Liste Der Abkürzungen Für Zeitschriften

Total Page:16

File Type:pdf, Size:1020Kb

Liste Der Abkürzungen Für Zeitschriften 1 Liste der Abkürzungen für Zeitschriften Neben den Siglen stehen in eckigen Klammern ggf. eine oder mehrere nicht mehr verwendete Siglen der Zeitschrift, beginnend rechts mit der ältesten Sigle. Ein oder mehrere Asterisken hinter einer Sigle deuten an, dass diese ein- oder mehrmals einer anderen Zeitschrift zugewiesen wurde, beispielsweise weil eine Zeitschrift ihr Erscheinen eingestellt hat: Ein Asterisk bezeichnet die älteste Verwendung der Sigle, zwei Asterisken die nächstfolgende usw., ohne Asterisk bleibt die letztgültige Verwendung für eine Zeitschrift. A A s. Antike A&A* s. A&AW A&A** [A&AJ] Arta si Arheologie. Jassy A&A Antike und Abendland: Beiträge zum Verständnis der Griechen und Römer und ihres Nachlebens. Berlin A&AJ s. A&A** A&AW [A&A*] Art and Archaeology. Washington A&F Art and Fact: revue des historiens d'art, des archéologues, des musicologues et des orientalistes. Liège A&N Archäologie und Naturwissenschaften. Mainz & Bonn A&R Atene e Roma: rassegna trimestrale dell'Associazione Italiana di Cultura classica. Firenze A&S Antiquity and Survival: an internat. review of traditional art and culture. Den Haag AA Archäologischer Anzeiger. Berlin AAA* Acta Academiae Aboensis. Helsingfors AAA Archaiologika Analekta ex Athenon. Athènes AAAB [AAB] Annales de l'Acad. d'Archéologie de Belgique. Anvers AAAd [AntAltoadr] Antichità altoadriatiche. Udine AAAH Acta ad archaeologiam et artium historiam pertinentia. Roma [Oslo] AAASzeged Acta antiqua et archaeologica. Acta Univ. de Attila József nominatae. Szeged, Hungaria AAB s. AAAB AABS Annuaire des amis de la Bibliothèque de Sélestat. Sélestat AAEC Annuario dell'Accademia etrusca di Cortona. Cortona AAHG [Anz. F. Alt. bzw AnzAW.] Anzeiger für die Altertumswissenschaft, hrsg. von der Österreichischen Humanistischen Gesellschaft. Innsbruck AAL Annals of Archeology and Anthropology. Liverpool AALig Atti dell'Accademia Ligure di Scienze e Lettere. Genova AAM s. AVM AAMed Atti della Accademia Mediterranea delle Scienze. Catania AAn Archiv für Anthropologie. Braunschweig AAN Atti della Accademia di Scienze morali e politiche della Società nazionale di Scienze, Lettere ed Arti di Napoli. Napoli AAnt s. AAntHung 2 AAntHung [AAnt bzw. Acta Ant. Hung.] Acta Antiqua Academiae Scientiarum Hungaricae. Budapest AAP* s. AAPad AAP [AAPN] Atti dell'Accademia Pontaniana. Napoli AAPad [AAP*] Atti e Memorie della Accademia di Padova. Padova AAPal Atti dell'Accademia di Scienze, Lettere e Arti di Palermo. Palermo AAPat Atti e Memorie dell'Accademia Patavina di Scienze, Lettere ed Arti, Classe di Sc. mor., Lett. ed Arti. Padova AAPel Atti della Accademia Peloritana dei Pericolanti, Classe di Lettere, Filosofia e Belle Arti. Messina AAPhA American Philological Association. Abstracts. Ithaca, N.Y. AAPN s. AAP AAR Annales de l'Acad. des Sciences de Russie. Leningrad (jetzt St. Petersburg) AArch Acta Archaeologica. København AArchHung Acta Archaeologica Academiae Scientiarum Hungaricae. Budapest AArchSlov Acta Archaeologica (= Arheološki Vestnik). Ljubljana AArchSyr Annales archéologiques de Syrie. Damas AARov Atti della Accademia