La Metalicidad De Las Enanas M

Total Page:16

File Type:pdf, Size:1020Kb

La Metalicidad De Las Enanas M M´asterUniversitario en Astrof´ısica Universidad Complutense de Madrid Trabajo de Fin de M´aster Preparaci´ony explotaci´oncient´ıficade CARMENES: la metalicidad de las enanas M Alumno: Rodrigo Gonzalez´ Peinado I Directores: David Montes II (UCM), Jos´eAntonio Caballero III (LSW) Tutor: David Montes II (UCM) Septiembre 2016 [email protected] [email protected] [email protected] Resumen: Contexto: CARMENES es un espectr´ografode alta resoluci´oncon el que el consorcio hispano-alem´andel mismo nombre busca exotierras alrededor de unas 300 estrellas enanas de tipo espectral M por el m´etodo de velocidad radial. Objetivos: Recopilar informaci´onde utilidad en diferentes cat´alogospara una muestra inicial dada de 209 sistemas estelares binarios y m´ultiples,formados por una primaria de tipo espectral F, G o K y una compa~nerasecundaria de tipo M (o K tard´ıa). Comprobar si el par de estrellas forma efectivamente un par de movimiento propio y obtener calibraciones de metalicidad espectrosc´opicasy fotom´etricasen banda K a partir de estos sistemas binarios. M´etodos: La recopilaci´onde datos de cada estrella se ha realizado buscando en cat´alogosespecializados en VizieR y la bibliograf´ıa.La comprobaci´onde si las estrellas son compa~nerasde movimiento propio se ha realizado estudiando los movimientos propios de ambas estrellas con la ayuda de dos herramientas del observatorio virtual: Aladin y T opCat. A partir de una lista de sistemas aptos, se han obtenido dos tipos de calibraciones de metalicidad: espectrosc´opicas y fotom´etricas.Para derivar dichas calibraciones, se ha supuesto que la metalicidad de la primaria, calculada por el grupo de investigaci´onde la UCM dedicado a CARMENES, es igual a la de la secundaria. Resultados: Se ha obtenido una calibraci´onespectrosc´opicadependiente ´unicamente de la anchura equivalente de Na i (2.206 µm y 2.209 µm) y una fotom´etricaque mejora las publicadas hasta ahora. A su vez, se han estimado metalicidades para 134 estrellas M en sistemas m´ultiples, con un rango de metalicidad {0.9<[Fe/H]<+0.4. Conclusiones: El estudio de los sistemas lejanos y f´ısicosde esta muestra ha permitido dise~nar calibraciones de met- alicidad espectrosc´opicasy fotom´etricasen la banda K que podr´anusarse para calcular metalicidades de estrellas M aisladas. Palabras clave: Bases de datos astron´omicas| Estrellas: movimientos propios | Estrellas: tipo tard´ıo| Estrellas: compa~neras| Estrellas: metalicidad | Abstract: Context: CARMENES is a next-generation instrument being built by a consortium of German and Spanish institutions to carry out a survey of 300 M-type dwarf stars with the goal of detecting exoearths by radial-velocity measurements. Aims: To collect relevant information from different on-line catalogues for a given sample of 209 binary or multiple star systems, formed by F, G or K primary star and an M-dwarf (or late-K) companion. To prove if the pair is indeed a physical pair, to obtain different metallicity calibrations in K-band with these binary systems. Methods: The data compilation from every star has been done searching in catalogues in VizieR and the literature. In addition, physical pair checking has been done studying the collected proper motions from both stars (primary and secondary) and using two tools from the Virtual Observatory: Aladin and T opCat. From a list of suitable systems, two different types of calibrations had been obtained: spectroscopic and photometric. In order to determine these calibrations, we have considered that metallicity from the primary star, determined by the CARMENES UCM research group, is equal to the secondary star. Results: The spectroscopic calibration obtained is only dependant on the Na i (2.206 µm y 2.209 µm) equivalent width and the photometric calibration determined here improves the ones published so far. In addition, metallicities had been obtained for 134 M-dwarfs in multiple systems, in a range of -0.9<[Fe/H]<+0.4. Conclusions: The study of wide binary physical systems in our sample allows to derive spectroscopic and photometric metallicity callibrations in K-band that could be used to calculate metallicities in isolated M-dwarfs. Keywords: Astronomical data bases | Stars: proper motions | Stars: late-type | Stars: companions | Stars: metallicity 1 ´Indice 1 Introducci´on 3 1.1 CARMENES . .3 1.2 Enanas M y b´usquedade exoplanetas . .4 1.3 Sistemas, multiplicidad y movimientos propios . .5 1.4 Metalicidad . .6 1.5 Objetivos . .8 2 Recopilaci´onde datos y an´alisis 9 2.1 Muestra inicial y tipos espectrales . .9 2.2 Observatorio virtual y cat´alogos. 