Chest CT for Suspected Pulmonary Complications of Oncologic Therapies: How I Review and Report Stefan Diederich

Total Page:16

File Type:pdf, Size:1020Kb

Chest CT for Suspected Pulmonary Complications of Oncologic Therapies: How I Review and Report Stefan Diederich Diederich Cancer Imaging (2016) 16:7 DOI 10.1186/s40644-016-0066-4 REVIEW Open Access Chest CT for suspected pulmonary complications of oncologic therapies: how I review and report Stefan Diederich Abstract In cancer patient during or following oncologic therapies with respiratory symptoms and pulmonary pathology at chest CT the differential diagnosis includes infection, therapy-induced disease and tumour progression. Although CT morphology may be typical or even pathognomonic in some conditions the diagnosis is usually made by a synopsis of imaging, clinical and laboratory features. Close communication with referring colleagues and a good knowledge of potential side effects of therapeutic concepts, their time course and CT morphology is crucial in the differential diagnosis. This review describes a personal approach to the radiological diagnosis of therapy-induced pulmonary abnormalities in cancer patients. Keywords: Lung, Radiation pneumonitis, Drug toxicity, Infection, Cryptogenic organizing pneumonia, Oedema, Computed tomography, Image interpretation, Image display Background infectious complications but its toxicity particularly Why imaging for pulmonary complications of oncologic of antifungal therapy may be detrimental in cases of therapy? non-infectious disease. Unnecessary discontinuation In patients during or following therapy for cancer pul- of an effective drug will obviously result in a nega- monary symptoms are common. These may, obviously, tive effect for the patient. be due to a variety of causes such as progression of ma- Furthermore, in cancer patients pulmonary disease lignancy involving the chest as well as infectious or non- may have a more aggressive and potentially lethal course infectious complications of surgery, radiation or medical than in otherwise healthy patients. therapy. In addition, in cancer patients disease unrelated to For all these reasons it is mandatory to establish the malignancy may occur, although the risk for some of these cause of the pulmonary symptoms fast and reliably. conditions may be increased due to the disease or its The clinical signs and symptoms of pulmonary therapy. disease such as cough, dyspnoea, hypoxia and signs The different potential causes of chest symptoms of inflammation are usually unspecific and do not may require completely different therapeutic ap- reliably allow differentiation between the different proaches. Escalation or change of chemotherapy or conditions. molecular therapy may be required in progressive Laboratory test alone are usually not specific enough diseasebutmayhavecatastrophicresultsinpulmon- for patient management. Therefore, imaging is crucial ary toxicity of these drugs. Steroid therapy is usually in these circumstances and has a major impact on indicated in non-infectious inflammatory compli- therapeutic decisions. cations but may aggravate pulmonary infection. This review describes a personal approach to the radio- Antimicrobial treatment is obviously useful in logical diagnosis of therapy-induced pulmonary abnormal- ities in cancer patients. It does not claim to cover all Correspondence: [email protected] aspects of the problem and specifically does not include Department of Diagnostic and Interventional Radiology, Marien Hospital, post-surgical changes. Academic Teaching Hospital, Rochusstr. 2, D- 40479 Düsseldorf, Germany © 2016 Diederich. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Diederich Cancer Imaging (2016) 16:7 Page 2 of 11 Risk considerations: assessing pre-test probability It is relatively easy to make a diagnosis of radiation of different pulmonary complications pneumonitis in simple radiation ports as there is usually As almost all imaging findings in pulmonary complica- a sharp border between involved and normal lung fol- tions are not specific enough to decide on the significant lowing the borders of the radiation port [1,2]. If, how- therapeutic consequences on the basis of imaging results ever, more modern radiotherapy techniques are used alone it is of paramount importance to use a synopsis (e.g. intensity-modulated radiation therapy (iMRT), of clinical laboratory and imaging data to make the gamma-knife, cyber-knife) it may be impossible to estab- diagnosis. lish the diagnosis unless the dose distribution is known (Fig. 1). Ideally, radiation planning data should be avail- Pulmonary disease in oncologic therapy able to the diagnostic radiologist in these patients. Radiation pneumonitis Radiation of pulmonary parenchyma exceeding a dose of