Marine Flooding Events of the Early and Middle Ordovician of Oman and the United Arab Emirates and Their Graptolite, Acritarch and Chitinozoan Associations

Total Page:16

File Type:pdf, Size:1020Kb

Marine Flooding Events of the Early and Middle Ordovician of Oman and the United Arab Emirates and Their Graptolite, Acritarch and Chitinozoan Associations GeoArabia, v. 15, no. 4, 2010, p. 81-120 Gulf PetroLink, Bahrain Marine flooding events of the Early and Middle Ordovician of Oman and the United Arab Emirates and their graptolite, acritarch and chitinozoan associations Barrie R. Rickards, Graham A. Booth, Florentin Paris and Alan P. Heward ABSTRACT Graptolites and their associated acritarch floras and chitinozoan faunas are described from three localities in Oman and the United Arab Emirates (UAE). They are characteristic of intervals of deeper water sediments in the Floian – Dapingian (Arenig, identified here as maximum flooding surface MFS O25) and mid Darriwilian (Llanvirn, MFS O30). These marine flooding events have distinctive and unique palynological signatures. Most of the recorded Darriwilian fauna and flora have northern Gondwana affinities. Oman and the UAE seem to have occupied relatively elevated positions during the Ordovician and only to have been inundated at times of highest sea level. Exotic rafts of Ordovician Rann and Ayim formations that crop out in the Kub Melange of the Dibba Zone range in age from Floian – Dapingian, through Darriwilian, to Katian (Arenig – Llanvirn- Caradoc) and may provide a glimpse of a relatively condensed Ordovician stratigraphy that occurs at depth beneath Musandam Peninsula and the Arabian Gulf. INTRODUCTION The origins of this paper lay in the chance discovery of a graptolite in the Kub Melange (Figure 1) of the United Arab Emirates (UAE) by Dan Schelling, working on behalf of Indago Petroleum Ltd. The green shale matrix of the melange was thought to be Late Triassic or Late Cretaceous, yet it contained a graptolite. Some of the shales clearly consist of Ordovician Rann Formation. R.B. Rickards identified the graptolite and thought it was the first graptolite found in the UAE or Oman. He was unaware of unpublished records from the Ghaba-1 (GB-1) and Baqlah-1 (BQ-1) boreholes in Oman (Figure 1) and the substantial work on the associated acritarch floras and chitinozoan faunas in relation to oil and gas exploration (e.g. Molyneux et al., 2006). This paper integrates graptolite, acritarch and chitinozoan interpretations to provide biostratigraphic ties between their respective zonations. It presents, as far as possible, data for the three fossil groups over the same stratigraphic intervals. It also presents new fossil evidence for the range of ages represented by the Rann Formation of the UAE. Graptolites have not been described from outcropping Ordovician rocks in Oman, possibly because the outcrops are of shallow-water facies or due to unfavourable deformation and cleavage development in Saih Hatat. They have only occasionally been encountered in subsurface cores as these are not normally cut in shale intervals. The Ghaba-1 graptolites were originally identified by Sudbury in the late 1950s, for the Iraq Petroleum Company. Sudbury has kindly provided reports (IR/RGSH/364/365), research notes and drawings and made helpful comments on the present interpretations. Acritarchs have proved important in furthering understanding of the Lower Palaeozoic stratigraphy of Oman. Lovelock et al. (1981) described limited acritarch assemblages from the Amdeh Formation outcrops in Saih Hatat, but much of the Lower Palaeozoic section in Oman is not exposed at the surface. The data that has permitted biozonation of the interval has all been derived from boreholes. Droste (1997) first reported a biozonation employed in Petroleum Development Oman (PDO) founded on studies of well material using acritarchs, chitinozoans and cryptospores. An update of the zonation was