Malolactic Fermentation: the ABC's of MLF E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microbial Biosynthesis of Lactate Esters
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Faculty Publications and Other Works -- Engineering -- Faculty Publications and Other Chemical and Biomolecular Engineering Works 2019 Microbial biosynthesis of lactate esters Jong-Won Lee University of Tennessee, Knoxville Cong T. Trinh University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chembiopubs Recommended Citation Lee, Jong-Won and Trinh, Cong T., "Microbial biosynthesis of lactate esters" (2019). Faculty Publications and Other Works -- Chemical and Biomolecular Engineering. https://trace.tennessee.edu/utk_chembiopubs/103 This Article is brought to you for free and open access by the Engineering -- Faculty Publications and Other Works at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Faculty Publications and Other Works -- Chemical and Biomolecular Engineering by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Lee and Trinh Biotechnol Biofuels (2019) 12:226 https://doi.org/10.1186/s13068-019-1563-z Biotechnology for Biofuels RESEARCH Open Access Microbial biosynthesis of lactate esters Jong‑Won Lee1,2 and Cong T. Trinh1,2,3* Abstract Background: Green organic solvents such as lactate esters have broad industrial applications and favorable envi‑ ronmental profles. Thus, manufacturing and use of these biodegradable solvents from renewable feedstocks help beneft the environment. -
Ing to Unpublished Data of Douglas and Vaughn.) Arena (1936)
THE pH REQUIREMENTS OF SOME HETEROFERMEN- TATIVE SPECIES OF LACTOBACILLUS JOHN C. M. FORNACHON,1 HOWARD C. DOUGLAS AND REESE H. VAUGHN Division of Fruit Products, University of California, Berkeley, California Received for publication May 6, 1940 I. INTRODUCTION The lactobacilli are noted for their ability to grow in acid media. Although media with reactions between pH 3.5 and 5.0 have been recommended for their isolation, the media used in physiological studies by Pederson (1929, 1938), Nelson and Werkman (1935, 1936), Weinstein and Rettger (1932) and others had values ranging from pH 6.2 to 7.0. Shimwell (1935) found the optimum pH for the growth of LactobaciUus pastorianus to be approximately 8.0. It has been observed however that species of Lactobacillus isolated from wines and other similar products thrive best when the medium is appreciably acid. Otani (1936) pointed out that homofermen- tative lactobacilli isolated from sake grew most vigorously be- tween pH 4.0 and 5.0 Fornachon (1936) found the optimum pH for the growth of a heterofermentative species of Lactobacillus isolated from Australian wine to be between pH 4.0 and 5.0. Douglas and McClung (1937) reported a bacterium from Califor- nia wine with an optimum pH between 4.1 and 4.3. (This organism is a heterofermentative species of LactobaciUus accord- ing to unpublished data of Douglas and Vaughn.) Arena (1936) described several lactic acid bacteria isolated from Argentinian wine and found the optimum pH for growth to vary between pH 4.3 and 6.7. 1 Research Officer, Australian Wine Board, Waite Agricultural Research In- stitute, University of Adelaide, South Australia. -
A Taxonomic Note on the Genus Lactobacillus
Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept. -
Liquid-Phase Dehydration of Lactic Acid for the Production of Bio-Acrylic Acid Development of a Multi-Step Process
Liquid-phase dehydration of lactic acid for the production of bio-acrylic acid Development of a multi-step process Flüssigphasen-Dehydratisierung von Milchsäure zur Produktion von biobasierter Acrylsäure Entwicklung eines mehrstufigen Prozesses Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Grades DOKTOR-INGENIEUR vorgelegt von Matthias Kehrer, M. Sc. aus Nürnberg Als Dissertation genehmigt von der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg. Tag der mündlichen Prüfung: 17. Dezember 2018 Vorsitzende/r des Promotionsorgans: Prof. Dr.-Ing. Reinhard Lerch Gutachter/in: Prof. Dr. Peter Wasserscheid Prof. Dr. Nicolas Vogel To my family “Obstacles don’t have to stop you. If you run into a wall, don’t turn around and give up. Figure out how to climb it, go through it, or walk around it.” Michael Jordan Preface i Preface The present work was carried out in the period from May 2014 to December 2017 at the Institute of Chemical Reaction Engineering of the Friedrich-Alexander-University Er- langen-Nürnberg, headed by Prof. Dr. Peter Wasserscheid. The results presented herein where achieved within the scope of the research project “Liquid-phase dehydration of lactic acid obtained via fermentation for the production of bio-acrylic acid”, which was carried out in close collaboration with the industrial partner Procter & Gamble. At this point, I would like to dedicate personal thanks to a large number of people and their various contributions, involved in the development of this work: First and foremost, I would like to thank my supervisor, Prof. Dr. Peter Wasserscheid, for giving me the opportunity to be part of this interesting and exciting project and for the excellent mentoring during the entire period of this thesis. -