Drug-induced pulmonary toxicity 30–40 Gray (Gy) usually leads to radiation pneumonitis A large variety of drugs is used in modern systemic ther- which may be clinically occult but may also present with apy of malignancy and usually combinations of two or symptoms such as unproductive cough, dyspnoea and more drugs are administered in order to increase the ef- clinical and laboratory signs of inflammation. ficacy without increasing toxicity. Classical cytotoxic Radiation pneumonitis follows a rather typical time chemotherapy, leading to cell tumour necrosis may be course: 6–10 weeks after the radiation dose threshold combined with molecular therapy that blocks cell me- has been exceeded ground glass is observed which then tabolism, blood supply and other cellular functions with- increases in density to present as consolidation. After out actually destroying the tumour cells. Most recently some months fibrosis occurs with a decrease in volume immune therapy has been introduced in which the host’s of the involved lung area and signs such as traction immune response to the malignant cells is enhanced [3]. bronchiectasis and displacement such as interlobar fis- Many of these agents have side effects that may sures, vessels and bronchi. manifest in the lung. Due to the fact that there are Radiation pneumonitis almost exclusively involves the innumerable combinations of different drugs with differ- lung area that was affected by radiation dose above the ent doses it is very difficult to predict potential toxic ef- threshold and is not limited by anatomical borders such fects in the lung. Furthermore, the spectrum of drug- as interlobar fissures. induced pulmonary disease is not unique but represents Fig. 1 Radiation pneumonitis. Patient with NSCLC (non-small cell lung cancer) treated with radiation. a Dose distribution at radiation planning simulation. b Chest CT at lung window with consolidation. Note the tongue-like area of consolidation in the anterior segment of the left upper lobe reflecting the area with > 75 % of the total dose at the dose distribution plan Diederich Cancer Imaging (2016) 16:7 Page 3 of 11 a spectrum of diseases which also occurs unrelated to Other disease with increased risk in cancer patients drug toxicity. Cryptogenic organizing pneumonia (COP) manifests It includes hypersensitivity pneumonitis, interstitial as solitary or multiple peripheral areas of consolidation, pneumonitis with a pattern of non-specific interstitial pulmonary nodules or masses, peribronchovascular con- pneumonia (NSIP) (Fig. 2), cryptogenic organizing pneu- solidation or other morphology. monia (COP), pulmonary haemorrhage, pulmonary It may occur secondary to infection, therapy with dif- oedema, bronchiolitis, vasculitis and many others. ferent drugs, collagen vascular diseases or with no Finally, one drug may cause several different patterns known cause (idiopathic COP). of pulmonary toxicity. Therefore, it is almost impossible In cancer patients it may be a manifestation of drug- to know all possible patterns of drug-induced lung disease induced lung disease. It is also associated with radiation even in the commonest therapeutic regimens. There is a therapy. Other than radiation pneumonitis the lung ab- very helpful freely available website which lists all potential normalities are not confined to the radiation port and effects of a large variety of drugs (not only in oncology) the time course is variable with COP occurring weeks or which is regularly updated (http://www.pneumotox.com). months after radiation therapy [4]. The website does not present radiological images but lists Deep venous thrombosis (DVT) leading to pulmon- potential patterns. ary embolism (PE) is more common in cancer patients than in patients with no malignancy. It may be due to the cancer (e.g. particularly increased risk in pancreatic Infection: predisposing factors for infection with different cancer) or its therapy (e.g. antihormonal therapy in hor- organisms mone receptor-positive breast cancer) [5]. Obviously, immunosuppression due to malignancy Pulmonary oedema is not uncommon in patients (e.g. lymphoma, leukaemia) or its therapy (particularly undergoing chemotherapy as many regimens include chemotherapy, molecular therapy) often increases the large amounts of fluid in order to decrease the local tox- risk of pulmonary infection. icity of the drugs. Particularly in patients with renal Furthermore, depending on the affected cell line and insufficiency this
Recommended publications
  • Pleural Effusion and Ventilation/Perfusion Scan Interpretation for Acute Pulmonary Embolus