10 2.3 Comprobaci´onde sistemas por movimientos propios . 13 2.4 Par´ametrosde metalicidad . 15 2.4.1 Metalicidad de primarias FGK . 15 2.4.2 Anchuras equivalentes en NIR de las secundarias M . 16 2.4.3 Magnitudes fotom´etricasde las secundarias M . 16 3 Resultados y discusi´on 17 3.1 Multiplicidad y movimientos propios . 17 3.1.1 Multiplicidad de los sistemas . 17 3.1.2 Sistemas descartados . 18 3.1.3 Muestra final de estudio . 18 3.2 Calibraciones de metalicidad . 19 3.2.1 Calibraciones espectrosc´opicas . 19 3.2.2 Calibraciones fotom´etricas. 20 4 Conclusiones 24 Futuro del proyecto 24 Agradecimientos 25 Referencias 26 Apendice A Figuras 29 Apendice B Tablas 34 P´osters 78 2 1 Introducci´on 1.1 CARMENES CARMENES I (Calar Alto high-Resolution search for M-dwarfs with Exoearths with Near-infrared and optical Echelle´ Spectrographs) es un espectr´ografo´echelle de alta resoluci´onsituado en el telescopio Zeiss de 3.5 m del Observatorio de Calar Alto, a 2168 metros sobre el nivel del mar en la Sierra de los Filabres, Almer´ıa(Espa~na). El Instituto de Astrof´ısicade Andaluc´ıa(IAA) junto con el Max-Planck-Institut f¨urAstronomie (MPIA) son los encargados de operar el Centro Astron´omicoHispano-Alem´an(CAHA), donde se sit´uaCARMENES (Quirrenbach et al. 2014). Como consorcio, CARMENES est´aformado por 11 instituciones: MPIA, IAA, el Landessternwarte K¨onigsthul (LSW) de Heidelberg, el Institut de Ci`enciesde l'Espai (ICE) de Barcelona, el Institut f¨urAstrophysik G¨ottingen(IAG), la Universidad Complutense de Madrid (UCM), el Th¨uringerLandessternwarte Tautenburg (TLS), el Instituto de As- trof´ısicade Canarias (IAC), el Hamburger Sternwarte (HS), el Centro de Astrobiolog´ıa(CAB) en Madrid y el CAHA. M´asde 150 cient´ıficose ingenieros de estas instituciones han participado en el desarrollo, construcci´ony explotaci´on cient´ıficade este nuevo "cazador" de planetas. Lo que hace a CARMENES ´unicoy diferente de otros espectr´ografos´echelle de alta resoluci´ondedicados a la b´usqueda de exoplanetas, es su capacidad para observar en dos reg´ımenesde longitud de onda diferentes. As´ı,CARMENES es un espectr´ografode dos canales, uno en el visible (que cubre un rango de longitud de onda entre 520 y 960 nm en 55 ´ordenes)y otro en el infrarrojo cercano (cuyo rango cubre entre 960 y 1710 nm en 28 ´ordenes).Posee una resoluci´on de 94600 en el visible y de 80400 en el infrarrojo cercano (NIR). La calibraci´onen longitud de onda se lleva a cabo mediante un sistema de l´amparasde emisi´on(U-Ar, U-Ne y Th-Ne), adem´asde un ´etalon de Fabry-P´erotpara cada canal. La temperatura de trabajo en el visible es de 285,00±0,05 K, mientras que en el infrarrojo cercano necesita ser refrigerado hasta los 140,00±0,05 K para alcanzar una precisi´onen velocidad radial de 1 m/s. La t´ecnicaen la que CARMENES se basa para la detecci´onde exoplanetas se conoce como velocidad radial (RV, del acr´onimoen ingl´es). Este m´etodo da cuenta del efecto Doppler que se produce cuando una estrella y un objeto que la orbita, en este caso un planeta, se mueven en torno al centro de masas com´undel sistema. CARMENES est´a optimizado para operar en el infrarrojo cercano y posee una precisi´onde 1 m/s, lo que le permitir´aencontrar planetas dentro de la zona de habitabilidad de las estrellas M. Se ampliar´am´assobre este tema en la Secci´on1.2. Con motivo de la b´usquedade exoplanetas alrededor de este tipo de estrellas, se cre´ola base de datos Carmencita (CARMENes Cool dwarf Information and daTa Archive; Caballero et al. 2013 y Caballero et al. 2016). Carmencita posee aproximadamente unas 2200 enanas M y un gran n´umerode par´ametrospara cada objeto, bien extra´ıdosde la literatura o bien medidos por el consorcio. Entre los par´ametrosdestacan la informaci´onastrom´etricay cinem´aticade la enana (α, δ, µαcosδ, µδ, π, Vr, U, V , W ), tipos espectrales (desde M0.0V hasta M9.5V) e informaci´onfotom´etrica (19 bandas fotom´etricascubriendo un rango de longitudes de onda desde el ultravioleta al infrarrojo). La obtenci´onde