Roveretana degli Agiati, Classe di Scienze umane, Lettere ed Arti. Rovereto AASO The Annual of the American Schools of Oriental Research. Cambridge, Mass. AAT Atti della Accademia delle Scienze di Torino, Classe di Scienze morali, storiche e filologiche. Bologna [Torino] AATC Atti e Memorie dell'Accademia Toscana La Colombaria. Firenze AAVM s. AVM AAWM Abhandlungen der Akademie der Wissenschaften in Mainz, Geistes- und sozialwissenschaftliche Klasse. Wiesbaden AAWW Anzeiger der Österreichischen Akademie der Wissenschaften in Wien, Philos.-Hist. Klasse. Wien AB Analecta Bollandiana. Bruxelles ABA s. ABAW ABAW [ABA] Abhandlungen der Bayerischen Akademie der Wissenschaften, Philos.-Hist. Klasse. München ABG Archiv für Begriffsgeschichte: Bausteine zu einem historischen Wörterbuch der Philosophie. Bonn ABK Amtliche Berichte aus den kgl. Kunstsammlungen. Berlin ABMH Archeion ton byzantinon mnemeion tes Ellados. Athènes ABPO Annales de Bretagne et des Pays de l'Ouest. Rennes Abruzzo Abruzzo: rivista dell'Istituto di Studi abruzzi. Roma ABSA (*BSA) Annual of the British School at Athens. London ABull The Art Bulletin: a quarterly published by the College Art Association of America. New York AC* s. ArchCam AC [Ant.Cl.] L'Antiquité classique. Louvain-la-Neuve Academy The Academy. London ACAM Annales du Cercle Archéologique de Mons. Mons Accordia Accordia research papers. London (s. ARP) ACD Acta classica Universitatis Scientiarum Debreceniensis. Debrecen ACER Annales du Centre d'études des Religions. Bruxelles ACF Annuaire du Collège de France. Paris 3 Aclass [Acta Class] Acta classica: verhandelinge van die Klassieke Vereniging van Suid-Afrika = proceedings of the Classical Association of South Africa. Pretoria [Cape Town] ACM Anuarul Comisiunii Monumentelor istorice, sectie pentru Transilvania. Cluj, Cartea Româneasca Acme Acme: annali della Facoltà di Filosofia e Lettere dell'Università statale di Milano. Milano Acr s. Acropole ACR American Classical Review. City Univ. of New York Acropole [Acr] Acropole: revue du monde hellénique (Suppl. à REHom: Revue des études homériques) ActaHyp Acta Hyperborea: Danish studies in classical archaeology. Copenhagen ActaJurid Acta Juridica. Cape Town AD Archaiologikon Deltion (). Athènes ADAW [AbhBerl] Abhandlungen der Dt. Akademie der Wissenschaften zu Berlin. Klasse für Sprachen, Literatur & Kunst. Berlin ADFF Annali del Dipartimento di filosofia dell'Università. Firenze ADobr Analele Dobrogei: revista soc. culturale Dobrogene. Cernauti ADRS Archivio della Deputazione Romana di Storia patria. Roma ADSV Antic¡naja drevnosti srednie veka (Antike und Mittelalter). Swerdlowsk (jetzt Jekaterinburg) Ae s. Aegyptus AE s. AEph AEA [AEAA] Archivo Español de Arqueología. Madrid AEAA s. AEA AECO Archivum Europae Centro-Orientalis. Budapest Aeg s. Aegyptus Aegyptus [Aeg, Ae] (*Aeg.) Aegyptus: rivista italiana di egittologia e di papirologia. Milano AEH Archeion oikonomikes istorias. Archives of economic history. Athen AEHE s. AEHE (IVe sect.) AEHE (IVe sect.) [AEHE] Annuaire de l'école pratique des Hautes études, IVe sect., Sciences hist. & philolol. Paris AEHE (Ve sect.) Annuaire de l'école pratique des Hautes études, Ve sect., Sciences religieuses. Paris