    ventricular function by radionuclide angiography during exercise in normal subjects 33. Verani MS. Myocardial perfusion imaging versus two-dimensional echocardiography: and patients with chronic coronary heart disease. J Am Coll Cardiol 1983;1:1518- comparative value in the diagnosis of coronary artery disease. J NucíCardiol 1529. 1994;1:399-414. 29. Adam WE. Tarkowska A, Bitter F, Stauch M, Geffers H. Equilibrium (gated) 34. Foster T, McNeill AJ, Salustri A, et al. Simultaneous dobutamine stress echocardiog radionuclide ventriculography. Cardiovasc Radial 1979;2:161-173. raphy and technetium-99m SPECT in patients with suspected coronary artery disease. 30. Hurwitz RA, TrêvesS, Kuroc A. Right ventricular and left ventricular ejection fraction J Am Coll Cardiol I993;21:1591-I596. in pediatrie patients with normal hearts: first pass radionuclide angiography. Am 35. Marwick TH, D'Hondt AM, Mairesse GH, Baudhuin T, Wijins W, Detry JM, Meiin Heart J 1984;107:726-732. 31. Freeman ML, Palac R, Mason J, et al. A comparison of dobutamine infusion and JA. Comparative ability of dobutamine and exercise stress in inducing myocardial ischemia in active patients. Br Heart J 1994:72:31-38. supine bicycle exercise for radionuclide cardiac stress testing. Clin NucíMed 1984:9:251-255. 36. Senior R, Sridhara BS, Anagnostou E, Handler C, Raftery EB, Lahiri A. Synergistic 32. Cohen JL, Greene TO, Ottenweller J, Binebaum SZ, Wilchfort SD, Kim CS. value of simultaneous stress dobutamine sestamibi single-photon-emission computer Dobutamine digital echocardiography for detecting coronary artery disease. Am J ized tomography and echocardiography in the detection of coronary artery disease.
    [Show full text]
  • Pneumothorax Ex Vacuo in a Patient with Malignant Pleural Effusion After Pleurx Catheter Placement
    The Medicine Forum Volume 16 Article 20 2015 Pneumothorax ex vacuo in a Patient with Malignant Pleural Effusion After PleurX Catheter Placement Meera Bhardwaj, MS4 Thomas Jefferson University, [email protected] Loheetha Ragupathi, MD Thomas Jefferson University, [email protected] Follow this and additional works at: https://jdc.jefferson.edu/tmf Part of the Medicine and Health Sciences Commons Let us know how access to this document benefits ouy Recommended Citation Bhardwaj, MS4, Meera and Ragupathi, MD, Loheetha (2015) "Pneumothorax ex vacuo in a Patient with Malignant Pleural Effusion After PleurX Catheter Placement," The Medicine Forum: Vol. 16 , Article 20. DOI: https://doi.org/10.29046/TMF.016.1.019 Available at: https://jdc.jefferson.edu/tmf/vol16/iss1/20 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in The Medicine Forum by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. Bhardwaj, MS4 and Ragupathi, MD: Pneumothorax ex vacuo in a Patient with Malignant Pleural Effusion After PleurX Catheter Placement Pneumothorax ex vacuo in a Patient with Malignant Pleural Effusion After PleurX Catheter Placement Meera Bhardwaj, MS4 and Loheetha Ragupathi, MD INTRODUCTION Pneumothorax ex vacuo (“without vaccuum”) is a type of pneumothorax that can develop in patients with large pleural effusions.
    [Show full text]
  • An Interesting Case of Undiagnosed Pleural Effusion Case Report
    Amit Panjwani, Thuraya Zaid [email protected] Pulmonary Medicine, Salmaniya Medical Complex, Manama, Bahrain. An interesting case of undiagnosed pleural effusion Case report Pleural effusions are commonly encountered in the Investigations revealed a haemoglobin level Cite as: Panjwani A, Zaid T. clinical practise of both respiratory and nonrespiratory of 16.4 g⋅dL−1, and total leukocyte count of An interesting case of specialists. An estimated 1–1.5 million new cases in 8870 cells⋅mm−3 with a differential count of 62% undiagnosed pleural effusion. the USA and 200 000–250 000 new cases of pleural neutrophils, 28% lymphocytes, 7% monocytes, 2% Breathe 2017; 13: e46–e52. effusions are reported from the UK each year [1]. eosinophils and 1% basophils. The platelet count Analysis of the relevant clinical history, physical was 160 000 cells⋅mm−3. Creatinine, electrolytes examination, chest radiography and diagnostic and liver function tests were normal. The ECG was thoracentesis is useful in identifying the cause of unremarkable and cardiac enzymes were within pleural effusion in majority of the cases [2]. In a few normal limits. Chest radiograph (figure 1) showed a cases, the aetiology may be unclear after the initial mild, right-sided pleural effusion, blunting of the left assessment. The list of diseases that may account for costophrenic angle, no shift of mediastinal position a persistent undiagnosed pleural effusion is long [3]. and no lung parenchymal opacities. We present an interesting case of undiagnosed pleural effusion that was encountered in our hospital. R Case presentation A 33-year-old male presented to our hospital with a history of sudden-onset, pleuritic, right-sided chest pain of 2 days’ duration.