Your Reliable Partner DELIVERING SAFE and QUALITATIVE PRODUCTS for HIGH PERFORMANCE SOLUTIONS
Your reliable partner DELIVERING SAFE AND QUALITATIVE PRODUCTS FOR HIGH PERFORMANCE SOLUTIONS corbion.com/biochemicals Why Corbion? Advanced technology and R&D At Corbion, we engage in ongoing R&D efforts to improve performance and sustainability of our products and processes. Consistent high quality Corbion has mastered the production technology to make high purity, high performance lactic acid, derivatives and lactides at industrial scale. Corbion factory in The Netherlands 100 100 years of experience Corbion has 100 years of experience in sales, application development and industrial scale production. Corbion is the global market leader in lactic acid, derivatives and lactides. Your reliable Global presence With 10 production facilities and sales offices on every partner continent, we are always close by to help you with your application development. All our products are available at an industrial scale Innovation and Application Our innovation and Application centers are focused on your Safer and more friendly for our planet challenges of tomorrow. Our technical team of chemist, analytical Corbion produces high quality lactic acid and derivatives and application technologist are available to provide you with using a biochemical fermentation process by efficient customized solutions. conversion of sugars. Corbion products are regarded as safe, offering a good alternative to traditional products that Deliveries have become under increased regulatory pressure. Corbion works on continuous improvement of its delivery times and reliability. Working to improve consistency within the supply chain is making the network more responsive while streamlining operations. Prevention Corbion deploys prevention activities in our plants and throughout our supply chain in order to avoid the occurrence of incidents. -
The Many Faces of Kefir Fermented Dairy Products
nutrients Review The Many Faces of Kefir Fermented Dairy Products: Quality Characteristics, Flavour Chemistry, Nutritional Value, Health Benefits, and Safety Mohamed A. Farag 1,2,*, Suzan A. Jomaa 2, Aida Abd El-Wahed 3,4 and Hesham R. El-Seedi 4,5,6,7,* 1 Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B., Cairo 11562, Egypt 2 Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt; [email protected] 3 Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt; [email protected] 4 Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden 5 Al-Rayan Research and Innovation Center, Al-Rayan Colleges, Medina 42541, Saudi Arabia 6 International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China 7 Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden * Correspondence: [email protected] or [email protected] (M.A.F.); [email protected] (H.R.E.-S.); Tel.: +20-011-202-2362245 (M.A.F.); +46-18-4714496 (H.R.E.-S.) Received: 22 November 2019; Accepted: 18 January 2020; Published: 28 January 2020 Abstract: Kefir is a dairy product that can be prepared from different milk types, such as goat, buffalo, sheep, camel, or cow via microbial fermentation (inoculating milk with kefir grains). As such, kefir contains various bacteria and yeasts which influence its chemical and sensory characteristics. A mixture of two kinds of milk promotes kefir sensory and rheological properties aside from improving its nutritional value. -
Effect of Phenolic Aldehydes and Flavonoids on Growth And
ARTICLE IN PRESS Effect of phenolic aldehydes and flavonoids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii Ana Rita Figueiredoa, Francisco Camposa,Vı´ctor de Freitasb, Tim Hogga, Jose´Anto´nio Coutoa,Ã aEscola Superior de Biotecnologia, Universidade Cato´lica Portuguesa, Rua Dr. Anto´nio Bernardino de Almeida, 4200-072 Porto, Portugal bFaculdade de Cieˆncias do Porto, Departamento de Quı´mica, Centro de Investigac-a˜o em Quı´mica, Rua do Campo Alegre 687, 4169-007 Porto, Portugal Keywords: Lactic acid bacteria; Phenolic aldehydes; Flavonoids; Tannins; Wine The aim of this work was to investigate the effect of wine phenolic aldehydes, flavonoids and tannins on growth and viability of strains of Oenococcus oeni and Lactobacillus hilgardii. Cultures were grown in ethanol-containing MRS/TJ medium supplemented with different concentrations of phenolic aldehydes or flavonoids and monitored spectrophotometrically. The effect of tannins was evaluated by monitoring the progressive inactivation of cells in ethanol-containing phosphate buffer supplemented with grape seed extracts with different molecular weight tannins. Of the phenolic aldehydes tested, sinapaldehyde, coniferaldehyde, p-hydroxybenzaldehyde, 3,4- dihydroxybenzaldehyde and 3,4,5-trihydroxybenzaldehyde significantly inhibited the growth of O. oeni VF, while vanillin and syringaldehyde had no effect at the concentrations tested. Lact. hilgardii 5 was only inhibited by sinapaldehyde and coniferaldehyde. Among the flavonoids, quercetin and kaempferol exerted an inhibitory effect especially on O. oeni VF. Myricetin and the flavan-3-ols studied (catechin and epicatechin) did not affect considerably the growth of both strains. Condensed tannins (particularly tetramers and pentamers) were found to strongly affect cell viability, especially in the case of O. -
