Absence of P16 and Truncation of ARF Tumor Suppressors in Chickens

Total Page:16

File Type:pdf, Size:1020Kb

Absence of P16 and Truncation of ARF Tumor Suppressors in Chickens Absence of p16INK4a and truncation of ARF tumor suppressors in chickens Soo-Hyun Kim*, Michael Mitchell†, Hideta Fujii‡, Susana Llanos*§, and Gordon Peters*¶ *Molecular Oncology, †Computational Genome Analysis, and ‡Developmental Genetics Laboratories, Cancer Research U.K., London Research Institute, Lincoln’s Inn Fields, London WC2A 3PX, United Kingdom Edited by Peter K. Vogt, The Scripps Research Institute, La Jolla, CA, and approved November 14, 2002 (received for review September 13, 2002) The INK4b-ARF-INK4a locus on human chromosome 9p21 (Human Whereas INK4a operates upstream of pRb (3, 4), the ARF Genome Organization designation CDKN2B-CDKN2A), and the cor- protein functions upstream of p53 by binding directly to MDM2 responding locus on mouse chromosome 4, encodes three distinct and protecting p53 from MDM2-mediated degradation (1, 2). products: two members of the INK4 cyclin-dependent kinase in- Current thinking is that the INK4a͞ARF locus plays a key role hibitor family and a completely unrelated protein, ARF, whose in cellular defenses against hyperproliferative signals and stress. carboxyl-terminal half is specified by the second exon of INK4a but For example, INK4a accumulates in human diploid fibroblasts in an alternative reading frame. As INK4 proteins block the phos- (HDFs) that undergo replicative senescence, either as a conse- phorylation of the retinoblastoma gene product and ARF protects quence of telomere attrition or in response to oncogenic Ras p53 from degradation, the locus plays a key role in tumor suppres- (9–11). Similarly, ARF accumulates as mouse embryo fibro- sion and the control of cell proliferation. To gain further insights blasts (MEFs) approach their replicative limits and in response into the relative importance of INK4a and ARF in different settings, to a variety of oncogenes (12–14). However, there are clear we have isolated and characterized the equivalent locus in chick- differences in the relative importance of INK4a and ARF in cells ens. Surprisingly, although we identified orthologues of INK4b and from different lineages or species (14–17) and in the way they are ARF, chickens do not encode an equivalent of INK4a. Moreover, the regulated. For example, Ras induces ARF in MEFs but not in reading frame for chicken ARF does not extend into exon 2, HDFs (15, 18, 19), whereas pRb represses INK4a in HDFs but because splicing occurs in a different register to that used in not in MEFs (10, 20). There have also been suggestions that the mammals. The resultant 60-aa product nevertheless shares func- sequences encoded by exon 2 make different contributions to the tional attributes with its mammalian counterparts. As well as intracellular localization and function of ARF in the two species indicating that the locus has been subject to dynamic evolutionary (21, 22). pressures, these unexpected findings suggest that in chickens, the To gain further insight into these questions, we sought to tumor-suppressor functions of INK4a have been compensated for isolate the equivalent locus from chicken, both because it by other genes. represents an intermediate between fish and man in evolutionary terms and because of the relative resistance of chicken cells to ͞ immortalization in tissue culture, similar to HDFs. After char- he INK4a ARF locus has an important role in the control of acterizing 18 kb of genomic DNA and two groups of cDNA Tcell proliferation and in tumor suppression (1, 2) and is clones from late-passage chicken embryo fibroblasts (CEFs), we incapacitated in a variety of familial and sporadic cancers (3, 4). conclude that the chicken INK4b-ARF-INK4a locus is able to INK4a The INK4a product, p16 , functions as an inhibitor of encode an equivalent of p15INK4b and a truncated yet functional cyclin-dependent kinases (Cdks) 4 and 6 (5), hence the official version of ARF specified only by exon 1␤. Surprisingly, a partial designation CDKN2A. These Cdks, along with D-type cyclins, duplication of exon 1␤ has replaced exon 1␣, and we find no regulate the phosphorylation of the retinoblastoma protein evidence that chicken cells contain a p16INK4a orthologue. (pRb) in the late G1 phase of the cell cycle (6). Interestingly, p16INK4a is the prototype of a family of INK4 proteins, each Materials and Methods comprising between 3 and 5 ankyrin repeats (3, 4), orthologues Cells. Primary CEFs were grown at 37°C in DMEM supple- of which have been identified in a variety of mammals as well as mented with heat-treated 10% (vol͞vol) FCS and 2% chicken in Fugu and Xiphophorus fish (7, 8). All members of the gene serum (GIBCO͞BRL). The U20S human osteosarcoma family isolated thus far show the same exon 1–exon 2 splice cell line and the NARF-2 derivative line in which human junction and, in mammals, INK4b and INK4a occur in a con- p14ARF is expressed from an isopropyl-␤-D-thiogalactoside served tandem arrangement on human chromosome 9p21 and (IPTG)-regulated promoter were cultured as described (23). syntenic regions on mouse chromosome 4 and rat chromosome Cells were transiently transfected by calcium phosphate precip- 5, suggesting that they evolved by a gene-duplication event (3). itation and harvested after 48 h. Retroviral infection of the TIG3 Because there is no evidence for such a duplication in Fugu (8), strain of HDFs expressing the ecotropic virus receptor was as it appears that INK4b was the primordial gene at this locus. described (24). However, the INK4a locus has the highly unusual capacity to encode two structurally and functionally different proteins. Two Bacterial Artificial Chromosome (BAC) and cDNA Libraries. The transcripts, designated ␣ and ␤, are produced; they initiate at chicken BAC library was obtained from the UK Human Genome separate promoters and incorporate different first exons (1␣ and 1␤) spliced to a common second exon (1, 2). Whereas the MEDICAL SCIENCES ␣-transcript specifies p16INK4a, the ␤-transcript encodes p14ARF This paper was submitted directly (Track II) to the PNAS office. (p19ARF in mouse), so-called because the second exon is trans- Abbreviations: HDF, human diploid fibroblast; CEF, chicken embryo fibroblast; BAC, bac- Ϫ terial artificial chromosome; MTAP, methylthioadenosine phosphorylase; Cdk, cyclin- lated in the 1 (alternative) reading frame to that used to dependent kinase; HA, hemagglutinin. INK4a ␤ generate p16 . As exon 1 is poorly conserved and has no Data deposition: The sequences reported in this paper have been deposited in the GenBank obvious relatives in the current databases, its evolutionary database (accession nos. AY138245–AY138247). origins remain unknown. For example, did exon 1␤ originally §Present address: Ludwig Institute for Cancer Research, St. Mary’s Hospital, London W2 belong to a different gene and move to the INK4a͞b locus at 1PG, United Kingdom. some point after the INK4a͞b duplication? ¶To whom correspondence should be addressed. E-mail: [email protected]. www.pnas.org͞cgi͞doi͞10.1073͞pnas.0135557100 PNAS ͉ January 7, 2003 ͉ vol. 100 ͉ no. 1 ͉ 211–216 Downloaded by guest on October 1, 2021 Mapping Project Resource Center. The cDNA library was constructed from CEFs at Ϸ50 population doublings by using the ␭ZAP-II cDNA synthesis kit according to the manufacturer’s protocols (Stratagene). After screening of 1.35 ϫ 106 recombi- nant phages (unamplified), 170 plaques showed positive signal, of which 50 were purified and analyzed further. DNA and RNA Analyses. CEF genomic DNA was isolated by using the Easy-DNA kit (Invitrogen) and analyzed by Southern hy- bridization performed at either 60°C (normal stringency) or 55°C (low stringency) following standard procedures (25). Total and polyadenylated RNA was prepared from late passage CEFs by using the RNeasy kit (Qiagen, Chatsworth, CA) and the Poly(A) Pure kit (Ambion, Austin, TX), respectively. RNA blots were hybridized at 42°C in ULTRAhyb buffer (Ambion) and washed according to the manufacturer’s protocol. The PCR primer sequences used to generate the probes described in Fig. 2A and the conditions for the touch-down RT-PCR of methyl- Fig. 1. Organization of the INK4b͞ARF͞INK4a locus in different species. (A) thioadenosine phosphorylase gene (MTAP) are detailed in Schematic representations (not to scale) of the INK4b, ARF, INK4a, and MTAP Supporting Text, which is published as supporting information on genes in Fugu, humans, and chickens. INK4b exons are shown as black, ARF as the PNAS web site, www.pnas.org. cross-hatched, INK4a as stippled, and MTAP as empty boxes. The arrows indicate the direction of transcription. Dotted lines denote the splicing for the Plasmid Construction. The longest chicken ARF cDNA was used ARF transcript. (B) Restriction map of the chicken INK4͞ARF locus. Exons are as a template for PCR by using primers that introduced a BglII depicted as in A. All XbaI (X), HindIII (H), BamHI (B), SfiI (Sf), BglII (Bg), and PstI site at the presumed 5Ј end of chicken ARF (excluding the ATG) (P) sites are indicated. The locations of critical NotI and XhoI fragments and an XbaI site downstream of potential termination codons in described in the text are shown below the map. The two sets of differently all three reading frames of exon 2 (nucleotides 150–816 in the shaded boxes above the map denote regions of the genomic sequence that are directly duplicated (see Fig. 6A). sequence deposited under accession no. AY138245). The result- ant 683-bp product was cloned into the pEGFP-C3 vector (CLONTECH) to create an in-frame fusion protein with GFP Ch precipitation, we used SMP14 for MDM2, Y-11 for HA-tagged at its N terminus, designated GFP-ARF . A second plasmid proteins (sc-805, Santa Cruz Biotechnology), and H-22 for Cdk4 was generated comprising nucleotides 147–326 of chicken Ј Ј (sc-601, Santa Cruz Biotechnology). Methods used to visualize ARF cDNA flanked by a 5 BglII site and a 3 KpnI site. The human ARF and the various GFP fusion proteins by direct and 196-bp PCR product was cloned into the pEGFP-N1 vector indirect immunofluorescence, and to assay p53 stabilization by (CLONTECH) in which the initiation codon for the GFP has ARF, were described (26).