discussed in detail by Molyneux et al. (2006), where the sequence stratigraphic implications and the usefulness of the scheme in resolving stratigraphic issues were clearly demonstrated. Chitinozoans are well-represented in the Ordovician and Lower Silurian subsurface strata of Oman. However, with the exception of a few references to the group (e.g. Molyneux et al., 2004, 2006), a brief report of Lower – Middle Ordovician chitinozoans from outcrops in Saih Hatat (Sansom et al., 2009), 81 Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/15/4/81/4565801/rickards.pdf by guest on 25 September 2021 Rickards et al. 54°E 55° 56° 57° 58° 59° IRAN 26°N Musandam 26° Hormuz Salt Basin KM Dubai Dibba Zone 25° 25° N 0 100 Gulf of Oman Abu Dhabi km F r o n t Oman Mountains o f 24° H 24° a w a s in Muscat a T UNITED ARAB h r u Outcropping EMIRATES s ts Ordovician S h e Saih Hatat e 23° ts 23° Fahud Salt Basin BQ-1 22° 22° Ghaba Salt Basin SAUDI ARABIA GB-1 21° 21° Huqf Area OMAN 20° 20° Arabian Sea 34°E 38° 42° 46° 50° 54° 60° 38°N TURKEY Caspian 38° 19° South Oman Sea 19° Salt Basin CYPRUS SYRIA N 34° LEBANON 0 300 34° Med Sea IRAQ km JORDAN 30° 30° Gulf KUWAIT IRAN of Suez BAHRAIN 26° SAUDI ARABIA QATAR EGYPT Gulf of Oman Arabian UAE 18° 22° Shield 18° OMAN SUDAN Red Sea 18° ERITREA YEMEN Arabian Sea 14° 14° SOCOTRA ETHIOPIA Gulf of Aden 54° 55° 56° 57° 58° 34° 38° 42° 46°59° 50° 54° 60° Figure 1: Location map Mirbatshowing fossiliferous Kub Melange (KM) outcrops in Ras Al Salalah Khaimah, UAE, and the Ghaba-1 (GB-1) and Baqlah-1 (BQ-1) oil exploration boreholes in Oman. Ordovician outcrops are limited in NE Arabia to the Amdeh Formation in Saih Hatat (Oman) and the Rann Formation of the UAE. Ordovician strata, however, occur extensively in the subsurface of Oman, in the Oman Salt Basins and to the west. 82 82 Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/15/4/81/4565801/rickards.pdf by guest on 25 September 2021 Early and Middle Ordovician flooding events, Oman and UAE and the description of new species (Al-Ghammari et al., 2010), no detailed data have been published. Most of the information is contained in unpublished Petroleum Development Oman internal reports (authored by F. Paris). LOCATION OF SAMPLES AND BIOSTRATIGRAPHY Kub Melange, Southeast of Idhn Village, Ras Al Khaimah, UAE (25°25.555’ N, 56°03.920’ E; UTM WGS84 2,812,439 N, 406,008 E) The Kub Melange crops out in a few square kilometres of the Dibba Zone in the northern Oman Mountains (Figure 1). It has been interpreted as the sheared equivalent of the Haybi Complex, an assemblage of exotic rocks that lie between the deep-sea sediments of the Hawasina Nappes and the Semail Ophiolite. In contrast to the normal exotics of the Haybi Complex, the Kub contains a variety of rafts of Palaeozoic age in an organic-rich, shaly-sandstone matrix that has not yet been dated directly (Searle and Graham, 1982; Robertson et al., 1990). The mélange may have originated as a fault-scarp deposit associated with a transform margin of the Tethys Ocean. Subsequently it was thrust and deformed during the emplacement of the Semail Ophiolite. Rafts of Ordovician Rann Formation have been dated as Mid to Late Ordovician and considered correlative with the upper part of the Amdeh Formation of Oman (Am5; Figure 2; Hudson et al., 1954; Glennie et al., 1974; Omatsola et al., 1981; Robertson et al., 1990; Goodenough et al., 2006). Few details though have been published of the Rann trilobite faunas, trace fossils and facies. The rafts are a few hundred metres across and less than 100 m thick, or smaller. The shales and thinly bedded sandstones of the Rann are intensely folded and sheared, whereas the quartzite-rich intervals tend to be intact and form small hills. The relatively limited outcrops of the Kub Melange in the Jabal Qamar South – Jabal Ar Raan area are being extensively quarried. The graptolite sample was collected from from the corner of a quarry in