. The new product leverages two Walter N. Meier, Cryospheric Sciences well-established concentration algorithms, known as the NASA Team and Lab, Code 615, National Aeronautics and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration Goddard Space Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea- Flight Center, Greenbelt, MD 20771, USA. ice estimates compare well with similar GSFC products while also fulfilling all E-mail: [email protected] NOAA CDR initial operation capability (IOC) requirements, including (1) self- describing file format, (2) ISO 19115-2 compliant collection-level metadata, (3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. -
Insights Into Paleoclimate Modeling
Insights into paleoclimate modeling EMMA J. STONE1, P. BAKKER2, S. CHARBIT3, S.P. RITZ4 AND V. VARMA5 1School of Geographical Sciences, University of Bristol, UK; [email protected] 2Earth & Climate Cluster, Department of Earth Sciences, Vrije Universiteit Amsterdam, The Netherlands; 3Laboratoire des Sciences du Climat et de l'Environnement, CEA Saclay, Gif-sur-Yvette, France; 4Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Switzerland; 5Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Germany We describe climate modeling in a paleoclimatic context by highlighting the types of models used, the logistics involved and the issues that inherently arise from simulating the climate system on long timescales. n contrast to "data paleoclimatologists" requires performing simulations on the al. 2011). Although computing advance- Past 4Future: Behind the Scenes 4Future: Past Iwho encounter experimental chal- order of thousands to tens of thousands ments have allowed transient climate lenges, and challenges linked to archive of model years and due to computa- experiments to be realized on long tim- sampling and working in remote and/or tional time this is not easily achievable escales, performing snapshot simulations difficult environments (e.g. Gersonde and with a GCM. Therefore, compromises are with EMICs or GCMs is still frequent and Seidenkrantz; Steffensen; Verheyden and required in terms of model resolution, useful (see Lunt et al. 2012). Genty, this issue) we give a perspective complexity, number of Earth system com- on the challenges encountered by the ponents and the timescale of the simula- Climate modeling by Past4Future "computer modeling paleoclimatologist". -
Climate Modeling
Climate Modeling Climate models are important tools for improving our understanding and predictability of climate behavior on seasonal, annual, decadal, and centennial time scales. Models investigate the degree to which observed climate changes may be due to natural variability, human activity, or a combination of both. Their results and projections provide essential information to better inform decisions of national, regional, and local importance, such as water resource management, agriculture, transportation, and urban planning. The Geophysical Fluid Dynamics Laboratory has been one of the world leaders in climate modeling and simulation for the past 50 years. Beginning in the 1960s, GFDL scientists developed the first coupled ocean-atmosphere general circulation climate model, and have continued to pioneer improvements and advances in a growing modeling community. State-of-the art climate modeling at GFDL requires vast computational resources, including supercomputers with thousands of processors and petabytes of data storage. What is a Global Climate Model? A global climate model (GCM) is a complex mathematical representation of the major climate system components (atmosphere, land surface, ocean, and sea ice), and their interactions. Earth's energy balance between the four components is the key to long- term climate prediction. The main climate system components treated in a climate model are: • The atmospheric component, which simulates clouds and aerosols, and plays a large role in transport of heat and water around the globe. • The land surface component, which simulates surface characteristics such as vegetation, snow cover, soil water, rivers, and carbon storing. • The ocean component, which simulates current movement and mixing, and biogeochemistry, since the ocean is the dominant reservoir of heat and carbon in the climate system. -
The Jormungand Climate Model