otros par´ametroscomo metalicidades, gravedad superficial, temperatura o indicadores de actividad y edad (pEW (Hα), informaci´onde rayos X, velocidad rotacional) ha servido para seguir ampliando la informaci´onen Carmencita y poder descartar aquellas enanas no adecuadas para la b´usquedade exoplanetas con el m´etodo de la velocidad radial debido a su alta actividad, baja gravedad superficial, binarias espectrosc´opicasy rotadoras r´apidas. Otro de los aspectos importantes de Carmencita es el tratamiento de la multiplicidad de los sistemas. Respecto a esto, se ha dedicado la Secci´on1.3 para su explicaci´on. Para un mejor aprovechamiento del tiempo de observaci´onde CARMENES, se han seleccionado las ∼300 estrellas M m´asprometedoras de Carmencita. Estas ∼300 finalistas son los objetivos de observaci´ondurante las 600 noches hasta 2018 dedicadas al proyecto. Todas ellas cumplen las siguientes tres caracter´ısticas,adem´as de las expuestas anteriormente: • Deben ser observables desde Calar Alto , es decir, poseer una declinaci´on δ > {23 deg (distancia cenital z < 60 deg, masa de aire en culminaci´on < 2.0) • Deben ser las estrellas M m´asbrillantes en cada subtipo espectral.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Download This Article in PDF Format
    A&A 562, A92 (2014) Astronomy DOI: 10.1051/0004-6361/201321493 & c ESO 2014 Astrophysics Li depletion in solar analogues with exoplanets Extending the sample, E. Delgado Mena1,G.Israelian2,3, J. I. González Hernández2,3,S.G.Sousa1,2,4, A. Mortier1,4,N.C.Santos1,4, V. Zh. Adibekyan1, J. Fernandes5, R. Rebolo2,3,6,S.Udry7, and M. Mayor7 1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica de Canarias, C/ Via Lactea s/n, 38200 La Laguna, Tenerife, Spain 3 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 4 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal 5 CGUC, Department of Mathematics and Astronomical Observatory, University of Coimbra, 3049 Coimbra, Portugal 6 Consejo Superior de Investigaciones Científicas, CSIC, Spain 7 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland Received 18 March 2013 / Accepted 25 November 2013 ABSTRACT Aims. We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods. In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600–5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results. We confirm significant differences in the Li distribution of solar twins (Teff = T ± 80 K, log g = log g ± 0.2and[Fe/H] = [Fe/H] ±0.2): the full sample of planet host stars (22) shows Li average values lower than “single” stars with no detected planets (60).
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Visual/Infrared Interferometry of Orion Trapezium Stars: Preliminary Dynamical Orbit and Aperture Synthesis Imaging of the Θ1 Orionis C System
    A&A 466, 649–659 (2007) Astronomy DOI: 10.1051/0004-6361:20066965 & c ESO 2007 Astrophysics Visual/infrared interferometry of Orion Trapezium stars: preliminary dynamical orbit and aperture synthesis imaging of the θ1 Orionis C system S. Kraus1, Y. Y. Balega2, J.-P. Berger3, K.-H. Hofmann1, R. Millan-Gabet4, J. D. Monnier5, K. Ohnaka1, E. Pedretti5, Th. Preibisch1, D. Schertl1, F. P. Schloerb6, W. A. Traub7, and G. Weigelt1 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: [email protected] 2 Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnij Arkhyz, Zelenchuk region, Karachai-Cherkesia 357147, Russia 3 Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9, France 4 Michelson Science Center, California Institute of Technology, Pasadena, CA 91125, USA 5 Astronomy Department, University of Michigan, 500 Church Street, Ann Arbor, MI 48104, USA 6 Department of Astronomy, University of Massachusetts, LGRT-B 619E, 710 North Pleasant Street, Amherst, MA 01003, USA 7 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02183, USA Received 19 December 2006 / Accepted 7 February 2007 ABSTRACT Context. Located in the Orion Trapezium cluster, θ1Ori C is one of the youngest and nearest high-mass stars (O5-O7) known. Besides its unique properties as a magnetic rotator, the system is also known to be a close binary. Aims. By tracing its orbital motion, we aim to determine the orbit and dynamical mass of the system, yielding a characterization of the individual components and, ultimately, also new constraints for stellar evolution models in the high-mass regime.