shales, which was inactive (Figure 3), but in 2009 began being intensively worked again. Graptolite fragments are rare, but with searching more were found in June 2008. The green shale of the initial sample was sub-sampled for palynology. Despite its unpromising green colour, a rich assemblage of acritarchs was obtained on processing. In-situ samples were collected from the same locality in June 2008 and yielded similar assemblages (e.g. Rann 4), but proved less productive. Rann shales and sandstones, 250–400 m further to the east, are fossilifererous containing trilobites (Neseuretus and Taihungshania) and trilobite traces (Cruziana furcifera, C. goldfussi and C. rugosa), brachiopods and hyolithids. Another outcrop nearby has yielded different trilobites (Vietnamia, Deanaspis and Dreyfussina), brachiopods and orthoconic nautiloids. The trilobite faunas indicate sediments of Floian and Katian age in close juxtaposition. The details of sedimentary facies, trilobite and conodont faunas and trace fossils will be described in a subsequent paper (Fortey et al., in preparation). Goodenough et al. (2006) reported an Upper Ordovician age for orthoconic nautiloid-rich, nodular limestone rafts within the Kub Melange. These are probably attributable to the Ayim Formation of Robertson et al. (1990), rather than strictly to the Rann. Rafts of Ayim occur commonly in proximity to Rann quartzites. More recent work on conodont faunas from the Ayim indicates they are of latest Middle rather than Late Ordovician age (Fortey et al., in preparation). Graptolites The quarry southeast of Idhn village yielded a single well-preserved specimen of Baltograptus deflexus (Elles and Wood, 1901; Figure 4), which indicates the varicosus - victoriae Biozones, mid Floian – early Dapingian (Arenig), Early Ordovician. The specimen (Dan 303) is described in the Systematic Palaeontology section below. Given its occurrence in a thrust mélange it shows surprisingly little evidence of shearing or tectonic deformation. The further fragmentary material collected in 2008 are of indeterminate dichograptids. 83 83 Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/15/4/81/4565801/rickards.pdf by guest on 25 September 2021 on 25 September 2021 by guest Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/15/4/81/4565801/rickards.pdf Rickards etal.
Recommended publications
  • Cambrian Phytoplankton of the Brunovistulicum – Taxonomy and Biostratigraphy
    MONIKA JACHOWICZ-ZDANOWSKA Cambrian phytoplankton of the Brunovistulicum – taxonomy and biostratigraphy Polish Geological Institute Special Papers,28 WARSZAWA 2013 CONTENTS Introduction...........................................................6 Geological setting and lithostratigraphy.............................................8 Summary of Cambrian chronostratigraphy and acritarch biostratigraphy ...........................13 Review of previous palynological studies ...........................................17 Applied techniques and material studied............................................18 Biostratigraphy ........................................................23 BAMA I – Pulvinosphaeridium antiquum–Pseudotasmanites Assemblage Zone ....................25 BAMA II – Asteridium tornatum–Comasphaeridium velvetum Assemblage Zone ...................27 BAMA III – Ichnosphaera flexuosa–Comasphaeridium molliculum Assemblage Zone – Acme Zone .........30 BAMA IV – Skiagia–Eklundia campanula Assemblage Zone ..............................39 BAMA V – Skiagia–Eklundia varia Assemblage Zone .................................39 BAMA VI – Volkovia dentifera–Liepaina plana Assemblage Zone (Moczyd³owska, 1991) ..............40 BAMA VII – Ammonidium bellulum–Ammonidium notatum Assemblage Zone ....................40 BAMA VIII – Turrisphaeridium semireticulatum Assemblage Zone – Acme Zone...................41 BAMA IX – Adara alea–Multiplicisphaeridium llynense Assemblage Zone – Acme Zone...............42 Regional significance of the biostratigraphic
