Arctic Council Project

Total Page:16

File Type:pdf, Size:1020Kb

Arctic Council Project (version 18 March 2008) Climate Change and the Cryosphere: Snow, Water, Ice, and Permafrost in the Arctic (SWIPA) A Proposed Arctic Council ‘Cryosphere Project’ in Cooperation with IASC, CliC and IPY Project Proposal for SAOs (Part 2): Project Components/Modules – Provisional List of Content (version 18 March 2008) Table of Contents Preface 1 Rationale 1 Objectives 1 Implementation of the project 2 1. Component 1: Arctic Sea Ice in a Changing Climate 4 1.1 Background 4 1.2 Outline of contents 5 1.3 Links with other organizations and activities 8 1.4 Draft time schedule 9 1.5 Project group 9 2. Component 2: Climate Change and the Greenland Ice Sheet 11 2.1 Background 11 2.2 Outline of contents 11 2.3 Links with other organizations and activities 14 2.4 Draft time schedule 15 2.5 Project group 18 3. Component 3: Climate Change and the Terrestrial Cryosphere 19 3A. Module 1: Changing snow cover and its impacts 19 3A.1 Background 19 3A.2 Outline of contents 19 3A.3 Links with other organizations and activities 21 3A.4 Draft time schedule 21 3A.5 Project group 22 3B. Module 2: Changing permafrost characteristics, distribution and extent and 22 their impacts 3B.1 Background 22 3B.2 Outline of contents 23 3B.3 Links with other organizations and activities 25 3B.4 Draft time schedule 25 3B.5 Project group 26 3C. Module 3: Glaciers and ice caps 26 3C.1 Background 26 3C.2 Outline of contents 27 3C.3 Links with other organizations and activities 31 3C.4 Draft time schedule 31 3C.5 Project group 31 3D. Module 4: Hydrology: Rivers and lakes 33 3D.1 Background 33 3D.2 Outline of contents 33 3D.3 Links with other organizations and activities 38 3D.4 Draft time schedule 39 3D.5 Project group 40 4. Modeling Activities in Support of the Cryosphere Project 40 Annex 1: Acronyms and Websites 43 Preface As described in a separate document (Climate Change and the Cryosphere: Snow, Water, Ice, and Permafrost in the Arctic (SWIPA) – Project Proposal for SAOs (Part 1) - Project Basis, Objectives, Plans for Project Organization and Implementation, and Status of Project Development), at the Arctic Council Ministerial Meeting in 2006, Norway proposed priority areas for the period of their leadership of the Arctic Council. These included further studies on the reduction of snow and ice in the Arctic. Norway, on behalf of Denmark, Norway, and Sweden, presented a concept for a ‘Cryosphere Project’ to the Senior Arctic Officials (SAOs) at their meeting in April 2007. The detailed proposals for the components and modules of the AC Cryosphere Project presented in this document are a follow-up to the decisions made during the SAO meetings in April and November 2007. Experts from the eight Arctic Countries and a number of relevant international organizations, including IASC, CliC and IPY, have evaluated and discussed the content of the project. This document presents the current status of the detailed planning of the project components and modules. Rationale for the Cryosphere Project During the past 5–6 years, the rate of loss of sea ice in the Arctic Ocean has increased considerably, and more rapidly than projected. If this accelerated loss of sea ice continues, the Arctic Ocean could be ice-free during summer earlier than was projected by the 2004 Arctic Climate Impact Assessment (ACIA). At the same time, increased movements of ice- flows draining the Greenland Ice Sheet have come as a surprise to the scientists. IPCC (2007) concluded that the physical processes explaining the increased movements are not well understood. The uncertainty about what will happen to the Greenland ice sheet in response to global warming has increased over the period between the IPCC reports in 2001 and 2007. In addition, observations show that snow cover extent on land and the ice in small glaciers and ice caps in the Arctic is being reduced, and that the permafrost is increasingly vulnerable to thaw. As a result, the local, regional and global impacts of these increased rates of reduction in the Greenland ice sheet, sea ice, glaciers, permafrost, and snow could be more immediate than previous scientific reports have indicated. While Arctic residents are directly affected by the changes that are addressed in the proposed project, the potential impacts on sea level and ocean circulation are global. This situation emphasizes the need for more detailed and thorough knowledge about ongoing processes, and more accurate projections about the future situation for the Arctic cryosphere, as well as the resulting impacts on local, regional, and global scales. The ongoing IPY represents a considerable basis for accelerated progress in understanding. The proposed SWIPA reports provide an opportunity to synthesize new information from the IPY and provide a bridge between the IPY, Arctic Council and future IPCC activity. Strong coordination between the Cryosphere Project and the IPY, and other ongoing relevant national and international activities, is central to the Cryosphere Project concept. Objectives The objectives of the Cryosphere Project