AEHEG Annales de l'école des Hautes études de Gand. Gand AEM Archäologisch-Epigraphische Mitteilungen aus Österreich-Ungarn. Wien AEph [AE] Archaiologike Ephemeris. Athen AErt Archaeologiai Ertesitö. Budapest AEst Annales de l'Est. Nancy Aev s. Aevum Aevum [Aev] Aevum: rassegna di scienze storiche, linguistiche e filologiche. Milano Aevum(ant) Aevum antiquum. Milano AF Archivio di Filosofia. Organo dell'Ist. di Studi filosofici. Roma, Padova & Milano AFB Anuari de filologia, Secció D, Studia Graeca et Latina. Barcelona AFC Anales de Filología clásica. Buenos Aires AFFB Anuario de Filologia. Fac. de Filosofía. Barcelona AFGG Annali della Facoltà di Giurisprudenza, Università di Genova. Milano AFGL Appunti di Filologia greco-latina. Chivasso 4 AFig Arti Figurative: rivista d'Arte antica e moderne. Roma AFLA Annales de la Fac. des Lettres et Sciences Humaines d'Aix, Sér. class. Gap AFLB [Ann.Univ.Bari] Annali della Facoltà di Lettere e Filosofia di Bari. Bari AFLC Annali della Facoltà di Lettere e Filosofia della Università di Cagliari. Cagliari AFLD Annales de la Faculté des Lettres et Sciences humaines de l'Université de Dakar. Paris AFLL Annali della Facoltà di Lettere di Lecce. Lecce AFLM Annali della Facoltà di Lettere e Filosofia, Università di Macerata. Padova AFLN Annali della Facoltà di Lettere e Filosofia della Università di Napoli. Napoli AFLNice Annales de la Fac. des Lettres et Sciences Humaines de Nice. Nice AFLPad Annali della Facoltà di Lettere e Filosofia di Padova. Firenze AFLPer Annali della Facoltà di Lettere e Filosofia. Perugia, Università degli Studi AFLS Annali della Facoltà di Lettere e Filosofia dell'Università di Siena. Fiesole [Firenze] AFLT* Annales publ. par la Fac. des Lettres de Toulouse. Toulouse AFLT Annali della Facoltà di Lettere e Filosofia. Trieste AFMB Annali della Facoltà di Magistero dell'Univ. di Bari. Fasano AFMC Annali della Facoltà di Magistero dell'Univ. di Cagliari. Cagliari AFML Annali della Facoltà di Magistero dell'Univ. di Lecce. Bari AFMP Annali della Facoltà di Magistero dell'Univ. di Palermo. Palermo AfrBull Africana Bulletin. Varsovie Africa Africa. Tunis, Institut national d' Archéologie et d' Art AFSFC Annali della Facoltà di Scienze della Formazione dell'Università di Cagliari. Cagliari AG Archivio Giuridico. Modena AGe Annales de Géographie. Paris Agg s. Angelos AGG s. AGWG AGI Archivio Glottologico Italiano. Firenze AGLComo Annuario del Ginnasio Liceo A. Volta di Como. Como AGM Sudhoffs Archiv für Geschichte der Medizin und Naturwissenschaften. Wiesbaden (Fortsetzung s. ZWG) Agon Agon: journal of Classical Studies. Berkeley, Ca. AGPh Archiv für Geschichte der Philosophie. Berlin AGR Akten der Gesellschaft für griechische und hellenistische Rechtsgeschichte. Köln AGWG [AGG] Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen. Berlin AH Ancient History. Macquarie (Australia), Ancient History Association, Univ. of New South Wales AHAArch Annales d'Histoire de l'art et d'archéologie. Bruxelles AHAM Anales de historia antigua y medieval. Buenos Aires AHAW Abhandlungen der Heidelberger Akademie der Wissenschaften, Philos.- Hist. Klasse. Heidelberg AHB The Ancient History Bulletin. Calgary AHC* Annales d'Histoire du Christianisme.