    [Show full text]
  • COVID-19 Pneumonia: the Great Radiological Mimicker
    Duzgun et al. Insights Imaging (2020) 11:118 https://doi.org/10.1186/s13244-020-00933-z Insights into Imaging EDUCATIONAL REVIEW Open Access COVID-19 pneumonia: the great radiological mimicker Selin Ardali Duzgun* , Gamze Durhan, Figen Basaran Demirkazik, Meltem Gulsun Akpinar and Orhan Macit Ariyurek Abstract Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread worldwide since December 2019. Although the reference diagnostic test is a real-time reverse transcription-polymerase chain reaction (RT-PCR), chest-computed tomography (CT) has been frequently used in diagnosis because of the low sensitivity rates of RT-PCR. CT fndings of COVID-19 are well described in the literature and include predominantly peripheral, bilateral ground-glass opacities (GGOs), combination of GGOs with consolida- tions, and/or septal thickening creating a “crazy-paving” pattern. Longitudinal changes of typical CT fndings and less reported fndings (air bronchograms, CT halo sign, and reverse halo sign) may mimic a wide range of lung patholo- gies radiologically. Moreover, accompanying and underlying lung abnormalities may interfere with the CT fndings of COVID-19 pneumonia. The diseases that COVID-19 pneumonia may mimic can be broadly classifed as infectious or non-infectious diseases (pulmonary edema, hemorrhage, neoplasms, organizing pneumonia, pulmonary alveolar proteinosis, sarcoidosis, pulmonary infarction, interstitial lung diseases, and aspiration pneumonia). We summarize the imaging fndings of COVID-19 and the aforementioned lung pathologies that COVID-19 pneumonia may mimic. We also discuss the features that may aid in the diferential diagnosis, as the disease continues to spread and will be one of our main diferential diagnoses some time more.
    [Show full text]
  • Fungal Infection in the Lung
    CHAPTER Fungal Infection in the Lung 52 Udas Chandra Ghosh, Kaushik Hazra INTRODUCTION The following risk factors may predispose to develop Pneumonia is the leading infectious cause of death in fungal infections in the lungs 6 1, 2 developed countries . Though the fungal cause of 1. Acute leukemia or lymphoma during myeloablative pneumonia occupies a minor portion in the immune- chemotherapy competent patients, but it causes a major role in immune- deficient populations. 2. Bone marrow or peripheral blood stem cell transplantation Fungi may colonize body sites without producing disease or they may be a true pathogen, generating a broad variety 3. Solid organ transplantation on immunosuppressive of clinical syndromes. treatment Fungal infections of the lung are less common than 4. Prolonged corticosteroid therapy bacterial and viral infections and very difficult for 5. Acquired immunodeficiency syndrome diagnosis and treatment purposes. Their virulence varies from causing no symptoms to death. Out of more than 1 6. Prolonged neutropenia from various causes lakh species only few fungi cause human infection and 7. Congenital immune deficiency syndromes the most vulnerable organs are skin and lungs3, 4. 8. Postsplenectomy state RISK FACTORS 9. Genetic predisposition Workers or farmers with heavy exposure to bird, bat, or rodent droppings or other animal excreta in endemic EPIDEMIOLOGY OF FUNGAL PNEUMONIA areas are predisposed to any of the endemic fungal The incidences of invasive fungal infections have pneumonias, such as histoplasmosis, in which the increased during recent decades, largely because of the environmental exposure to avian or bat feces encourages increasing size of the population at risk. This population the growth of the organism.