are to provide the Arctic Council with timely, up-to- date, and synthesized scientific knowledge about the present status, processes, trends, and future consequences of changes in Arctic sea ice, melting of the Greenland ice sheet, and changes in Arctic snow cover, permafrost, mountain glaciers and ice caps, and related hydrological conditions in the Arctic. Future scenarios will be developed to determine, as far as possible, the consequences of these changes on physical processes on local, regional, and global scales, and to determine consequences for Arctic biological systems, and human 1 societies and lifestyles. The project does not intend to initiate any new research, but will be based on recent or ongoing projects, including AMAP national implementation plans, and international activities including IPY research. The resulting reports will highlight gaps in knowledge and recommend actions for future research and monitoring to fill these gaps. The main objectives of the Cryosphere Project are to: • Summarize the state of knowledge regarding Arctic cryosphere changes, including gaps in knowledge; review the key processes that are currently considered to be the primary reasons for the changes that are being observed, in order to improve the understanding of sea ice and thereby improve input to climate models. • Summarize predictions from models; review strengths and weaknesses of individual models; evaluate new model runs; and make recommendations for model improvements. Scenario projections will focus on time horizons of 10-, 30, 50-, and 100-years. • Analyse impacts on ecosystem as a consequence of changes in Arctic cryosphere; provide quantitative or qualitative estimates of, e.g., changes in food web dynamics, responses to rapid/threshold changes, impacts on biodiversity, species extinction, colonisation, etc. • Analyse socio-economic impacts related to Arctic cryosphere changes and how they may be influenced by mitigation and adaptation; provide quantitative or qualitative estimates of, e.g., information concerning shipping seasons, length of fast ice season, number of people impacted, safety issues, food supply, etc. The project will deliver scientific reports that will also contribute recommendations for the improvement of observing platforms and networks (SAON input). Project Implementation: National Leads and International Cooperation As described in a related document (Climate Change and the Cryosphere: Snow, Water, Ice, and Permafrost in the Arctic (SWIPA) - Information Paper for SAOs - Project Basis, Objectives, Plans for Project Organization and Implementation, and Status of Project Development) that describes the overall project concept and organization in more detail, the project is conceived as an ‘integrated project’ - integrating information on the physical changes to the system, but also considering impacts on humans (the ‘human dimension’). For practical purposes, the proposed project work is organized according to three main components (the last of which comprises four sub-modules): Component 1: Climate Change and Arctic Sea Ice. Lead: Norway Component 2: Climate Change and the Greenland Ice Sheet. Lead: Denmark Component 3: Climate Change and the Terrestrial Cryosphere Module 1: Changing snow cover and its impacts. Lead: Sweden Module 2: Changing permafrost characteristics, distribution and extent and their impacts. Lead: Sweden Module 3: Mountain glaciers and ice caps. Lead: Canada, Russia and USA Module 4: Hydrology: Rivers and lakes. Lead: Canada, Russia and USA The project will be implemented by AMAP and its Climate Expert Group (CEG) in close cooperation with national organizations, international organizations (in particular, IASC, CliC, and IPY), and Arctic Council working groups and Permanent Participants. Each of the components and modules of the project has an associated lead country and one or more 2 identified lead person(s). The scientific reports that will be prepared will be based on all information available from international scientific journals, national reports, new research and monitoring data (including both in situ and satellite observations and remote sensing data), etc., subject to documented QA/QC. A project integration team will address integrations issues during both project implementation (to avoid duplication) and reporting stages, also considering on ‘cumulative impacts’ based on the information on impacts deriving from the various project components/modules. Modeling input, which represents a core requirement for all project components and modules, will be made available from ongoing modeling work being coordinated by the AMAP Climate Expert Group as part of the approved AMAP workplan. A detailed description of each of the current status of planning within each of the project components/modules is presented below. 3 1 Component 1: Arctic Sea Ice in a Changing Climate 1.1 Background Sea ice is a fundamental component of the Arctic cryosphere, and thereby also the global cryosphere. It plays an important role in the global climate system, has major socio-economic significance, and is a key climate indicator.