Recommended publications
  • Ephemeris Time, D. H. Sadler, Occasional
    EPHEMERIS TIME D. H. Sadler 1. Introduction. – At the eighth General Assembly of the International Astronomical Union, held in Rome in 1952 September, the following resolution was adopted: “It is recommended that, in all cases where the mean solar second is unsatisfactory as a unit of time by reason of its variability, the unit adopted should be the sidereal year at 1900.0; that the time reckoned in these units be designated “Ephemeris Time”; that the change of mean solar time to ephemeris time be accomplished by the following correction: ΔT = +24°.349 + 72s.318T + 29s.950T2 +1.82144 · B where T is reckoned in Julian centuries from 1900 January 0 Greenwich Mean Noon and B has the meaning given by Spencer Jones in Monthly Notices R.A.S., Vol. 99, 541, 1939; and that the above formula define also the second. No change is contemplated or recommended in the measure of Universal Time, nor in its definition.” The ultimate purpose of this article is to explain, in simple terms, the effect that the adoption of this resolution will have on spherical and dynamical astronomy and, in particular, on the ephemerides in the Nautical Almanac. It should be noted that, in accordance with another I.A.U. resolution, Ephemeris Time (E.T.) will not be introduced into the national ephemerides until 1960. Universal Time (U.T.), previously termed Greenwich Mean Time (G.M.T.), depends both on the rotation of the Earth on its axis and on the revolution of the Earth in its orbit round the Sun. There is now no doubt as to the variability, both short-term and long-term, of the rate of rotation of the Earth; U.T.
    [Show full text]
  • Calculation of Moon Phases and 24 Solar Terms
    Calculation of Moon Phases and 24 Solar Terms Yuk Tung Liu (廖²棟) First draft: 2018-10-24, Last major revision: 2021-06-12 Chinese Versions: ³³³qqq---文文文 简简简SSS---文文文 This document explains the method used to compute the times of the moon phases and 24 solar terms. These times are important in the calculation of the Chinese calendar. See this page for an introduction to the 24 solar terms, and this page for an introduction to the Chinese calendar calculation. Computation of accurate times of moon phases and 24 solar terms is complicated, but today all the necessary resources are freely available. Anyone familiar with numerical computation and computer programming can follow the procedure outlined in this document to do the computation. Before stating the procedure, it is useful to have a basic understanding of the basic concepts behind the computation. I assume that readers are already familiar with the important astronomy concepts mentioned on this page. In Section 1, I briefly introduce the barycentric dynamical time (TDB) used in modern ephemerides, and its connection to terrestrial time (TT) and international atomic time (TAI). Readers who are not familiar with general relativity do not have to pay much attention to the formulas there. Section 2 introduces the various coordinate systems used in modern astronomy. Section 3 lists the formulas for computing the IAU 2006/2000A precession and nutation matrices. One important component in the computation of accurate times of moon phases and 24 solar terms is an accurate ephemeris of the Sun and Moon. I use the ephemerides developed by the Jet Propulsion Laboratory (JPL) for the computation.
    [Show full text]
  • The Calendars of India
    The Calendars of India By Vinod K. Mishra, Ph.D. 1 Preface. 4 1. Introduction 5 2. Basic Astronomy behind the Calendars 8 2.1 Different Kinds of Days 8 2.2 Different Kinds of Months 9 2.2.1 Synodic Month 9 2.2.2 Sidereal Month 11 2.2.3 Anomalistic Month 12 2.2.4 Draconic Month 13 2.2.5 Tropical Month 15 2.2.6 Other Lunar Periodicities 15 2.3 Different Kinds of Years 16 2.3.1 Lunar Year 17 2.3.2 Tropical Year 18 2.3.3 Siderial Year 19 2.3.4 Anomalistic Year 19 2.4 Precession of Equinoxes 19 2.5 Nutation 21 2.6 Planetary Motions 22 3. Types of Calendars 22 3.1 Lunar Calendar: Structure 23 3.2 Lunar Calendar: Example 24 3.3 Solar Calendar: Structure 26 3.4 Solar Calendar: Examples 27 3.4.1 Julian Calendar 27 3.4.2 Gregorian Calendar 28 3.4.3 Pre-Islamic Egyptian Calendar 30 3.4.4 Iranian Calendar 31 3.5 Lunisolar calendars: Structure 32 3.5.1 Method of Cycles 32 3.5.2 Improvements over Metonic Cycle 34 3.5.3 A Mathematical Model for Intercalation 34 3.5.3 Intercalation in India 35 3.6 Lunisolar Calendars: Examples 36 3.6.1 Chinese Lunisolar Year 36 3.6.2 Pre-Christian Greek Lunisolar Year 37 3.6.3 Jewish Lunisolar Year 38 3.7 Non-Astronomical Calendars 38 4. Indian Calendars 42 4.1 Traditional (Siderial Solar) 42 4.2 National Reformed (Tropical Solar) 49 4.3 The Nānakshāhī Calendar (Tropical Solar) 51 4.5 Traditional Lunisolar Year 52 4.5 Traditional Lunisolar Year (vaisnava) 58 5.