    [Show full text]
  • Allergic Bronchopulmonary Aspergillosis: a Perplexing Clinical Entity Ashok Shah,1* Chandramani Panjabi2
    Review Allergy Asthma Immunol Res. 2016 July;8(4):282-297. http://dx.doi.org/10.4168/aair.2016.8.4.282 pISSN 2092-7355 • eISSN 2092-7363 Allergic Bronchopulmonary Aspergillosis: A Perplexing Clinical Entity Ashok Shah,1* Chandramani Panjabi2 1Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India 2Department of Respiratory Medicine, Mata Chanan Devi Hospital, New Delhi, India This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. In susceptible individuals, inhalation of Aspergillus spores can affect the respiratory tract in many ways. These spores get trapped in the viscid spu- tum of asthmatic subjects which triggers a cascade of inflammatory reactions that can result in Aspergillus-induced asthma, allergic bronchopulmo- nary aspergillosis (ABPA), and allergic Aspergillus sinusitis (AAS). An immunologically mediated disease, ABPA, occurs predominantly in patients with asthma and cystic fibrosis (CF). A set of criteria, which is still evolving, is required for diagnosis. Imaging plays a compelling role in the diagno- sis and monitoring of the disease. Demonstration of central bronchiectasis with normal tapering bronchi is still considered pathognomonic in pa- tients without CF. Elevated serum IgE levels and Aspergillus-specific IgE and/or IgG are also vital for the diagnosis. Mucoid impaction occurring in the paranasal sinuses results in AAS, which also requires a set of diagnostic criteria. Demonstration of fungal elements in sinus material is the hall- mark of AAS.
    [Show full text]
  • The Spectrum of Computed Tomography Appearances
    RESPIRATORY MEDICIXE (1997) 91, 213-219 Allergic bronchopulmonary aspergillosis: the spectrum of computed tomography appearances N. PANCHAL",R. BHAGAT",C. PANT+AND A. SHAH" “Department of Clinical Research, Vallabhbhai Pate1 Chest Institute, University of Delhi, Delhi, lndia ‘Imaging Division, Institute of Nuclear Medicine and Allied Sciences, Timaupuv, Delhi, India Although computed tomography (CT) of the thorax has been compared to plain chest radiography and bronchography for demonstration of central bronchiectasis (CB) in allergic bronchopulmonary aspergil- losis (ABPA), the CT presentation of the disease is yet to be highlighted. With this in view, the CT appearances in 23 patients with ABPA were evaluated. The scans were assessed for bronchial, parenchymal and pleural abnormalities. Central bronchiectasis was identified in all patients, involving 114 (85%) of the 134 lobes and 210 (52%) of the 406 segments studied. Other bronchial abnormalities such as dilated and totally occluded bronchi (11 patients), air-fluid levels within dilated bronchi (five patients), bronchial wall thickening (10 patients) and parallel-line shadows (seven patients) were also observed. Parenchymal abnormalities, which had a predilection for upper lobes, included consolidation in 10 (43%) patients, collapse in four (17%) patients and parenchymal scarring in 19 (83%) patients. A total of six cavities were seen in three (13%) patients, and an emphysematous bullae was detected in one (4%) patient. The pleura was involved in 10 (43%) patients. Ipsilateral pleural effusion with collapse was observed in one patient, while in nine other patients, parenchymal lesions extended up to the pleura. Concomitant allergic Aspergillus sinusitis (AAS) was also detected in three (13%) of the 23 patients.
    [Show full text]
  • Fungal Rhinosinusitis and Imaging Modalities
    Saudi Journal of Ophthalmology (2012) 26, 419–426 Oculoplastic Imaging Update Fungal rhinosinusitis and imaging modalities ⇑ Ian R. Gorovoy, MD a; Mia Kazanjian, MD b; Robert C. Kersten, MD a; H. Jane Kim, MD a; M. Reza Vagefi, MD a, Abstract This report provides an overview of fungal rhinosinusitis with a particular focus on acute fulminant invasive fungal sinusitis (AFIFS). Imaging modalities and findings that aid in diagnosis and surgical planning are reviewed with a pathophysiologic focus. In addition, the differential diagnosis based on imaging suggestive of AFIFS is considered. Keywords: Acute fulminant invasive fungal sinusitis, Fungal rhinosinusitis, Imaging, Computed tomography, Magnetic Resonance Imaging Ó 2012 Saudi Ophthalmological Society, King Saud University. All rights reserved. http://dx.doi.org/10.1016/j.sjopt.2012.08.009 Introduction individuals.6 It can be fatal over days and is characterized by invasion of the blood vessels with resulting tissue infarc- Fungal rhinosinusitis encompasses a wide spectrum of fun- tion. Unlike the other forms of fungal rhinosinusitis, anatomic gal infections ranging from mildly symptomatic to rapidly abnormalities that cause sinus pooling, such as nasal polyps fatal. Fungal colonization of the upper and lower airways is or chronic inflammatory states, do not appear to be signifi- a common condition secondary to the ubiquitous presence cant risk factors for AFIFS.4 of fungal spores in the air. Aspergillus species are the most AFIFS is usually due to Aspergillus species or fungi from prevalent colonizers of the sinuses.1 However, colonization the class Zygomycetes, including Rhizopus, Rhizomucor, Ab- is distinct from infection as the majority of colonized patients sidia, and Mucor.7 In diabetic patients, roughly 80% of AFIFS do not become ill with fungal infections.