Recommended publications
  • Calving Processes and the Dynamics of Calving Glaciers ⁎ Douglas I
    Earth-Science Reviews 82 (2007) 143–179 www.elsevier.com/locate/earscirev Calving processes and the dynamics of calving glaciers ⁎ Douglas I. Benn a,b, , Charles R. Warren a, Ruth H. Mottram a a School of Geography and Geosciences, University of St Andrews, KY16 9AL, UK b The University Centre in Svalbard, PO Box 156, N-9171 Longyearbyen, Norway Received 26 October 2006; accepted 13 February 2007 Available online 27 February 2007 Abstract Calving of icebergs is an important component of mass loss from the polar ice sheets and glaciers in many parts of the world. Calving rates can increase dramatically in response to increases in velocity and/or retreat of the glacier margin, with important implications for sea level change. Despite their importance, calving and related dynamic processes are poorly represented in the current generation of ice sheet models. This is largely because understanding the ‘calving problem’ involves several other long-standing problems in glaciology, combined with the difficulties and dangers of field data collection. In this paper, we systematically review different aspects of the calving problem, and outline a new framework for representing calving processes in ice sheet models. We define a hierarchy of calving processes, to distinguish those that exert a fundamental control on the position of the ice margin from more localised processes responsible for individual calving events. The first-order control on calving is the strain rate arising from spatial variations in velocity (particularly sliding speed), which determines the location and depth of surface crevasses. Superimposed on this first-order process are second-order processes that can further erode the ice margin.
    [Show full text]
  • Anatomy of the Marine Ice Cliff Instability
    Anatomy of the Marine Ice Cliff Instability Jeremy N. Bassis1, Brandon Berg2, Doug Benn3 1Department of Climate and Space, University of Michigan, Ann Arbor, MI, USA 2Department of Physics, University of Michigan, Ann Arbor, MI, USA 3School of Geography and Sustainable Development, St. Andrews University, Scotland Ice sheets grounded on retrograde beds are susceptible to disintegration through a process called the marine ice sheet instability. This instability results from the dynamic thinning of ice near the grounding zone separating floating from grounded portions of the ice sheet. Recently, a new instability called the marine ice cliff instability has been proposed. Unlike the marine ice sheet instability, the marine ice cliff instability is controlled by the brittle failure of ice and thus has the potential to result in much more rapid ice sheet collapse. Here we explore the interplay between ductile and brittle processes using a model where ice obeys the usual power-law creep rheology of intact ice up to a yield strength. Above the yield strength, we introduce a separate, much weaker rheology, that incorporates quasi-brittle failure along faults and fractures. We first tested the model by applying it to study the formation of localized rifts in shear zones of idealized ice shelves. These experiments show that wide rifts localize along the shear margins and portions of the ice shelf where the stress in the ice exceeds the yield strength. These rifts decrease the buttressing capacity of the ice shelves, but can also extend to become the detachment boundary of icebergs. Next, application of the model to idealized glaciers shows that for grounded glaciers, failure localizes near the terminus in “serac” type slumping events followed by buoyant calving of the submerged portion of the glacier.