    [Show full text]
  • Climate Change and the Selective Signature of the Late Ordovician Mass Extinction
    Climate change and the selective signature of the Late Ordovician mass extinction Seth Finnegana,b,1, Noel A. Heimc, Shanan E. Petersc, and Woodward W. Fischera aDivision of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125; bDepartment of Integrative Biology, University of California, 1005 Valley Life Sciences Bldg #3140, Berkeley, CA 94720; and cDepartment of Geoscience, University of Wisconsin-Madison, 1215 West Dayton Street, Madison, WI 53706 Edited by Richard K. Bambach, Smithsonian Institution, National Museum of Natural History, Washington, D.C., and accepted by the Editorial Board March 6, 2012 (received for review October 14, 2011) Selectivity patterns provide insights into the causes of ancient ex- sedimentary record (common cause hypothesis) (14). For the tinction events. The Late Ordovician mass extinction was related LOME, it is useful to split common cause into two hypotheses. to Gondwanan glaciation; however, it is still unclear whether ele- The eustatic common cause hypothesis postulates that Gondwa- vated extinction rates were attributable to record failure, habitat nan glaciation drove the extinction by lowering eustatic sea level, loss, or climatic cooling. We examined Middle Ordovician-Early thereby reducing the overall area of shallow marine habitats, Silurian North American fossil occurrences within a spatiotempo- reorganizing habitat mosaics, and disrupting larval dispersal cor- rally explicit stratigraphic framework that allowed us to quantify ridors (16–18). The climatic common cause hypothesis postulates rock record effects on a per-taxon basis and assay the interplay of that climate cooling, in addition to being ultimately responsible macrostratigraphic and macroecological variables in determining for sea-level drawdown and attendant habitat losses, had a direct extinction risk.
    [Show full text]
  • Chitinozoan Dynamics and Biostratigraphy in the Väo Formation (Darriwilian) of the Uuga Cliff, Pakri Peninsula, NW Estonia
    Estonian Journal of Earth Sciences, 2010, 59, 1, 25–36 doi: 10.3176/earth.2010.1.02 Chitinozoan dynamics and biostratigraphy in the Väo Formation (Darriwilian) of the Uuga Cliff, Pakri Peninsula, NW Estonia Mairy Tammekänd, Olle Hints, and Jaak Nõlvak Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected], [email protected], [email protected] Received 3 August 2009, accepted 27 October 2009 Abstract. The distribution of chitinozoans in the Väo Formation (Lasnamägi and Uhaku regional stages, Darriwilian) of the Uuga Cliff, Pakri Peninsula, NW Estonia, was investigated from 62 samples. Chitinozoans are very common and assemblages are diverse, with a total of 36 species and up to 170 specimens per gram of rock. The assemblage is dominated by Belonechitina, Desmochitina, Cyathochitina, and Euconochitina. The relative and absolute frequency of particular taxa displays regular and possibly cyclic patterns, which are not directly reflected in lithology or geochemistry. Abrupt changes in chitinozoan abundance, coinciding with some of the discontinuity surfaces, suggest the presence of stratigraphical gaps. The diversity of chitinozoans is the highest in the lower part of the Väo Formation (Rebala Member), where up to 20 species were identified in one sample and the standing species diversity exceeded 25. Within the studied interval at least 11 biostratigraphical horizons can be distinguished, including the subzonal boundaries within the Laufeldochitina striata Zone. The disappearance of abundant Belonechitina pellifera can be used for tracing the lower boundary of the Uhaku Stage. Key words: chitinozoans, frequency patterns, diversity, biostratigraphy, Ordovician, Estonia. INTRODUCTION Although the largest chitinozoan collections in the world come from the Baltic area (Paris et al.