Recommended publications
  • The Genetic Background of Anticipation P Teisberg MD
    JOURNAL OF THE ROYAL SOCIETY OF MEDICINE Volume 88 April 1995 The genetic background of anticipation P Teisberg MD J R Soc Med 1995;88:185-187 Keywords: genetics; anticipation; triplet repeats; neurological disorders Anticipation was controversial impairment and increased infant mortality were observed. Anticipation may be defined as the occurrence of a genetic The sequence of events often ends in congenital MD with its disorder at progressively earlier ages in successive severe clinical manifestation of mental retardation and generations. The disease moreover occurs with increasing muscular dystrophy. Later, clinical studies confirmed these severity. The concept emerged early in this century mainly observations and described a dominant inheritance pattern through descriptive dinical studies ofmyotonic dystrophy1'2. which could not be explained by classical Mendelian Later studies have added other disease entities to a list of mechanisms8. states showing anticipation, the most notable being Another phenomenon which did not fit easily into the Huntington's disease3. In one form of inherited mental concepts of genetics was the finding that congenital MD was retardation, the fragile X syndrome, the term 'the Sherman transmitted almost exclusively via affected mothers9. paradox' describes a very similar phenomenon4. In the fragile X syndrome, anticipation is manifested in a Towards the middle of this century, basic research in different manner. This is the most common cause of familial genetics had given us a much clearer understanding of mental retardation. It segregates in families as an X-linked Mendelian inheritance. It became increasingly difficult to dominant disorder with reduced penetrance. When reconcile the originally described phenomenon of chromosomes are stained a fragile site on the X anticipation with a concept of genes as stable elements chromosome may be seen in a proportion of cells taken only changed by the rare mutation.
    [Show full text]
  • Original Articles Anticipation Resulting in Elimination of the Myotonic
    J7 Med Genet 1994;31:595-601 595 Original articles J Med Genet: first published as 10.1136/jmg.31.8.595 on 1 August 1994. Downloaded from Anticipation resulting in elimination of the myotonic dystrophy gene: a follow up study of one extended family C E M de Die-Smulders, C J Howeler, J F Mirandolle, H G Brunner, V Hovers, H Bruggenwirth, H J M Smeets, J P M Geraedts Abstract muscular manifestations, it is characterised by We have re-examined an extended myo- multiple systemic effects including cataract, tonic dystrophy (DM) family, previously mental retardation, cardiac involvement, and described in 1955, in order to study the testicular atrophy. Extreme variability is one of long term effects of anticipation in DM the hallmarks of the disease; clinical studies and in particular the implications for have led to the recognition of four disease types families affected by this disease. This fol- on the basis of age at onset and core symptoms: low up study provides data on 35 gene late onset (mild) type, adult onset (classical) carriers and 46 asymptomatic at risk type, childhood, and congenital type.'"3 family members in five generations. Anticipation, increasing severity and earlier Clinical anticipation, defined as the cas- age at onset in successive generations, has been cade ofmild, adult, childhood, or congen- observed in DM since the beginning of this ital disease in subsequent generations, century, but remained unexplained and contro- appeared to be a relentless process, oc- versial until recently."- With the discovery of curring in all affected branches of the an unstable CTG trinucleotide repeat in the 3' family.