    [Show full text]
  • Icing Mound on Sadlerochit River, Alaska
    Short Papers and Notes ICING MOUND ON SADLERO- Sadlerochithas emerged from the CHIT RIVER, ALASKA* mountains, has arelatively low gra- dient and flows in a broad, braided bed Icing mounds- small to large domes, characterized by manyanastomosing mounds,and ridges resulting from an shallowchannels separated by bare, upwardarching of soiland ice asso- gravelly and bouldery bars (Fig. 2). AS ciated with fields of aufeis - have been is characteristic of all riversof the Arc- described in detailfor Siberia1. Icing tic Slope, the change from a single deep mounds have also been mentioned brief- channel to a braided pattern of many ly inconnection with aufeisfields in shallow channels allows the formation Alaskaby Leffigwell (ref. 2, p. 158) of an aufeis field every year near the and Taber (ref. 3, p. 1528; ref. 4, p. 249), mountain front. During the fall the but there is little descriptive literature shallow channels freeze early and the on this phenomenon in theNorth Amer- obstruction of the resulting ice causes ican Arctic. One such icing mound was the river to overflow its bars;this over- examined briefly by the author on June flow then freezes and by repeated freez- 25,1959 during the course of a trip down ing,overflow and freezingsuccessive the SadlerochitRiver in northeastern layers of ice are built up toform an Alaska (Fig. 1). aufeis field. Another factor contributing Fig. 1. Locationmap, Arctic Slope, Alaska. The SadlerochitRiver rises in the to the formation of large aufeis fields is Franklin Mountains of the eastern a source of water that persists for some Brooks Range and flows northwardin a time after freezingbegins.
    [Show full text]
  • S41467-018-05625-3.Pdf
    ARTICLE DOI: 10.1038/s41467-018-05625-3 OPEN Holocene reconfiguration and readvance of the East Antarctic Ice Sheet Sarah L. Greenwood 1, Lauren M. Simkins2,3, Anna Ruth W. Halberstadt 2,4, Lindsay O. Prothro2 & John B. Anderson2 How ice sheets respond to changes in their grounding line is important in understanding ice sheet vulnerability to climate and ocean changes. The interplay between regional grounding 1234567890():,; line change and potentially diverse ice flow behaviour of contributing catchments is relevant to an ice sheet’s stability and resilience to change. At the last glacial maximum, marine-based ice streams in the western Ross Sea were fed by numerous catchments draining the East Antarctic Ice Sheet. Here we present geomorphological and acoustic stratigraphic evidence of ice sheet reorganisation in the South Victoria Land (SVL) sector of the western Ross Sea. The opening of a grounding line embayment unzipped ice sheet sub-sectors, enabled an ice flow direction change and triggered enhanced flow from SVL outlet glaciers. These relatively small catchments behaved independently of regional grounding line retreat, instead driving an ice sheet readvance that delivered a significant volume of ice to the ocean and was sustained for centuries. 1 Department of Geological Sciences, Stockholm University, Stockholm 10691, Sweden. 2 Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005, USA. 3 Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA. 4 Department
    [Show full text]
  • Dr. Nicolas Cullen, Department of Geography, University of Otago, Dunedin, New Zealand Dr
    CV: K. Steffen 1 CURRICULUM VITAE : KONRAD STEFFEN Swiss Federal Research Institute WSL Zürcherstr. 111, CH-8903 Birmendorf, Switzerland Tel: +41 44 739 24 55; [email protected], [email protected] US and Swiss Citizen, married and two kids EDUCATION Dr.sc.nat.ETH,1984 Surface temperature distribution of an Arctic polynya: North Water in winter; advisor Prof. Dr. Atsumu Ohmura, ETH-Zürich. Dipl.nat.ETH, 1977 Snow distribution on tundra and glaciers on Axel Heiberg Island, NWT, Canada; advisor Prof. Dr. Fritz Müller, ETH-Zürich. PROFESSIONAL EXPERIENCES 2017-present Science Director, Swiss Polar Institute 2012-present Director, Swiss Federal Research Institute WSL 2012-present Professor, Inst. Atmosphere & Climate, ETH-Zürich 2012-present Professor, Architecture, Civil and Environmental Engineering, EPF-Lausanne 2005- 2012 Director, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado (CU) 2004-2005 Interim Director, CIRES, University of Colorado (CU) 2003-2004 Deputy Director, CIRES, University of Colorado (CU) 2002-2003 Interim Director, CIRES, University of Colorado (CU) 1998-2005 Associate Director Cryosphere and Polar Processes, CIRES 1997-2012 Professor at Dept. of Geography, University of Colorado at Boulder 1993-2012 Faculty, Program in Atmospheric and Oceanic Sciences 1991-1997 Associate Professor at Dept. of Geography, University of Colorado 1991-2012 Fellow CIRES, University of Colorado at Boulder Sept.-Oct. 1987 Visiting Professor at Dept. of Geography, McGill University, Montreal 1986-1988 Visiting Fellow at Cooperative Institute for Research in Environmental Sciences (CIRES), on leave from ETH for two years 1985-1990 Oberassistent (Lecturer) at Climate Research Group, ETH, Zürich, Switzerland 1983-1985 Assistant at Climate Research Group, ETH, Zürich, Switzerland RECENT GRADUATE STUDENTS Dr.