    [Show full text]
  • Astronomical Time Keeping file:///Media/TOSHIBA/Times.Htm
    Astronomical Time Keeping file:///media/TOSHIBA/times.htm Astronomical Time Keeping Introduction Siderial Time Solar Time Universal Time (UT), Greenwich Time Timezones Atomic Time Ephemeris Time, Dynamical Time Scales (TDT, TDB) Julian Day Numbers Astronomical Calendars References Introduction: Time keeping and construction of calendars are among the oldest branches of astronomy. Up until very recently, no earth-bound method of time keeping could match the accuracy of time determinations derived from observations of the sun and the planets. All the time units that appear natural to man are caused by astronomical phenomena: The year by Earth's orbit around the Sun and the resulting run of the seasons, the month by the Moon's movement around the Earth and the change of the Moon phases, the day by Earth's rotation and the succession of brightness and darkness. If high precision is required, however, the definition of time units appears to be problematic. Firstly, ambiguities arise for instance in the exact definition of a rotation or revolution. Secondly, some of the basic astronomical processes turn out to be uneven and irregular. A problem known for thousands of years is the non-commensurability of year, month, and day. Neither can the year be precisely expressed as an integer number of months or days, nor does a month contain an integer number of days. To solves these problems, a multitude of time scales and calenders were devised of which the most important will be described below. Siderial Time The siderial time is deduced from the revolution of the Earth with respect to the distant stars and can therefore be determined from nightly observations of the starry sky.
    [Show full text]
  • Swiss Ephemeris: an Accurate Ephemeris Toolset for Astronomy and Astrology
    NOTICES Swiss Ephemeris: An Accurate Ephemeris Toolset for Astronomy and Astrology Victor Reijs Independent scholar [email protected] Ralf Stubner Independent scholar [email protected] Introduction The Swiss Ephemeris is a highly accurate ephemeris toolset developed since 1997 by Astrodienst (Koch and Triendl 2004). It is based upon the DE430/DE431 ephemerides from NASA’s JPL (Folkner et al. 2014) and covers the time range 13,000 BC to AD 17,000. For both astronomical and astrological coordinates (true equinox of date), all corrections such as relativistic aberration, deflection of light in the gravity field of the Sun and others have been included. The Swiss Ephemeris is not a product that can be easily used by end users, but it is an accurate and fast toolset for programmers to build into their own astronomical or astrological software. A few examples where this toolset is used include the swephR package for the R environment (Stubner and Reijs 2019) and ARCHAEOCOSMO, which is used within both Excel and R (Reijs 2006). All discussed packages have open source versions. To provide flexibility (mainly in processing and memory needs), Swiss Ephemeris can use three ephemerides, giving the user the choice of which to use. First there are the original JPL ephemerides data files. These data files need a lot of memory (around 3 GB) and provide the most accurate ephemeris at this moment. The second (and default) SE ephemeris uses Astrodienst’s data files. Astrodienst used sophisticated compres- sion techniques to reduce the original DE430/DE431 data files to around 100 MB.