    [Show full text]
  • Pulmonary Toxicity Following Carmustine-Based Preparative Regimens and Autologous Peripheral Blood Progenitor Cell Transplantation in Hematological Malignancies
    Bone Marrow Transplantation (2000) 25, 309–313 2000 Macmillan Publishers Ltd All rights reserved 0268–3369/00 $15.00 www.nature.com/bmt Pulmonary toxicity following carmustine-based preparative regimens and autologous peripheral blood progenitor cell transplantation in hematological malignancies EP Alessandrino1, P Bernasconi1, A Colombo1, D Caldera1, G Martinelli1, P Vitulo2, L Malcovati1, C Nascimbene2, M Varettoni1, E Volpini2, C Klersy3 and C Bernasconi1 1Centro Trapianti di Midollo Osseo, Istituto di Ematologia, 2Divisione di Pneumologia, 3Biometry-Scientific Direction IRCCS, Policlinico S Matteo, Pavia, Italy Summary: the use of BCNU is suspected to be caused by damage to the glutathione system.2 BCNU has been included in high- Sixty-five patients with hematological malignancies (25 dose conditioning regimens for gliomas, breast cancer, multiple myeloma, 18 Hodgkin’s disease, 22 non-Hodg- Hodgkin’s disease, non-Hodgkin’s lymphomas, multiple kin’s lymphomas) who received a carmustine-based myeloma. Toxic pulmonary reactions have been recognized regimen followed by autologous PBPC transplantation, in as many as 16–64% of patients;3–13 onset generally were studied retrospectively to evaluate the incidence of occurs within 1 year of starting BCNU. Events occurring post-transplant non-infective pulmonary complications up to 17 years later have been reported.14 The drug seems (NIPCs), risk factors predictive of NIPCs, and response to cause pulmonary damage in a dose-related manner:5,10,11 to steroids. Carmustine (BCNU) given i.v. at a dose of Phillips et al6 reported a 9.5% incidence of fatal pulmonary 600 mg/m2 was combined with etoposide and cyclophos- toxicity in patients receiving BCNU doses as high as 1.200 phamide in 40 patients (BCV regimen) and with etopo- mg/m2 as a single agent; another report suggests no pul- side and melphalan in 25 patients (BEM regimen).
    [Show full text]
  • Adcetris, INN-Brentuximab Vedotin
    ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions. See section 4.8 for how to report adverse reactions. 1. NAME OF THE MEDICINAL PRODUCT ADCETRIS 50 mg powder for concentrate for solution for infusion. 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each vial contains 50 mg of brentuximab vedotin. After reconstitution (see section 6.6), each mL contains 5 mg of brentuximab vedotin. ADCETRIS is an antibody-drug conjugate composed of a CD30-directed monoclonal antibody (recombinant chimeric immunoglobulin G1 [IgG1], produced by recombinant DNA technology in Chinese Hamster ovary cells) that is covalently linked to the antimicrotubule agent monomethyl auristatin E (MMAE). Excipient with known effect Each vial contains approximately 13.2 mg of sodium. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Powder for concentrate for solution for infusion. White to off-white cake or powder. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Hodgkin lymphoma ADCETRIS is indicated for adult patients with previously untreated CD30+ Stage IV Hodgkin lymphoma (HL) in combination with doxorubicin, vinblastine and dacarbazine (AVD) (see sections 4.2 and 5.1). ADCETRIS is indicated for the treatment of adult patients with CD30+ HL at increased risk of relapse or progression following autologous stem cell transplant (ASCT) (see section 5.1). ADCETRIS is indicated for the treatment of adult patients with relapsed or refractory CD30+ Hodgkin lymphoma (HL): 1. following ASCT, or 2. following at least two prior therapies when ASCT or multi-agent chemotherapy is not a treatment option.