    [Show full text]
  • Historical and Recent Aufeis, the Indigirka River Basin (Russia)
    1 Historical and recent aufeis, the Indigirka river basin 2 (Russia) 3 *Olga Makarieva1,2,, Andrey Shikhov3, Nataliia Nesterova2,4, Andrey Ostashov2 4 1Melnikov Permafrost Institute of RAS, Yakutsk 5 2St. Petersburg State University, St. Petersburg 6 3Perm State University, Perm 7 4State Hydrological institute, St. Petersburg 8 RUSSIA 9 *[email protected] 10 Abstract: A detailed spatial geodatabase of aufeis (or naleds in Russian) within the 11 Indigirka River watershed (305 000 km2), Russia, was compiled from historical Russian 12 publications (year 1958), topographic maps (years 1970–1980’s), and Landsat images (year 13 2013-2017). Identification of aufeis by late-spring Landsat images was performed with a semi- 14 automated approach according to Normalized Difference Snow Index (NDSI) and additional 15 data. After this, a cross-reference index was set for each aufeis, to link and compare historical 16 and satellite-based aufeis data sets. 17 The aufeis coverage varies from 0.26 to 1.15% in different sub-basins within the 18 Indigirka River watershed. The digitized historical archive (Cadastre, 1958) contains the 19 coordinates and characteristics of 896 aufeis with total area of 2064 km2. The Landsat-based 20 dataset included 1213 aufeis with a total area of 1287 km2. Accordingly, the satellite-derived 21 total aufeis area is 1.6 times less than the Cadastre (1958) dataset. However, more than 600 22 aufeis identified from Landsat images are missing in the Cadastre (1958) archive. It is 23 therefore possible that the conditions for aufeis formation may have changed from the mid- 24 20th century to the present.
    [Show full text]
  • Sublimation on the Greenland Ice Sheet from Automated Weather Station Observations
    BOX AND STEFFEN: SUBLIMATION ON THE GREENLAND ICE SHEET 1 PDF Version of Accepted Paper (Note some symbol errors may exist, i.e. delta symbol is converted to ?) Sublimation on the Greenland ice sheet from automated weather station observations Jason E. Box and Konrad Steffen Cooperative Institute for Research in Environmental Sciences University of Colorado, Boulder, Colorado, USA Abstract. Greenland Climate Network (GC-Net) surface meteorological observations are used to estimate net surface water vapor flux at ice sheet sites. Results from aerodynamic profile methods are compared with eddy correlation and evaporation pan measurements. Two profile method types are applied to hourly data sets spanning 1995.4 to 2000.4. One method type is shown to accurately gauge sublimation using two humidity and wind speed measurement levels. The other “bulk” method type is shown to underestimate condensation, as it assumes surface saturation. General climate models employ bulk methods and, consequently, underestimate deposition. Loss of water vapor by the surface predominates in summer at lower elevations, where bulk methods agree better with two-level methods. Annual net water vapor flux from the two-level method is as great as -87 ±27 mm at 960 m elevation and -74 ±23 mm at equilibrium line altitude in western Greenland. At an undulation trough site, net deposition is observed (+40 mm ±12). At the adjacent crest site 6 km away and at 50 m higher elevation, net sublimation predominates. At high-elevation sites, the annual water vapor flux is positive, up to +32 ±9 mm at the North Greenland Ice core Project (NGRIP) and +6 ±2 mm at Summit.