    [Show full text]
  • The 10 Parsec Sample in the Gaia Era?,?? C
    A&A 650, A201 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140985 & c C. Reylé et al. 2021 Astrophysics The 10 parsec sample in the Gaia era?,?? C. Reylé1 , K. Jardine2 , P. Fouqué3 , J. A. Caballero4 , R. L. Smart5 , and A. Sozzetti5 1 Institut UTINAM, CNRS UMR6213, Univ. Bourgogne Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, 25010 Besançon Cedex, France e-mail: [email protected] 2 Radagast Solutions, Simon Vestdijkpad 24, 2321 WD Leiden, The Netherlands 3 IRAP, Université de Toulouse, CNRS, 14 av. E. Belin, 31400 Toulouse, France 4 Centro de Astrobiología (CSIC-INTA), ESAC, Camino bajo del castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain 5 INAF – Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese (TO), Italy Received 2 April 2021 / Accepted 23 April 2021 ABSTRACT Context. The nearest stars provide a fundamental constraint for our understanding of stellar physics and the Galaxy. The nearby sample serves as an anchor where all objects can be seen and understood with precise data. This work is triggered by the most recent data release of the astrometric space mission Gaia and uses its unprecedented high precision parallax measurements to review the census of objects within 10 pc. Aims. The first aim of this work was to compile all stars and brown dwarfs within 10 pc observable by Gaia and compare it with the Gaia Catalogue of Nearby Stars as a quality assurance test. We complement the list to get a full 10 pc census, including bright stars, brown dwarfs, and exoplanets.
    [Show full text]
  • Doctor of Philosophy
    Study of Sun-like G Stars and Their Exoplanets Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Mr. SHASHANKA R. GURUMATH May, 2019 ABSTRACT By employing exoplanetary physical and orbital characteristics, aim of this study is to understand the genesis, dynamics, chemical abundance and magnetic field structure of Sun-like G stars and relationship with their planets. With reasonable constraints on selection of exoplanetary physical characteristics, and by making corrections for stellar rate of mass loss, a power law relationship between initial stellar mass and their exo- planetary mass is obtained that suggests massive stars harbor massive planets. Such a power law relationship is exploited to estimate the initial mass (1.060±0.006) M of the Sun for possible solution of “Faint young Sun paradox” which indeed indicates slightly higher mass compared to present mass. Another unsolved puzzle of solar system is angular momentum problem, viz., compare to Sun most of the angular momentum is concentrated in the solar system planets. By analyzing the exoplanetary data, this study shows that orbital angular momentum of Solar system planets is higher compared to orbital angular momentum of exoplanets. This study also supports the results of Nice and Grand Tack models that propose the idea of outward migration of Jovian planets during early history of Solar system formation. Furthermore, we have examined the influence of stellar metallicity on the host stars mass and exoplanetary physical and orbital characteristics that shows a non-linear relationship. Another important result is most of the planets in single planetary stellar systems are captured from the space and/or inward migration of planets might have played a dominant role in the final architecture of single planetary stellar systems.