    [Show full text]
  • San Jose Astronomical Association Membership Form P.O
    SJAA EPHEMERIS SJAA Activities Calendar May General Meeting Jim Van Nuland Dr. Jeffrey Cuzzi May 26 at 8 p.m. @ Houge Park late April David Smith 20 Houge Park Astro Day. Sunset 7:47 p.m., 20% moon sets 0:20 a.m. Star party hours: 8:30 to 11:30 p.m. At our May 26 General Meeting the title of the talk will be: 21 Mirror-making workshop at Houge Park. 7:30 p.m. What Have We Learned from the Cassini/Huygens Mission to 28 General meeting at Houge Park. Karrie Gilbert will Saturn? – a presentation by Dr. Jeffrey Cuzzi of NASA Ames speak on Studies of Andromeda Galaxy Halo Stars. 8 Research Center. p.m. May Cassini is now well into its third year at Saturn. The Huygens 5 Mirror-making workshop at Houge Park. 7:30 p.m. entry probe landed on Titan in January 2005, but since then, 11 Astronomy Class at Houge Park. 7:30 p.m. many new discoveries have been made on Titan’s surface, and 11 Houge Park star party. Sunset 8:06 p.m., 27% moon elsewhere in the system, by the orbiter as it continues its four- rise 3:23 a.m. Star party hours: 9:00 to midnight. year tour. In addition, new understanding is emerging from 12 Dark sky weekend. Sunset 8:07 p.m., 17% moon rise analysis of the earliest obtained data. 3:50 a.m. In this talk, Dr. Jeffrey Cuzzi will review the key science highlights 17 Mirror-making workshop at Houge Park.
    [Show full text]
  • Signal in Space Error and Ephemeris Validity Time Evaluation of Milena and Doresa Galileo Satellites †
    sensors Article Signal in Space Error and Ephemeris Validity Time Evaluation of Milena and Doresa Galileo Satellites † Umberto Robustelli * , Guido Benassai and Giovanni Pugliano Department of Engineering, Parthenope University of Naples, 80143 Napoli, Italy; [email protected] (G.B.); [email protected] (G.P.) * Correspondence: [email protected] † This paper is an extended version of our paper published in the 2018 IEEE International Workshop on Metrology for the Sea proceedings entitled “Accuracy evaluation of Doresa and Milena Galileo satellites broadcast ephemeris”. Received: 14 March 2019; Accepted: 11 April 2019; Published: 14 April 2019 Abstract: In August 2016, Milena (E14) and Doresa (E18) satellites started to broadcast ephemeris in navigation message for testing purposes. If these satellites could be used, an improvement in the position accuracy would be achieved. A small error in the ephemeris would impact the accuracy of positioning up to ±2.5 m, thus orbit error must be assessed. The ephemeris quality was evaluated by calculating the SISEorbit (in orbit Signal In Space Error) using six different ephemeris validity time thresholds (14,400 s, 10,800 s, 7200 s, 3600 s, 1800 s, and 900 s). Two different periods of 2018 were analyzed by using IGS products: DOYs 52–71 and DOYs 172–191. For the first period, two different types of ephemeris were used: those received in IGS YEL2 station and the BRDM ones. Milena (E14) and Doresa (E18) satellites show a higher SISEorbit than the others. If validity time is reduced, the SISEorbit RMS of Milena (E14) and Doresa (E18) greatly decreases differently from the other satellites, for which the improvement, although present, is small.