The Jormungand Climate Model By Christopher V. Rackauckas Abstract The geological and paleomagnetic record indicate that around 750 million and 580 millions years ago glaciers grew near the equator, though as of yet we do not fully understand the nature of these glacia- tions. The well-known Snowball Earth Hypothesis states that the Earth was covered entirely by glaciers. However, it is hard for this hypothesis to account for certain aspects of the biological evidence such as the survival of photosynthetic eukaryotes. Thus the Jormungand Hypothesis was developed as an alternative to the Snowball Earth Hypothesis. In this paper we investigate previous models of the Jormungand state and look at the dynamics of the Hadley cells to develop a new model to represent the Jormungand Hypothesis. We end by solving for an analytical approximation to the model using a nite Legendre expansion and geometric singular perturbation theory. The resultant model gives a stable equilibrium point near the equator with strong hysteresis that satises the Jormungand Hypothesis. 1 Introduction Geological and paleomagnetic evidence indicates that glaciers grew near the equator during at least two time periods between 750 million and 580 million years ago in what is known as the Neoproterozoic era [3, 4]. To explain these ndings, the Snowball Earth Hypothesis was proposed. The Snowball Earth hypothesis states the the Earth's surface was covered entirely by glaciers. However, biological evidence such as the survival of photosynthetic eukaryotes has lead some researchers to support alternative hypotheses [1]. Many of these alternatives are unable to satisfy the strong hysteresis of CO2 seen in the data (which is the existence of two stable states over a large range of CO2 values). -
Climate Investigations Using Ice Sheet and Mass Balance Models with Emphasis on North American Glaciation Sean David Birkel
The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 2010 Climate Investigations Using Ice Sheet and Mass Balance Models with Emphasis on North American Glaciation Sean David Birkel Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Glaciology Commons Recommended Citation Birkel, Sean David, "Climate Investigations Using Ice Sheet and Mass Balance Models with Emphasis on North American Glaciation" (2010). Electronic Theses and Dissertations. 97. http://digitalcommons.library.umaine.edu/etd/97 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. CLIMATE INVESTIGATIONS USING ICE SHEET AND MASS BALANCE MODELS WITH EMPHASIS ON NORTH AMERICAN GLACIATION By Sean David Birkel B.S. University of Maine, 2002 M.S. University of Maine, 2004 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Earth Sciences) The Graduate School The University of Maine December, 2010 Advisory Committee: Peter O. Koons, Professor of Earth Sciences, Advisor George H. Denton, Libra Professor of Earth Sciences, Co-advisor Fei Chai, Professor of Oceanography James L. Fastook, Professor of Computer Science Brenda L. Hall, Professor of Earth Science Terrence J. Hughes, Professor Emeritus of Earth Science ©2010 Sean David Birkel All Rights Reserved iii CLIMATE INVESTIGATIONS USING ICE SHEET AND MASS BALANCE MODELS WITH EMPHASIS ON NORTH AMERICAN GLACIATION By Sean D. Birkel Thesis Advisor: Dr. Peter O. Koons An Abstract of the Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Earth Sciences) December, 2010 This dissertation describes the application of the University of Maine Ice Sheet Model (UM-ISM) and Environmental Change Model (UM-ECM) to understanding mechanisms of ice-sheet/climate integration during ice ages. -
List of Commonly Used Variables for Sea-Ice Studies
(A) (B) Free Drift Linear Viscosity (C) (D) Ideal Plastic Viscous Plastic Collision Induced Rheology Figure 2.1: Schematic representation of the most commonly used rheologies includ- ing (A) free drift, (B) linear viscosity, (C) ideal and viscous plastic, and (D) collision induced. Modified from Washington and Parkinson (2005; Figure 3.24) 15 Figure 2.2: Schematic representation of the energy balance vertically through an ice pack. Modified from Washington and Parkinson (2005; Figure 3.21). is balanced along the air/snow, air/ice, snow/ice, and ice/ocean interfaces. The steady-state equation for the conservation of energy at the surface of ice covered