    [Show full text]
  • Investigating the Influence of Surface Meltwater on the Ice Dynamics of the Greenland Ice Sheet
    INVESTIGATING THE INFLUENCE OF SURFACE MELTWATER ON THE ICE DYNAMICS OF THE GREENLAND ICE SHEET by William T. Colgan B.Sc., Queen's University, Canada, 2004 M.Sc., University of Alberta, Canada, 2007 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Geography 2011 This thesis entitled: Investigating the influence of surface meltwater on the ice dynamics of the Greenland Ice Sheet, written by William T. Colgan, has been approved for the Department of Geography by _____________________________________ Dr. Konrad Steffen (Geography) _____________________________________ Dr. Waleed Abdalati (Geography) _____________________________________ Dr. Mark Serreze (Geography) _____________________________________ Dr. Harihar Rajaram (Civil, Environmental, and Architectural Engineering) _____________________________________ Dr. Robert Anderson (Geology) _____________________________________ Dr. H. Jay Zwally (Goddard Space Flight Center) Date _______________ The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Colgan, William T. (Ph.D., Geography) Investigating the influence of surface meltwater on the ice dynamics of the Greenland Ice Sheet Thesis directed by Professor Konrad Steffen Abstract This thesis explains the annual ice velocity cycle of the Sermeq (Glacier) Avannarleq flowline, in West Greenland, using a longitudinally coupled 2D (vertical cross-section) ice flow model coupled to a 1D (depth-integrated) hydrology model via a novel basal sliding rule. Within a reasonable parameter space, the coupled model produces mean annual solutions of both the ice geometry and velocity that are validated by both in situ and remotely sensed observations.
    [Show full text]
  • Article Is Available On- Mand of Charles Wilkes, USN
    The Cryosphere, 15, 663–676, 2021 https://doi.org/10.5194/tc-15-663-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Recent acceleration of Denman Glacier (1972–2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configuration Bertie W. J. Miles1, Jim R. Jordan2, Chris R. Stokes1, Stewart S. R. Jamieson1, G. Hilmar Gudmundsson2, and Adrian Jenkins2 1Department of Geography, Durham University, Durham, DH1 3LE, UK 2Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK Correspondence: Bertie W. J. Miles ([email protected]) Received: 16 June 2020 – Discussion started: 6 July 2020 Revised: 9 November 2020 – Accepted: 10 December 2020 – Published: 11 February 2021 Abstract. After Totten, Denman Glacier is the largest con- 1 Introduction tributor to sea level rise in East Antarctica. Denman’s catch- ment contains an ice volume equivalent to 1.5 m of global sea Over the past 2 decades, outlet glaciers along the coast- level and sits in the Aurora Subglacial Basin (ASB). Geolog- line of Wilkes Land, East Antarctica, have been thinning ical evidence of this basin’s sensitivity to past warm periods, (Pritchard et al., 2009; Flament and Remy, 2012; Helm et combined with recent observations showing that Denman’s al., 2014; Schröder et al., 2019), losing mass (King et al., ice speed is accelerating and its grounding line is retreating 2012; Gardner et al., 2018; Shen et al., 2018; Rignot et al., along a retrograde slope, has raised the prospect that its con- 2019) and retreating (Miles et al., 2013, 2016).