    [Show full text]
  • Case Report Cryptogenic Organising Pneumonia: Clinical, Pathological, and Prognostic Analysis of 27 Cases
    Int J Clin Exp Med 2016;9(3):6911-6919 www.ijcem.com /ISSN:1940-5901/IJCEM0019752 Case Report Cryptogenic organising pneumonia: clinical, pathological, and prognostic analysis of 27 cases Yanli Li1*, Yan Li1*, Fengfeng Han1, Haiyang Yu1, Tianyun Yang1, Huimin Li2, Wenbin Guan3, Xuejun Guo1 Departments of 1Respiratory Medicine, 2Radiology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China; 3Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, China. *Equal contributors and co-first authors. Received November 14, 2015; Accepted November 29, 2015; Epub March 15, 2016; Published March 30, 2016 Abstract: Background: Buds of granulation tissue within the lumen of distal pulmonary airspaces characterises organising pneumonia (OP). This study aimed to analyse the clinical and pathological features and prognosis of pa- tients with cryptogenic OP. Methods: Twenty-seven patients were retrospectively analysed. A multidisciplinary team (a clinician, radiologist, and pathologist) diagnosed all patients. Clinical features, laboratory data, chest radiology, treatment and prognosis, pulmonary function, and haematoxylin-eosin and immunohistochemical staining were assessed. Results: Symptoms (in decreasing prevalence) were cough, dyspnoea, fever, and chest tightness. The erythrocyte sedimentation rate (in most patients) and C-reactive protein level were increased. Radiologic findings (in decreasing prevalence) were consolidation, nodules, and band-like opacities. The lung function results were ‘normal’ and ‘restrictive’ in 30.8% and 38.5% of patients, respectively. Most patients responded to corticosteroids. The prognosis of the patients was excellent in 77.8% and poor in 22.2%. Organised polypoid granulation inflamma- tory tissue was in the distal bronchiole airways, respiratory bronchioles, alveolar ducts, and alveoli.
    [Show full text]
  • Immunotherapy Associated Pulmonary Toxicity: Biology Behind Clinical and Radiological Features
    cancers Review Immunotherapy Associated Pulmonary Toxicity: Biology Behind Clinical and Radiological Features Michele Porcu 1 , Pushpamali De Silva 2,3 , Cinzia Solinas 2,4,*, Angelo Battaglia 4, Marina Schena 4, Mario Scartozzi 5, Dominique Bron 3, Jasjit S. Suri 6,7, Karen Willard-Gallo 2, Dario Sangiolo 8,9 and Luca Saba 1 1 Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (Cagliari), Italy; [email protected] (M.P.); [email protected] (L.S.) 2 Molecular Immunology Unit, Institut Jules Bordet, Universitè Libre de Bruxelles (ULB), 1000 Brussels, Belgium; [email protected] (P.D.S.); [email protected] (K.W.-G.) 3 Clinical and Experimental Hematology, Institute Jules Bordet, Universitè Libre de Bruxelles (ULB), 1000 Brussels, Belgium; [email protected] 4 Department of Medical Oncology and Hematology, Regional Hospital of Aosta, 11100 Aosta, Italy; [email protected] (A.B.); [email protected] (M.S.) 5 Department of Medical Oncology, University Hospital of Cagliari, 09042 Monserrato (Cagliari), Italy; [email protected] 6 Lung Diagnostic Division, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; [email protected] 7 AtheroPoint™ LLC, Roseville, CA 95661, USA 8 Department of Oncology, University of Torino, 10043 Orbassano (Torino), Italy; [email protected] 9 Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo (Torino), Italy * Correspondence: [email protected] Received: 16 January 2019; Accepted: 26 February 2019; Published: 5 March 2019 Abstract: The broader use of immune checkpoint blockade in clinical routine challenges clinicians in the diagnosis and management of side effects which are caused by inflammation generated by the activation of the immune response.
    [Show full text]