water follows: 0 if T0 < Tf QH + QL + QLW + (1 α0)QSW I0 QLW + QG0 = (2.14) ↓ − ↓ − − ↑ Q if T = T M 0 f where I0 is the amount of solar radiation that penetratesthe snow/ice column, and Tf is the salinity dependent freezing point. The surface energy balance for the sea- ice zone will be equal to zero for surface temperatures below freezing (T0 < Tf ), otherwise melt will occur (Wadhams 2000, Washington and Parkinson 2005). It should be noted that for sea ice, the sensible and latent heat fluxes are positive downward ( ) (Washington and Parkinson 2005). ↓ The steady-state equation for the conservation of energy along the air/snow interface follows equation 2.14 for the snow surface and the values for emissivity, 17 albedo, and the conductive flux are specific to the snow surface ("s, αs, and QGs ). Snowmelt is dependent on surface temperature, which is that of the snow surface, and equals 0 for surface temperature below freezing. -
The Risk of Sea Level Rise
THE RISK OF SEA LEVEL RISE:∗ A Delphic Monte Carlo Analysis in which Twenty Researchers Specify Subjective Probability Distributions for Model Coefficients within their Respective Areas of Expertise James G. Titus∗∗ U.S. Environmental Protection Agency Vijay Narayanan Technical Resources International Abstract. The United Nations Framework Convention on Climate Change requires nations to implement measures for adapting to rising sea level and other effects of changing climate. To decide upon an appropriate response, coastal planners and engineers must weigh the cost of these measures against the likely cost of failing to prepare, which depends on the probability of the sea rising a particular amount. This study estimates such a probability distribution, using models employed by previous assessments, as well as the subjective assessments of twenty climate and glaciology reviewers about the values of particular model coefficients. The reviewer assumptions imply a 50 percent chance that the average global temperature will rise 2°C degrees, as well as a 5 percent chance that temperatures will rise 4.7°C by 2100. The resulting impact of climate change on sea level has a 50 percent chance of exceeding 34 cm and a 1% chance of exceeding one meter by the year 2100, as well as a 3 percent chance of a 2 meter rise and a 1 percent chance of a 4 meter rise by the year 2200. The models and assumptions employed by this study suggest that greenhouse gases have contributed 0.5 mm/yr to sea level over the last century. Tidal gauges suggest that sea level is rising about 1.8 mm/yr worldwide, and 2.5-3.0 mm/yr along most of the U.S. -
Sea Ice Concentration Products Over Polar Regions with Chinese FY3C/MWRI Data
remote sensing Article Sea Ice Concentration Products over Polar Regions with Chinese FY3C/MWRI Data Lijian Shi 1,2,*, Sen Liu 1,2,3, Yingni Shi 4, Xue Ao 1,2, Bin Zou 1,2 and Qimao Wang 1,2 1 National Satellite Ocean Application Service, Beijing 100081, China; [email protected] (S.L.); [email protected] (X.A.); [email protected] (B.Z.); [email protected] (Q.W.) 2 Key Laboratory of Space Ocean Remote Sensing and Application, MNR, Beijing 100081, China 3 Zhuhai Orbita Aerospace Science & Technology Co., Ltd., Zhuhai 519080, China 4 Independent Researcher, Mailbox No. 5111, Beijing 100094, China; [email protected] * Correspondence: [email protected]; Tel.: +86-010-8248-1859 Abstract: Polar sea ice affects atmospheric and ocean circulation and plays an important role in global climate change. Long time series sea ice concentrations (SIC) are an important parameter for climate research. This study presents an SIC retrieval algorithm based on brightness temperature (Tb) data from the FY3C Microwave Radiation Imager (MWRI) over the polar region. With the Tb data of Special Sensor Microwave Imager/Sounder (SSMIS) as a reference, monthly calibration models were established based on time–space matching and linear regression. After calibration, the correlation between the Tb of F17/SSMIS and FY3C/MWRI at different channels was improved. Then, SIC products over the Arctic and Antarctic in 2016–2019 were retrieved with the NASA team (NT) method. Atmospheric effects were reduced using two weather filters and a sea ice mask. A minimum ice concentration array used in the procedure reduced the land-to-ocean spillover effect.