Dark Matter: New Results from Direct Detection
Total Page:16
File Type:pdf, Size:1020Kb
Dark Matter: New Results from Direct Detection PANIC at MIT July 25, 2011 Laura Baudis University of Zurich Matter and Energy Content of our Universe Laura Baudis, University of Zurich, Dark Matter, PANIC 2011 Some dark matter candidates: Particle Dark Mattermass vs. Candidates interaction strength plane Some Dark Matter Candidate Particles 24 10 Masses and cross sections 21 10 18 Fig. by Howie Baer span many orders of 10 15 10 12 magnitude 10 9 10 Q-ball 6 10 3 -6 15 10 0 From 10 eV to 10 GeV 10 -3 10 neutrinos WIMPs : -6 10 neutralino (pb) -9 10 KK photon int -12 From non-interacting to 10 branon ! wimpzilla -15 LTP 10 strongly interacting -18 Black Hole Remnant 10 -21 10 -24 10 axion axino -27 10 SuperWIMPs : We know that the dark -30 10 fuzzy CDM gravitino -33 matter particle must be some 10 KK graviton -36 10 -39 state not contained in the 10 -33 -30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0 3 6 9 12 15 18 Standard Model 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 mass (GeV) Monday, July 6, 2009 3 Laura Baudis, University of Zurich, Dark Matter, PANIC 2011 Weakly Interacting Massive Particles One good idea: WIMPs; in thermal equilibrium in the early Universe χ +¯χ X + X¯ ↔ Decouple from the rest of the particles when M >> T (“cold”) Their relic density can account for the dark matter if the annihilation cross section is weak (~ pb) 2 27 3 1 1 Ω h 3 10− cm s− χ × σ v A Such particles are predicted to exist in most Beyond-Standard-Model theories (neutralino, lightest Kaluza-Klein particle, etc) Laura Baudis, University of Zurich, Dark Matter, PANIC 2011 Teresa Marrodán Undagoitia (UZH) WIMP search χχ Indirect detection → e + e − , p p χ Direct detection N → Dark Matter χ N The WIMP Hypothesis is Testable !"#$%#&''()*+,+-#) Deep underground In space→ At the LHC Talk by A. Baroncelli p+p Production at LHC Grenoble, 21/07/2011 4 / 31 •)./0-12#")"#,#3,1-'().14&56714)#$#3,-1"#') 312#-),8#)39$&4"-&36$)'+-:63#')1:),8#)"#,#3,1-) ;*.<=>) → •))?@)ABB) C)64")D@?BB)C)"#,#3,1-')6$-#6"9) E+&$,>) χ •)F+--#4,$9)26$&"674C),8#)"#'&C4)6,)GHI) + a lot •)J$64),1)-+4)?B) @)ABB)C)"#,#3,1-')&4)DBKD() LBBB)MC>"69) •)H#4'&72&,9)-#638)NO@KB PQ)0E) χ χ χ q q χ - q q χ q- q χ We should learn a lot from direct detectors, from indirect detectors and from accelerators! Laura Baudis, University of Zurich, Dark Matter, PANIC 2011 Direct Detection of WIMPs: Principle Elastic collisions with nuclei in ultra-low background detectors Energy of recoiling nucleus: few tens of keV WIMP q2 µ2v2 ER = = (1 cosθ) ER 2mN mN − • q = momentum transfer • µ = reduced mass (mN = nucleus mass; mΧ = WIMP mass) • v = mean WIMP-velocity relative to the target • θ = scattering angle in the center of mass system WIMP Laura Baudis, University of Zurich, Dark Matter, PANIC 2011 Expected Rates in a Terrestrial Detector For now strongly simplified: Astrophysics ρχ R N σχN v ∼ mχ N = number of target nuclei in a detector Particle physics ρχ = local density of the dark matter in the Milky Way <v> = mean WIMP velocity relative to the target mχ = WIMP-mass σχN =cross section for WIMP-nucleus elastic scattering Laura Baudis, University of Zurich, Dark Matter, PANIC 2011 Local Density of WIMPs in the Milky Way 3 3 ρ =0.1 0.7GeVcm− ρ =2 7GeVcm− halo − disk − 0.3 GeV cm-3 ⇒ ~ 3000 WIMPs m-3 (MW = 100 GeV) WIMP flux on Earth: ~ 105 cm-2s-1 (100 GeV WIMP) Even though WIMPs are weakly interacting, this flux is large enough so that a potentially measurable fraction (J. Diemand et all, Nature 454, 2008, 735-738) will elastically scatter off nuclei ~ 600 kpc Laura Baudis, University of Zurich, Dark Matter, PANIC 2011 WIMP Mass and Cross Section Example for recent predictions from supersymmetry: 13 cross sections down to a few ×10-47 cm2 -40 -40 ] 10 ] 10 2 2 CMSSM -41 -41 [cm 10 Buchmueller et al; [cm 10 SI p SI p # # arXiv:1102.4585v1 [hep-ph] 10-42 10-42 10-43 10-43 -1 -1 10-44 ~ 1 event10-44 kg year 10-45 10-45 10-46 10-46 -1 -1 10-47 ~ 1 event10-47 ton year -48 -48 10 2 3 10 2 3 10 210 10 210 m"0 [GeV/c ] m"0 [GeV/c ] ! ! 1 1 Laura Baudis, University of Zurich, Dark Matter, PANIC 2011 -40 -40 ] 10 ] 10 2 2 -41 -41 [cm 10 [cm 10 SI p SI p # # 10-42 10-42 10-43 10-43 10-44 10-44 10-45 10-45 10-46 10-46 10-47 10-47 -48 -48 10 2 3 10 2 3 10 210 10 210 m"0 [GeV/c ] m"0 [GeV/c ] ! ! 1 1 0 SI Figure 7. The regions of the (mχ˜1 , σp ) planes in the CMSSM (upper left), NUHM1 (top right), VCMSSM (lower left) and mSUGRA (lower right) favoured at the 68% and 95% CL including the CMS constraint (solid lines) and excluding it (dashed lines). The best-fit points after (before) the CMS and ATLAS constraints [19,20] are shown as open (solid) green stars, and the best pre-LHC fits as green ‘snowflakes’. The results are calculated assuming ΣπN =64MeV. Ref. [59] analyzes the CMS constraint within CYT (grant FPA 2007–66387 and FPA 2010– the CMSSM and reaches similar conclusions on 22163-C02-01), and the work of K.A.O. was sup- the increases in m1/2 and tan β that it entails. ported in part by DOE grant DE–FG02–94ER– Ref. [60] considers a more general model than 40823 at the University of Minnesota. K.A.O. those examined here. also thanks SLAC (supported by the DOE un- der contract number DE-AC02-76SF00515) and the Stanford Institute for Theoretical Physics for This work was supported in part by the Euro- their hospitality and support while this work was pean Community’s Marie-Curie Research Train- being finished. ing Network under contracts MRTN-CT-2006- 035505 ‘Tools and Precision Calculations for Physics Discoveries at Colliders’ and MRTN-CT- REFERENCES 2006-035482 ‘FLAVIAnet’, and by the Spanish MEC and FEDER under grant FPA2005-01678. 