    [Show full text]
  • Palaeobiology of the Early Ediacaran Shuurgat Formation, Zavkhan Terrane, South-Western Mongolia
    Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs To cite this article: Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs (2016): Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2016.1259272 To link to this article: http://dx.doi.org/10.1080/14772019.2016.1259272 Published online: 20 Dec 2016. Submit your article to this journal Article views: 48 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Download by: [Harvard Library] Date: 31 January 2017, At: 11:48 Journal of Systematic Palaeontology, 2016 http://dx.doi.org/10.1080/14772019.2016.1259272 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson a*,SeanMcMahona,UyangaBoldb, Francis A. Macdonaldc and Derek E. G. Briggsa,d aDepartment of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut, 06511, USA; bDepartment of Earth Science and Astronomy, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan; cDepartment of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts, 02138, USA; dPeabody Museum of Natural History, Yale University, 170 Whitney Avenue, New Haven, Connecticut, 06511, USA (Received 4 June 2016; accepted 27 September 2016) Early diagenetic chert nodules and small phosphatic clasts in carbonates from the early Ediacaran Shuurgat Formation on the Zavkhan Terrane of south-western Mongolia preserve diverse microfossil communities.
    [Show full text]
  • Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, South-West Libya
    This is a repository copy of Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, south-west Libya. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/125997/ Version: Accepted Version Article: Abuhmida, F.H. and Wellman, C.H. (2017) Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, south-west Libya. Palynology, 41. pp. 31-56. ISSN 0191-6122 https://doi.org/10.1080/01916122.2017.1356393 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, southwest Libya Faisal H. Abuhmidaa*, Charles H. Wellmanb aLibyan Petroleum Institute, Tripoli, Libya P.O. Box 6431, bUniversity of Sheffield, Department of Animal and Plant Sciences, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK Twenty nine core and seven cuttings samples were collected from two boreholes penetrating the Middle Ordovician Hawaz Formation in the Murzuq Basin, southwest Libya.
    [Show full text]
  • The Ordovician Succession Adjacent to Hinlopenstretet, Ny Friesland, Spitsbergen
    1 2 The Ordovician succession adjacent to Hinlopenstretet, Ny Friesland, Spitsbergen 3 4 Björn Kröger1, Seth Finnegan2, Franziska Franeck3, Melanie J. Hopkins4 5 6 Abstract: The Ordovician sections along the western shore of the Hinlopen Strait, Ny 7 Friesland, were discovered in the late 1960s and since then prompted numerous 8 paleontological publications; several of them are now classical for the paleontology of 9 Ordovician trilobites, and Ordovician paleogeography and stratigraphy. Our 2016 expedition 10 aimed in a major recollection and reappraisal of the classical sites. Here we provide a first 11 high-resolution lithological description of the Kirtonryggen and Valhallfonna formations 12 (Tremadocian –Darriwilian), which together comprise a thickness of 843 m, a revised bio-, 13 and lithostratigraphy, and an interpretation of the depositional sequences. We find that the 14 sedimentary succession is very similar to successions of eastern Laurentia; its Tremadocian 15 and early Floian part is composed of predominantly peritidal dolostones and limestones 16 characterized by ribbon carbonates, intraclastic conglomerates, microbial laminites, and 17 stromatolites, and its late Floian to Darriwilian part is composed of fossil-rich, bioturbated, 18 cherty mud-wackestone, skeletal grainstone and shale, with local siltstone and glauconitic 19 horizons. The succession can be subdivided into five third-order depositional sequences, 20 which are interpreted as representing the SAUK IIIB Supersequence known from elsewhere 21 on the Laurentian