Fermentation and Ester Taints
Fermentation and Ester Taints Anita Oberholster Introduction: Aroma Compounds • Grape‐derived –provide varietal distinction • Yeast and fermentation‐derived – Esters – Higher alcohols – Carbonyls – Volatile acids – Volatile phenols – Sulfur compounds What is and Esters? • Volatile molecule • Characteristic fruity and floral aromas • Esters are formed when an alcohol and acid react with each other • Few esters formed in grapes • Esters in wine ‐ two origins: – Enzymatic esterification during fermentation – Chemical esterification during long‐term storage Ester Formation • Esters can by formed enzymatically by both the plant and microbes • Microbes – Yeast (Non‐Saccharomyces and Saccharomyces yeast) – Lactic acid bacteria – Acetic acid bacteria • But mainly produced by yeast (through lipid and acetyl‐CoA metabolism) Ester Formation Alcohol function Keto acid‐Coenzyme A Ester Ester Classes • Two main groups – Ethyl esters – Acetate esters • Ethyl esters = EtOH + acid • Acetate esters = acetate (derivative of acetic acid) + EtOH or complex alcohol from amino acid metabolism Ester Classes • Acetate esters – Ethyl acetate (solvent‐like aroma) – Isoamyl acetate (banana aroma) – Isobutyl acetate (fruit aroma) – Phenyl ethyl acetate (roses, honey) • Ethyl esters – Ethyl hexanoate (aniseed, apple‐like) – Ethyl octanoate (sour apple aroma) Acetate Ester Formation • 2 Main factors influence acetate ester formation – Concentration of two substrates acetyl‐CoA and fusel alcohol – Activity of enzyme responsible for formation and break down reactions • Enzyme activity influenced by fermentation variables – Yeast – Composition of fermentation medium – Fermentation conditions Acetate/Ethyl Ester Formation – Fermentation composition and conditions • Total sugar content and optimal N2 amount pos. influence • Amount of unsaturated fatty acids and O2 neg. influence • Ethyl ester formation – 1 Main factor • Conc. of precursors – Enzyme activity smaller role • Higher fermentation temp formation • C and N increase small effect Saerens et al. -
Application of Hollow Fiber Supported Liquid Membrane As a Chemical Reactor for Esterification of Lactic Acid and Ethanol to Ethyl Lactate
Korean J. Chem. Eng., 33(1), 8-13 (2016) pISSN: 0256-1115 DOI: 10.1007/s11814-015-0233-5 eISSN: 1975-7220 RAPID COMMUNICATION INVITED REVIEW PAPER Application of hollow fiber supported liquid membrane as a chemical reactor for esterification of lactic acid and ethanol to ethyl lactate Thanyarutt Teerachaiyapat and Prakorn Ramakul† Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand (Received 11 August 2015 • accepted 6 November 2015) Abstract−Hollow fiber supported liquid membrane was applied as a reactor to synthesize ethyl lactate from lactic acid. Lactic acid in the feed solution was extracted by tri-n-octylamine (TOA) and stripped by ethanol with p-toluene sulfonic acid acting as the catalyst to form ethyl lactate. Central composite design (CCD) was used to determine the significant factors and their interactions. The response surface was applied for optimization. An optimized yield of 30% was predicted and its validity was evaluated by comparison with experimental results at different concentrations of lac- tic acid in the feed solution, with good agreement achieved. Keywords: Liquid Membrane, Hollow Fiber, Ethyl Lactate, Lactic Acid, CCD INTRODUCTION acid and ethanol because both can be produced in large quantities by fermentation. The esterification between lactic acid and etha- Liquid membrane processes have been promising methods for nol is an equilibrium-limited reaction. Higher yields of ethyl lac- metal ion and organic compound separation. They have received tate can be obtained by shifting the reaction towards products by considerable attention due to the advantages of combining extraction hybrid processes, such as pervaporation-aided reactor and reac- and stripping processes in one stage, as well as non-equilibrium tive distillation instead of using a large excess of reactants. -
Genome and Pangenome Analysis of Lactobacillus Hilgardii FLUB—A New Strain Isolated from Mead