    [Show full text]
  • Long Period Astronomical Cycles from the Triassic to Jurassic Bedded Chert Sequence (Inuyama, Japan); Geologic Evidences for the Chaotic Behavior of Solar Planets
    Earth Planets Space, 65, 351–360, 2013 Long period astronomical cycles from the Triassic to Jurassic bedded chert sequence (Inuyama, Japan); Geologic evidences for the chaotic behavior of solar planets Masayuki Ikeda1 and Ryuji Tada2 1Department of Earth Sciences, Graduate School of Science and Engineering, Ehime University, Ehime 790-8577, Japan 2Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan (Received July 11, 2012; Revised August 31, 2012; Accepted September 10, 2012; Online published May 7, 2013) Astronomical theory predicts that ∼2 Myr eccentricity cycle have changed its periodicity and amplitude through time because of the chaotic behavior of solar planets, especially Earth-Mars secular resonance. Although the ∼2 Myr eccentricity cycle has been occasionally recognized in geological records, their frequency transitions have never been reported. To explore the frequency evolution of ∼2 Myr eccentricity cycle, we used the bedded chert sequence in Inuyama, Japan, of which rhythms were proven to be of astronomical origin, covering the ∼30 Myr long spanning from the Triassic to Jurassic. The frequency modulation of ∼2 Myr cycle between ∼1.6 and ∼1.8 Myr periodicity detected from wavelet analysis of chert bed thickness variation are the first geologic record of chaotic transition of Earth-Mars secular resonance. The frequency modulation of ∼2 Myr cycle will provide new constraints for the orbital models. Additionally, ∼8 Myr cycle detected as chert bed thickness variation and its amplitude modulation of ∼2 Myr cycle may be related to the amplitude modulation of ∼2 Myr eccentricity cycle through non-linear process(es) of Earth system dynamics, suggesting possible impact of the chaotic behavior of Solar planets on climate change.
    [Show full text]
  • The Calendar: Its History, Structure And
    !!i\LENDAR jS, HISTORY, STRUCTURE 1 III i; Q^^feiTAA^gvyuLj^^ v^ i Jb^ n n !> f llfelftr I ^'^\C)SL<^ THE CALENDAR BY THE SAME AUTHOR THE IMPROVEMENT OF THE GREGORIAN CALENDAR, WITH NOTES OF AN ADDRESS ON CALENDAR REFORM AND SOCIAL PRO- GRESS DELIVERED TO THE ABERDEEN ROTARY CLUB. 32 pp. Crown 8vo. zs.dd. GEORGE ROUTLEDGE & SONS, Ltd. A PLEA FOR AN ORDERLY ALMANAC. 62 pp. Crown 8vo. Cloth zs. 6d. Stiff boards is. 6d. BRECHIN : D. H. EDWARDS. LONDON : GEORGE ROUTLEDGE & SONS, Ltd. THE CALENDAR ITS HISTORY, STRUCTURE AND IMPROVEMENT BY ALEXANDER PHILIP, LL.B., F.R.S. Edin. CAMBRIDGE AT THE UNIVERSITY PRESS I 9 2 I CAMBRIDGE UNIVERSITY PRESS C. F. Clay, Manager LONDON : FETTER LANE, E.C.4 fij n*'A NEW YORK : THE MACMILLAN CO. BOM HAY ) CALCUTTA I MACMILLAN AND CO., Ltd. MADRAS j TORONTO : THE MACMILLAN CO. OF CANADA, Ltd. TOKYO : MARUZEN-KABUSHIKI-KAISHA ALL RIGHTS RESERVED M u rO(Ku CE 73 f.HS PREFACE THE following essay is intended to serve as a text-book for those interested in current discussion concerning the Calendar. Its design is to exhibit a concise view of the origin and develop- ment of the Calendar now in use in Europe and America, to explain the principles and rules of its construction, to show the human purposes for which it is required and employed and to indicate how far it effectively serves these purposes, where it is deficient and how its deficiencies can be most simply and efficiently amended. After the reform of the Calendar initiated by Pope Gregory XIII there were published a number of exhaustive treatises on the subject—^voluminous tomes characterised by the prolix eru- dition of the seventeenth century.