1. G. Aad et al. ATLAS Collaboration, Expected The work of S.H. was supported in part by CI- Performance of the ATLAS Experiment - De- Expected Interaction Rates Differential recoil rate: integrate over WIMP velocity distribution Kinematics vmax dR σ0ρ0 2 f(v, t) 3 = 2 F (ER) d v 2 2 dE2 R 2mχµ v>√mN ER/2µ v dN ρχ σp|F (q)| A 3 f⊕(#v,t) (t)= 2 d v dER mχ 2µp !v>vmin(E ) v Different WIMPR masses Different target nuclei 5 10 20 m [GeV] 30 ! m +M 40 χ ER 50 vmin = MWIMP = 100 GeV mχ 2M -44 2 " σWN=1×10 cm minimal v required to produce recoil ER events on Ge / keV [arb. Units] Diff. rate [events/(100 kg d keV)] d kg [events/(100 rate Diff. 0 10 20 30 40 50 Recoil energy [keVr] Enr [keV] (Standard halo model with ρ= 0.3 GeV/cm3) spectrum gets shifted to lowLaura energies Baudis, University of for Zurich, Dark low Matter, WIMP PANIC 2011 masses ⇒ need light target and/or low threshold on ER to see light WIMPs T. Schwetz, TEXAS 2010, 9 Dec 2010 – p. 7 The Challenge To observe a signal which is: very small ( few keV) extremely rare (1 per ton per year?) embedded in a background that is millions of times higher • Why is it challenging? • Detection of low-energy particles - done! ➡e.g. micro-calorimetry with phonon readout • Rare event searches with ultra-low backgrounds - done! ➡e.g SuperK, Borexino, SNO, etc • But: can we do both? Laura Baudis, University of Zurich, Dark Matter, PANIC 2011 Direct Dark Matter Detection Techniques WIMP Phonons WIMP Al2O3: CRESST-I Ge, Si: CDMS CaWO4, Al2O3: Ge: EDELWEISS CRESST C, F, I, Br: NaI: DAMA/LIBRA PICASSO, COUPP NaI: ANAIS here: Ge: Texono, CoGeNT CsI: KIMS 3 focus CS2,CF4, He: DRIFT LXe: XENON LXe: XMASS DMTPC, MIMAC LXe: LUX LAr, LNe: on Ar+C H : Newage LXe: ZEPLIN 2 6 DEAP/CLEAN LAr: WARP recent LAr: ArDM Charge Light results Laura Baudis, University of Zurich, Dark Matter, PANIC 2011 Phonons: Cryogenic Experiments at T~ mK Detect a temperature increase after a particle interacts in an absorber χ χ T0 E Absorber T-sensor T-sensors: superconductor thermistors or superconducting transition sensors Laura Baudis, University of Zurich, Dark Matter, PANIC 2011 Phonons: Cryogenic Experiments at T~ mK Advantages: high sensitivity to nuclear recoils (measure the full energy in the phonon channel); good energy resolution, low energy threshold (keV to sub-keV) Ratio of light/phonon or charge/phonon: nuclear!"#$%" versus&'( electronic#)*"#$ recoils#+%,# discrimination-+ ! 1';%=*=@*%=7%B';%=7*;=* 9"*:";"<;=#)*/>/?@*5'$$'A*'7:*7"6;#=7A CD=7=7A*!"#$%&'* :%A;%756%AD"A*(";E""7* "&"<;#=7*'7:*76<&"'#* electronic recoils #"<=%&A2 Background region ! F=7%B';%=7*,%"&:*('7:AG* @67<;%=7Ratio'&*@=#$*( 'ofA": *=7* H%7:D'#:*$=:"&*@%;*;=* 7"6;#=7Acharge*@#=$*/>/?@* <'&%(#';%=72 to nuclear recoils ! ?6;*';*;E=*A;'7:'#:* :"I%';%=phonon7A*@=#*76<&"'#* Expected signal region #"<=%&*A"&"<;%=72 ! J6&K*"&"<;#=7*#"<=%&A* '6;=$';%<'&&,*D'I"* ,%"&:L-*'@;"#*<'&%(#';%=72 !"#$%&'()*+',*-.)*/..0 12*32*45(6#7 8 Laura Baudis, University of Zurich, Dark Matter, PANIC 2011 Phonons: The CDMS Experiment Final WIMP search runs - 191 kg-d: 2 events passing all cuts Gamma-Background Science, 1186112 (2010) Event 1: Tower 1, ZIP 5 (T1Z5) Sat.