International Journal of Molecular Sciences Article Genome and Pangenome Analysis of Lactobacillus hilgardii FLUB—A New Strain Isolated from Mead Klaudia Gustaw 1,* , Piotr Koper 2,* , Magdalena Polak-Berecka 1 , Kamila Rachwał 1, Katarzyna Skrzypczak 3 and Adam Wa´sko 1 1 Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; [email protected] (M.P.-B.); [email protected] (K.R.); [email protected] (A.W.) 2 Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland 3 Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; [email protected] * Correspondence: [email protected] (K.G.); [email protected] (P.K.) Abstract: The production of mead holds great value for the Polish liquor industry, which is why the bacterium that spoils mead has become an object of concern and scientific interest. This article describes, for the first time, Lactobacillus hilgardii FLUB newly isolated from mead, as a mead spoilage bacteria. Whole genome sequencing of L. hilgardii FLUB revealed a 3 Mbp chromosome and five plasmids, which is the largest reported genome of this species. An extensive phylogenetic analysis and digital DNA-DNA hybridization confirmed the membership of the strain in the L. hilgardii species. The genome of L. hilgardii FLUB encodes 3043 genes, 2871 of which are protein coding sequences, Citation: Gustaw, K.; Koper, P.; 79 code for RNA, and 93 are pseudogenes. -
Molecular Identification of Lactobacillus Hilgardii and Genetic Relatedness with Lactobacillus Brevis
International Journal of Systematic Bacteriology (1 999). 49, 1075-1 081 Printed in Great Britain Molecular identification of Lactobacillus hilgardii and genetic relatedness with Lactobacillus brevis Daniele Sohier, Joana Coulon and Aline Lonvaud-Funel Author for correspondence: Aline Lonvaud-Funel. Tel: +33 5 56 84 64 66. Fax: +33 5 56 84 64 68. e-mail : aline. lonvaud @ oenologie. u- bordeaux2.fr FacultC d'CEnologie-Unite Conventional phenotypic methods lead to misidentification of the lactic acid associCe INRA-U n iversite bacteria Lactobacillushilgardii and Lactobacillusbrevis. Random amplified Victor Segalen-Bordeaux 11, 351 Cows de la LibCration, polymorphic DNA (RAPD) and repetitive element PCR (REP-PCR) techniques 33405 Talence CCdex, were developed for a molecular study of these two species. The taxonomic France relationships were confirmed by analysis of the ribosomal operon. Amplified DNA fragments were chosen to isolate L. hilgardii-specific probes. In addition to rapid molecular methods for identification of L. hilgardii, these results convincingly proved that some strains first identified as L. brevis must be reclassified as L. hilgardii. The data clearly showed that these molecular methods are more efficient than phenotypic or biochemicalstudies for bacterial identification at the species level. I Keywords : Lactobacillus hilgardii, Lactobacillus brevis, RAPD, REP-PCR INTRODUCTION phenotypically close (Kandler & Weiss, 1986), they differ by their ability to ferment arabinose: L. brevis Lactic acid bacteria are responsible for malolactic can use this carbohydrate while L. hilgardii cannot. fermentation, an important step in winemaking et al., et al., In the present study, we intended to discriminate L. (Lafon-Lafourcade 1983; Renault 1988). hilgardii L. brevis However, some of them induce spoilage (Lonvaud- and by using molecular methods Funel & Joyeux, 1982; Lonvaud-Funel et al., 1990). -
Spoilage Microbes and Their Detection: What Is New and What Has Changed ?, P.1
EDWARDS, SPOILAGE MICROBES AND THEIR DETECTION: WHAT IS NEW AND WHAT HAS CHANGED ?, P.1 SPOILAGE MICROBES AND THEIR DETECTION: WHAT IS NEW AND WHAT HAS CHANGED? Dr. Charles G. EDWARDS Food Scientist (Enology)/Professor, Department of Food Science and Human Nutrition, Program in Viticulture and Enology, Washington State University, Pullman, WA, USA Seminar presented at Enoforum 2007, March 13th -15th, Piacenza, Italy Introduction Some believe that the incidence of spoilage microorganisms in wines has increased in recent years. Though not all winemakers agree with this speculation, two issues of potential importance are increases in must pH and a wider application of improved detection methods. Winemakers have experimented with delaying fruit harvest as a means to favorably alter flavor and tannin profiles. In many cases, wine quality has improved. However, one consequence of this practice is that grapes frequently suffer from higher pH, a condition favorable to the growth of various microorganisms (Davis et al., 1986a). The pH of musts also influences the effectiveness of SO2 with less amounts of the antimicrobial portion (molecular) present at higher pH. As such, some have suggested that the increased “hang-time” prior to harvest can also adversely impact wine quality by encouraging the potential for microbial spoilage. Another issue has been application of improved methods to detect microorganisms in musts and wines. Perhaps the most important are the so-called “real-time” molecular techniques. Based upon determination of similarities at the gene level, these methods are being used to identify and, in some cases, quantify microbiological populations. While these methods offer tremendous opportunities to improve microbiological control during vinification, there are potential limitations to routinely using these methods in wine analysis.