    [Show full text]
  • Hydrologic and Mass-Movement Hazards Near Mccarthy Wrangell-St
    Hydrologic and Mass-Movement Hazards near McCarthy Wrangell-St. Elias National Park and Preserve, Alaska By Stanley H. Jones and Roy L Glass U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 93-4078 Prepared in cooperation with the NATIONAL PARK SERVICE Anchorage, Alaska 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY ROBERT M. HIRSCH, Acting Director For additional information write to: Copies of this report may be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Earth Science Information Center 4230 University Drive, Suite 201 Open-File Reports Section Anchorage, Alaska 99508-4664 Box 25286, MS 517 Denver Federal Center Denver, Colorado 80225 CONTENTS Abstract ................................................................ 1 Introduction.............................................................. 1 Purpose and scope..................................................... 2 Acknowledgments..................................................... 2 Hydrology and climate...................................................... 3 Geology and geologic hazards................................................ 5 Bedrock............................................................. 5 Unconsolidated materials ............................................... 7 Alluvial and glacial deposits......................................... 7 Moraines........................................................ 7 Landslides....................................................... 7 Talus..........................................................
    [Show full text]
  • The Dynamics and Mass Budget of Aretic Glaciers
    DA NM ARKS OG GRØN L ANDS GEO L OG I SKE UNDERSØGELSE RAP P ORT 2013/3 The Dynamics and Mass Budget of Aretic Glaciers Abstracts, IASC Network of Aretic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) • GEOLOGICAL SURVEY OF D EN MARK AND GREENLAND DANISH MINISTAV OF CLIMATE, ENEAGY AND BUILDING ~ G E U S DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 201 3 / 3 The Dynamics and Mass Budget of Arctic Glaciers Abstracts, IASC Network of Arctic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF CLIMATE, ENERGY AND BUILDING Indhold Preface 5 Programme 6 List of participants 11 Minutes from a special session on tidewater glaciers research in the Arctic 14 Abstracts 17 Seasonal and multi-year fluctuations of tidewater glaciers cliffson Southern Spitsbergen 18 Recent changes in elevation across the Devon Ice Cap, Canada 19 Estimation of iceberg to the Hansbukta (Southern Spitsbergen) based on time-lapse photos 20 Seasonal and interannual velocity variations of two outlet glaciers of Austfonna, Svalbard, inferred by continuous GPS measurements 21 Discharge from the Werenskiold Glacier catchment based upon measurements and surface ablation in summer 2011 22 The mass balance of Austfonna Ice Cap, 2004-2010 23 Overview on radon measurements in glacier meltwater 24 Permafrost distribution in coastal zone in Hornsund (Southern Spitsbergen) 25 Glacial environment of De Long Archipelago
    [Show full text]
  • Hydrological Connectivity from Glaciers to Rivers in the Qinghai–Tibet Plateau: Roles of Suprapermafrost and Subpermafrost Groundwater
    Hydrol. Earth Syst. Sci., 21, 4803–4823, 2017 https://doi.org/10.5194/hess-21-4803-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Hydrological connectivity from glaciers to rivers in the Qinghai–Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater Rui Ma1,2, Ziyong Sun1,2, Yalu Hu2, Qixin Chang2, Shuo Wang2, Wenle Xing2, and Mengyan Ge2 1Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, Wuhan, 430074, China 2School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China Correspondence to: Rui Ma ([email protected]) and Ziyong Sun ([email protected]) Received: 5 January 2017 – Discussion started: 15 February 2017 Revised: 29 May 2017 – Accepted: 7 August 2017 – Published: 27 September 2017 Abstract. The roles of groundwater flow in the hydrologi- 1 Introduction cal cycle within the alpine area characterized by permafrost and/or seasonal frost are poorly known. This study explored Permafrost plays an important role in groundwater flow and the role of permafrost in controlling groundwater flow and thus hydrological cycles of cold regions (Walvoord et al., the hydrological connections between glaciers in high moun- 2012). This is especially true for the mountainous headwaters tains and rivers in the low piedmont plain with respect to of large rivers. In these areas interactive processes between hydraulic head, temperature, geochemical and isotopic data, permafrost and groundwater influence water resource man- at a representative catchment in the headwater region of agement, engineering construction, biogeochemical cycling, the Heihe River, northeastern Qinghai–Tibet Plateau. The and downstream water supply and conservation (Cheng and results show that the groundwater in the high mountains Jin, 2013).
    [Show full text]