    [Show full text]
  • IAU) and Time
    The relationships between The International Astronomical Union (IAU) and time Nicole Capitaine IAU Representative in the CCU Time and astronomy: a few historical aspects Measurements of time before the adoption of atomic time - The time based on the Earth’s rotation was considered as being uniform until 1935. - Up to the middle of the 20th century it was determined by astronomical observations (sidereal time converted to mean solar time, then to Universal time). When polar motion within the Earth and irregularities of Earth’s rotation have been known (secular and seasonal variations), the astronomers: 1) defined and realized several forms of UT to correct the observed UT0, for polar motion (UT1) and for seasonal variations (UT2); 2) adopted a new time scale, the Ephemeris time, ET, based on the orbital motion of the Earth around the Sun instead of on Earth’s rotation, for celestial dynamics, 3) proposed, in 1952, the second defined as a fraction of the tropical year of 1900. Definition of the second based on astronomy (before the 13th CGPM 1967-1968) definition - Before 1960: 1st definition of the second The unit of time, the second, was defined as the fraction 1/86 400 of the mean solar day. The exact definition of "mean solar day" was left to astronomers (cf. SI Brochure). - 1960-1967: 2d definition of the second The 11th CGPM (1960) adopted the definition given by the IAU based on the tropical year 1900: The second is the fraction 1/31 556 925.9747 of the tropical year for 1900 January 0 at 12 hours ephemeris time.
    [Show full text]
  • The Curious Case of the Milankovitch Calendar
    Hist. Geo Space Sci., 10, 235–243, 2019 https://doi.org/10.5194/hgss-10-235-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. The curious case of the Milankovitch calendar Nenad Gajic Faculty of Technical Sciences, Trg Dositeja Obradovica´ 6, 21000 Novi Sad, Serbia Correspondence: Nenad Gajic ([email protected]) Received: 20 May 2019 – Revised: 11 August 2019 – Accepted: 23 August 2019 – Published: 26 September 2019 Abstract. The Gregorian calendar, despite being more precise than the Julian (which now lags 13 d behind Earth), will also lag a day behind nature in this millennium. In 1923, Milutin Milankovitch presented a calen- dar of outstanding scientific importance and unprecedented astronomical accuracy, which was accepted at the Ecumenical Congress of Eastern Orthodox churches. However, its adoption is still partial in churches and nonex- istent in civil states, despite nearly a century without a better proposition of calendar reform in terms of both precision and ease of transition, which are important for acceptance. This article reviews the development of calendars throughout history and presents the case of Milankovitch’s, explaining its aims and methodology and why it is sometimes mistakenly identified with the Gregorian because of their long consonance. Religious as- pects are briefly covered, explaining the potential of this calendar to unite secular and religious purposes through improving accuracy in both contexts. 1 Introduction global scientific project called “Climate: Long range Inves- tigation, Mapping, and Prediction” (CLIMAP, 1981), which aimed to reconstruct the worldwide climate history through Milutin Milankovic´ (1879–1958; see Fig.
    [Show full text]
  • Time-Calibrated Milankovitch Cycles for the Late Permian
    ARTICLE Received 31 Oct 2012 | Accepted 16 Aug 2013 | Published 13 Sep 2013 DOI: 10.1038/ncomms3452 OPEN Time-calibrated Milankovitch cycles for the late Permian Huaichun Wu1,2, Shihong Zhang1, Linda A. Hinnov3, Ganqing Jiang4, Qinglai Feng5, Haiyan Li1 & Tianshui Yang1 An important innovation in the geosciences is the astronomical time scale. The astronomical time scale is based on the Milankovitch-forced stratigraphy that has been calibrated to astronomical models of paleoclimate forcing; it is defined for much of Cenozoic–Mesozoic. For the Palaeozoic era, however, astronomical forcing has not been widely explored because of lack of high-precision geochronology or astronomical modelling. Here we report Milankovitch cycles from late Permian (Lopingian) strata at Meishan and Shangsi, South China, time calibrated by recent high-precision U–Pb dating. The evidence extends empirical knowledge of Earth’s astronomical parameters before 250 million years ago. Observed obliquity and precession terms support a 22-h length-of-day. The reconstructed astronomical time scale indicates a 7.793-million year duration for the Lopingian epoch, when strong 405-kyr cycles constrain astronomical modelling. This is the first significant advance in defining the Palaeozoic astronomical time scale, anchored to absolute time, bridging the Palaeozoic–Mesozoic transition. 1 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China. 2 School of Ocean Sciences, China University of Geosciences, Beijing 100083, China. 3 Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA. 4 Department of Geoscience, University of Nevada, Las Vegas, Nevada 89154, USA. 5 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China.
    [Show full text]