    [Show full text]
  • Fact Sheet 54| FRAGILE X SYNDROME This Fact Sheet
    11111 Fact Sheet 54| FRAGILE X SYNDROME This fact sheet describes the condition Fragile X and includes a discussion of the symptoms, causes and available testing. In summary Fragile X is a condition caused by a change in the FMR-1 gene, on the X chromosome It is characterised by particular physical features, varying degrees of learning difficulties and behavioural and emotional problems Fragile X affects around 1 in 4,000 males and between 1 in 5,000 and 1 in 8,000 females. WHAT IS FRAGILE X SYNDROME? WHAT CAUSES FRAGILE X SYNDROME? Fragile X syndrome is the most common known Fragile X syndrome is caused by a variation in the cause of inherited intellectual disability. genetic information in the FMR-1 gene. Genes are Intellectual problems in people with fragile X made up of a string of three letter ‘words’, or syndrome can vary from mild learning difficulties triplets, using the letters A,T, C & G. The FMR-1 through to severe intellectual disability. gene codes for a protein called FMRP that is necessary for usual brain development and/or Emotional and behavioural problems may also be function. In the FMR-1 gene, the triplet word present. ‘CGG’ can be repeated many times. When the Females with fragile X syndrome show varying number of ‘CGG’ repeats in the FMR-1 gene degrees of the condition, but are usually less increases over a critical number, the gene severely affected than males. becomes so long that it becomes faulty and the production of the FMRP is disrupted. The features of the condition, and their severity, are related to the genetic information in the faulty gene causing the condition.
    [Show full text]
  • Diverse Mechanisms of Trinucleotide Repeat Disorders: an Exploration of Fragile X Syndrome and Huntington’S Disease Cara Strobel
    Undergraduate Review Volume 9 Article 30 2013 Diverse Mechanisms of Trinucleotide Repeat Disorders: An Exploration of Fragile X Syndrome and Huntington’s Disease Cara Strobel Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Part of the Cell Biology Commons Recommended Citation Strobel, Cara (2013). Diverse Mechanisms of Trinucleotide Repeat Disorders: An Exploration of Fragile X Syndrome and Huntington’s Disease. Undergraduate Review, 9, 151-156. Available at: http://vc.bridgew.edu/undergrad_rev/vol9/iss1/30 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2013 Cara Strobel Diverse Mechanisms of Trinucleotide Repeat Disorders: An Exploration of Fragile X Syndrome and Huntington’s Disease CARA STROBEL Cara Strobel authored this essay for the Cell Biology course in the spring semester of 2012. Given free rinucleotide repeat disorders are an umbrella group of genetic diseases reign with a cell biology related topic, that have been well described clinically for a long time; however, the she wanted to explore and contrast scientific community is only beginning to understand their molecular the specifics of several prevalent basis. They are classified in two basic groups depending on the location Tof the relevant triplet repeats in a coding or a non-coding region of the genome. disorders. Cara plans to apply to Repeat expansion past a disease-specific threshold results in molecular and cellular medical school in Spring 2013. abnormalities that manifest themselves as disease symptoms. Repeat expansion is postulated to occur via slippage during DNA replication and/or transcription- mediated DNA repair.
    [Show full text]
  • Relationship Between C9orf72 Repeat Size and Clinical Phenotype
    Available online at www.sciencedirect.com ScienceDirect Relationship between C9orf72 repeat size and clinical phenotype 1,2,3,4 1,2 1,2 Sara Van Mossevelde , Julie van der Zee , Marc Cruts 1,2 and Christine Van Broeckhoven Patient carriers of a C9orf72 repeat expansion exhibit Patients carrying a C9orf72 repeat expansion are remark- remarkable heterogeneous clinical and pathological able heterogeneous in clinical presentation, not only characteristics suggesting the presence of modifying factors. between families but also within families [3,4 ]. The In accordance with other repeat expansion diseases, repeat majority of the expansion carriers present clinically with length is the prime candidate as a genetic modifier. FTD and/or ALS. 73–100% of C9orf72 FTD patients Observations of earlier onset ages in younger generations of exhibit the behavioral variant (bvFTD) [5–15]. In C9orf72 large families suggested a mechanism of disease anticipation. ALS patients, the relative frequency of a bulbar symptom Yet, studies of repeat size and onset age have led to conflicting onset (29–89% [5,9,11,13,15–18]) is higher than in ALS results. Also, the correlation between repeat size and diagnosis patients without the expansion [13,16–18]. Apart from is poorly understood. We review what has been published FTD and ALS, several other clinical diagnoses have been regarding C9orf72 repeat size as modifier for phenotypic described (Figure 1) [9,19–31]. Parkinsonism is fre- characteristics. Conclusive evidence is lacking, partly due to quently reported in C9orf72 repeat expansion carriers, the difficulties in accurately defining the exact repeat size and but the expansion does not seem to be associated with the presence of repeat variability due to somatic mosaicism.