    [Show full text]
  • Determining the True Mass of Radial-Velocity Exoplanets with Gaia 9 Planet Candidates in the Brown-Dwarf/Stellar Regime and 27 Confirmed Planets
    Astronomy & Astrophysics manuscript no. exoplanet_mass_gaia c ESO 2020 September 30, 2020 Determining the true mass of radial-velocity exoplanets with Gaia 9 planet candidates in the brown-dwarf/stellar regime and 27 confirmed planets F. Kiefer1; 2, G. Hébrard1; 3, A. Lecavelier des Etangs1, E. Martioli1; 4, S. Dalal1, and A. Vidal-Madjar1 1 Institut d’Astrophysique de Paris, Sorbonne Université, CNRS, UMR 7095, 98 bis bd Arago, 75014 Paris, France 2 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France? 3 Observatoire de Haute-Provence, CNRS, Universiteé d’Aix-Marseille, 04870 Saint-Michel-l’Observatoire, France 4 Laboratório Nacional de Astrofísica, Rua Estados Unidos 154, 37504-364, Itajubá - MG, Brazil Submitted on 2020/08/20 ; Accepted for publication on 2020/09/24 ABSTRACT Mass is one of the most important parameters for determining the true nature of an astronomical object. Yet, many published exoplan- ets lack a measurement of their true mass, in particular those detected thanks to radial velocity (RV) variations of their host star. For those, only the minimum mass, or m sin i, is known, owing to the insensitivity of RVs to the inclination of the detected orbit compared to the plane-of-the-sky. The mass that is given in database is generally that of an assumed edge-on system (∼90◦), but many other inclinations are possible, even extreme values closer to 0◦ (face-on). In such case, the mass of the published object could be strongly underestimated by up to two orders of magnitude.
    [Show full text]
  • Evidence for Enhanced Chromospheric Ca II H and K Emission in Stars with Close-In Extrasolar Planets
    A&A 540, A82 (2012) Astronomy DOI: 10.1051/0004-6361/201118247 & c ESO 2012 Astrophysics Evidence for enhanced chromospheric Ca II H and K emission in stars with close-in extrasolar planets T. Krejcovᡠ1 and J. Budaj2 1 Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlárskᡠ2, 61137 Brno, Czech Republic e-mail: [email protected] 2 Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranská Lomnica, Slovak Republic e-mail: [email protected] Received 11 October 2011 / Accepted 13 February 2012 ABSTRACT Context. The planet-star interaction is manifested in many ways. It has been found that a close-in exoplanet causes small but mea- surable variability in the cores of a few lines in the spectra of several stars, which corresponds to the orbital period of the exoplanet. Stars with and without exoplanets may have different properties. Aims. The main goal of our study is to search for the influence that exoplanets might have on atmospheres of their host stars. Unlike the previous studies, we do not study changes in the spectrum of a host star or differences between stars with and without exoplanets. We aim to study a large number of stars with exoplanets and the current level of their chromospheric activity and to look for a possible correlation with the exoplanetary properties. Methods. To analyse the chromospheric activity of stars, we exploited our own and publicly available archival spectra, measured the equivalent widths of the cores of Ca II H and K lines, and used them to trace their activity. Subsequently, we searched for their dependence on the orbital parameters and the mass of the exoplanet.
    [Show full text]
  • Solar System Analogues Among Exoplanetary Systems
    Solar System analogues among exoplanetary systems Maria Lomaeva Lund Observatory Lund University ´´ 2016-EXA105 Degree project of 15 higher education credits June 2016 Supervisor: Piero Ranalli Lund Observatory Box 43 SE-221 00 Lund Sweden Populärvetenskaplig sammanfattning Människans intresse för rymden har alltid varit stort. Man har antagit att andra plan- etsystem, om de existerar, ser ut som vårt: med mindre stenplaneter i banor närmast stjärnan och gas- samt isjättar i de yttre banorna. Idag känner man till drygt 2 000 exoplaneter, d.v.s., planeter som kretsar kring andra stjärnor än solen. Man vet även att vissa av dem saknar motsvarighet i solsystemet, t. ex., heta jupitrar (gasjättar som har migrerat inåt och kretsar väldigt nära stjärnan) och superjordar (stenplaneter större än jorden). Därför blir frågan om hur unikt solsystemet är ännu mer intressant, vilket vi försöker ta reda på i det här projektet. Det finns olika sätt att detektera exoplaneter på men två av dem har gett flest resultat: transitmetoden och dopplerspektroskopin. Med transitmetoden mäter man minsknin- gen av en stjärnas ljus när en planet passerar framför den. Den metoden passar bäst för stora planeter med små omloppsbanor. Dopplerspektroskopin använder sig av Doppler effekten som innebär att ljuset utsänt från en stjärna verkar blåare respektive rödare när en stjärna förflyttar sig fram och tillbaka från observatören. Denna rörelse avslöjar att det finns en planet som kretsar kring stjärnan och påverkar den med sin gravita- tion. Dopplerspektroskopin är lämpligast för massiva planeter med små omloppsbanor. Under projektets gång har vi inte bara letat efter solsystemets motsvarigheter utan även studerat planetsystem som är annorlunda.
    [Show full text]