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • The Nature of Calcareous Rhythmites in the Ordovician of Oslo; Bed-By-Bed Study of the Katian Solvang Formation
    FACULTEIT WETENSCHAPPEN Opleiding Master in de Geologie The nature of calcareous rhythmites in the Ordovician of Oslo; bed-by-bed study of the Katian Solvang Formation Wout Salenbien Academiejaar 2012–2013 Scriptie voorgelegd tot het behalen van de graad Van Master of Science in de geologie Promotoren: Dr. T. Vandenbroucke, Prof. Dr. J. Verniers Leescommissie: Prof. Dr. M. De Batist, Prof. Dr. S. Louwye Nature is wont to hide herself Ηράκλειτος Wout Salenbien The nature of calcareous rhythmites in the Ordovician of Oslo 2012 - 2013 NEDERLANDSTALIGE SAMENVATTING INLEIDING - DE WERELD GEDURENDE HET ORDOVICIUM Het Ordovicium, gesitueerd tussen 485,4 ± 1.9 Ma en 443,4 ± 1.5 Ma (Gradstein et al., 2012), geldt als een van de interessantere periodes in de aardgeschiedenis. Gedurende het Ordovicium werd de Aarde geconfronteerd met diepgaande veranderingen in biodiversiteit, biocomplexiteit, geochemische balans en ingrijpende veranderingen in het klimaat. De paleogeografie tijdens het Ordovicium werd gekenmerkt door de overgang van het supercontinent Rodinia naar Pangea, het recentste supercontinent. De dispersie van de continenten, die reeds was ingezet gedurende het Neoproterozoïcum (Li et al., 2008), hield gedurende het Ordovicium aan tot de eerste aanzet voor de vorming van Pangea door de collisie van Avalonië met Baltica omstreeks de Ordovicium-Siluur overgang, 443 Ma (Cocks & Torsvik, 2006; Torsvik & Rehnstrӧm, 2003). Gedurende het Ordovicium verschoof Baltica van een positie nabij de zuidelijke pool richting de paleo-evenaar om tegen het einde van het Ordovicium ongeveer 30° zuiderbreedte te bereiken (Cocks & Torsvik, 2005). De algemene visie op het klimaat tijdens het Ordovicium veranderde van een monotoon warme periode met intens broeikaseffect en een korte, krachtige glaciatie aan het eind, op aanwijzing van isotopische excursies (Munnecke et al., 2010), naar het beeld van een tijdperk met grote veranderingen in oceaan- biosfeer interacties en mogelijks dus ook in klimaat.
    [Show full text]
  • A Proposed GSSP for the Base of the Middle Ordovician Series: the Huanghuachang Section, Yichang, China
    105 by Xiaofeng Wang1, Svend Stouge2, Bernd-D. Erdtmann3, Xiaohong Chen1, Zhihong Li1, Chuanshang Wang1, Qingluan Zeng1, Zhiqiang Zhou4, and Huiming Chen1 A proposed GSSP for the base of the Middle Ordovician Series: the Huanghuachang section, Yichang, China 1. Yichang Institute of Geology & Mineral Resources, Yichang, Hubei 443003, China. E-mail: [email protected] 2. Geological Museum, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark. E-mail: [email protected] 3. Institut für Angewandte Geowissenschaften, Technical University, Berlin, Germany. E-mail: [email protected] 4. Xi'an Institute of Geology & Mineral Resources, Xi'an, Shangxi, 710054, China. The Huanghuachang section near Yichang, southern stage), the yet-to-be-named Second stage, the Darriwilian (fourth China meets the requirements of Global Stratotype Sec- stage), and the yet-to-be-named Fifth stage— and two global series— the Lower Ordovician Series and the Upper Ordovician Series—have tion and Point (GSSP) for the base of the Middle Ordovi- thus far been formally ratified by the ICS. Among the remaining cian Series and the yet-to-be-named third stage of the series or stage, one focus is on the investigation and selection of the Ordovician System (or lower stage of Middle Ordovician GSSP for the base of the Middle Ordovician Series, which also is the Series). The conodont succession at the section is com- base of the Third stage. Two biozone levels that appear to have poten- tial for reliable correlation of the base of the Middle Ordovician plete across the Lower to Middle Ordovician series Series have been suggested by the working group of the ISOS: the boundary and several excellent phylogenetic lineages of base of Tripodus laevis conodont Biozone/Isograptus v.
    [Show full text]
  • Acritarchsa Review
    Biol. Rev. (1993), 68, pp. 475-538 475 Printed in Great Britain ACRITARCHS: A REVIEW B y FRANCINE MARTIN Département de Paléontologie, Institut royal des Sciences naturelles de Belgique, rue Vautier 29, R-1040 B ruxelles, Belgium (Received 21 Ja n u a ry 1993; accepted 23 M arch 1993) CONTENTS I. Introduction 47^ II. How to find, isolate and recognize an acritarch ........ 476 (1) Sampling. ........................................ • 47Ó (2) Preparation .............. 47$ (3) Size and morphology .................................................. 479 (4) Organic wall 4^7 (i) Sporopollenin-like material .......... 487 (ii) Thermal alteration ............ 489 III. Biological affinities. ............. 491 (1) Before and after Evitt (1963) ........... 491 (2) Reassessment of some acritarchs .......... 493 (i) Links with dinoflagellates.............................................................. 494 (ii) Links with prasinophytes ......................................................................... 497 (iii) Enigmatic sphaeromorphs .......... 499 (iv) Acritarchs, euglenoids or single spore-like bodies ? ...... 501 (v) Recent incertae sedis and crustacean eggs........ 501 IV. Reworking and palaeoecology ........... 5° 2 (1) Durable microfossils ............ 502 (2) Life-style of acritarchs ............ 503 V. Acritarchs through geological time .......... 504 (1) Precambrian .............. 5°5 (i) Before acritarchs ............ 5°6 (ii) Appearance of acritarchs ........... 506 (2) Precambrian-Cambrian boundary ......................................................5°9
    [Show full text]
  • Age and Palaeoenvironments of the Manacapuru Formation, Presidente Figueiredo (AM) Region, Lochkovian of the Amazonas Basin
    SILEIR RA A D B E E G D E A O D L E O I G C I A O ARTICLE BJGEO S DOI: 10.1590/2317-4889201920180130 Brazilian Journal of Geology D ESDE 1946 Age and palaeoenvironments of the Manacapuru Formation, Presidente Figueiredo (AM) region, Lochkovian of the Amazonas Basin Patrícia Ferreira Rocha1* , Rosemery Rocha da Silveira1 , Roberto Cesar de Mendonça Barbosa1 Abstract The Manacapuru Formation, Amazonas Basin, outcrops on the margins of a highway in the region of Presidente Figueiredo, state of Amazo- nas. A systematic palynological and a lithofaciological analysis was carried out aiming to contribute to the paleoenvironmental understanding of the Manacapuru Formation and its respective age. The present work uses the analysis of the chitinozoan for biostratigraphic purposes as a tool. A total of 27 samples were collected in which an assemblage of lower Lochkovian can be recognized, whose characteristic species are Angochitina filosa, Cingulochitina ervensis, Lagenochitina navicula, and Pterochitina megavelata. It was possible to identify an intense reworking in the exposure, evidenced by the presence of paleofaunas ranging from Ludfordian to Pridolian, which may be associated to the constant storm events that reached the shelf. The lithofaciological analysis allowed the recognition of 6 predominantly muddy sedimentary lithofacies with sandy intercalations that suggest deposition in an offshore region inserted in a shallow marine shelf and influenced by storms. KEYWORDS: Chitinozoan; Devonian; Manacapuru Formation; Amazonas Basin. INTRODUCTION the results with more intensively investigated areas in Brazil and In the Silurian and Devonian period, the South Pole proposed five chitinozoan assemblages. Reworking was recog- was located close to the South American paleoplate margins nized in some sections.
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2018/08 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon Erathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ± 0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 152.1 ±0.9 ~ 635 Upper 0.0117 Famennian Neo- 0.126 Upper Kimmeridgian Cryogenian Middle 157.3 ±1.0 Upper proterozoic ~ 720 Pleistocene 0.781 372.2 ±1.6 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian Callovian 1000 Quaternary Gelasian 166.1 ±1.2 2.58 Bathonian 382.7 ±1.6 Stenian Middle 168.3 ±1.3 Piacenzian Bajocian 170.3 ±1.4 Givetian 1200 Pliocene 3.600 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Devonian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- 2050 Burdigalian Hettangian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 27.82 Gorstian
    [Show full text]