    [Show full text]
  • The Natural History of Machado-Joseph Disease an Analysis of 138 Personally Examined Cases A
    THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES QUEBEC COOPERATIVE STUDY OF FRIEDREICH'S ATAXIA The Natural History of Machado-Joseph Disease An analysis of 138 personally examined cases A. Barbeau, M. Roy, L. Cunha, A.N. de Vincente, R.N. Rosenberg, W.L. Nyhan, P.L. MacLeod, G. Chazot, L.B. Langston, D.M. Dawson and P. Coutinho ABSTRACT: We have examined 138 cases of a disorder previously described in people of Portuguese origin and which has received many names. By computer analysis of 46 different items of a standardized neurological examination carried out in each patient, we have been able to delineate the main components of the clinical presentation, to conclude that the marked variability in clinical expressions does not negate the homogeneity of the disorder, and to describe the natural history of this entity which should be called, for historical reasons, "Machado-Joseph Disease". This hereditary disease has an autosomal dominant pattern of inheritance, presenting as a progressive ataxia with external ophthalmoplegia, and should be classified within the group of "Ataxic multisystem degenerations". When the disease starts before the age of 20, it may present with marked spasticity, of a non progressive nature but often so severe that it can be accompanied by "Gegenhalten" countermovements and dystonic postures but little frank dystonia. There are few true extrapyramidal symptoms except akinesia. When the disease starts after the age of 50, the clinical spectrum is mostly that of an amyotrophic polyneuropathy with fasciculations accompanying the ataxia. For all the other cases the clinical picture is a c.ontinuum between these two extremes, the main determinant of the clinical phenotype being the age of onset and a secondary factor, the place of origin of the given kindred.
    [Show full text]
  • Patterns of Conservation of Spliceosomal Intron Structures and Spliceosome Divergence in Representatives of the Diplomonad and Parabasalid Lineages Andrew J
    Hudson et al. BMC Evolutionary Biology (2019) 19:162 https://doi.org/10.1186/s12862-019-1488-y RESEARCH ARTICLE Open Access Patterns of conservation of spliceosomal intron structures and spliceosome divergence in representatives of the diplomonad and parabasalid lineages Andrew J. Hudson1,2†, David C. McWatters1,2†, Bradley A. Bowser3, Ashley N. Moore1,2, Graham E. Larue3, Scott W. Roy3,4 and Anthony G. Russell1,2* Abstract Background: Two spliceosomal intron types co-exist in eukaryotic precursor mRNAs and are excised by distinct U2- dependent and U12-dependent spliceosomes. In the diplomonad Giardia lamblia, small nuclear (sn) RNAs show hybrid characteristics of U2- and U12-dependent spliceosomal snRNAs and 5 of 11 identified remaining spliceosomal introns are trans-spliced. It is unknown whether unusual intron and spliceosome features are conserved in other diplomonads. Results: We have identified spliceosomal introns, snRNAs and proteins from two additional diplomonads for which genome information is currently available, Spironucleus vortens and Spironucleus salmonicida, as well as relatives, including 6 verified cis-spliceosomal introns in S. vortens. Intron splicing signals are mostly conserved between the Spironucleus species and G. lamblia. Similar to ‘long’ G. lamblia introns, RNA secondary structural potential is evident for ‘long’ (> 50 nt) Spironucleus introns as well as introns identified in the parabasalid Trichomonas vaginalis. Base pairing within these introns is predicted to constrain spatial distances between splice junctions to similar distances seen in the shorter and uniformly-sized introns in these organisms. We find that several remaining Spironucleus spliceosomal introns are ancient. We identified a candidate U2 snRNA from S. vortens, and U2 and U5 snRNAs in S.
    [Show full text]
  • Why Do We Get New Families with Myotonic Dystrophy?
    5 to 20 mutation 5 This mutation event probably only occurred once in human evolution in the shared common ancestor of 13 all Myotonic Dystrophy families. 11 12 14 15 20 to 35 20 repeats Repeats in this 5 to 15 repeats range are not 21 Repeats in this range associated with any are not associated symptoms and are 22 with any symptoms present at quite and are present at high frequency high frequency in the in the general 23 general population. population. They are They are genetically genetically unstable 24 very stable when when transmit- transmitted chang- ted, but increase in ing only very rarely. length quite slowly. 25 There is essen- There is definite tially zero risk of new risk of new Myo- 27 Myotonic Dystrophy tonic Dystrophy families arising from families arising from individuals with such individuals with such 30 repeats. repeats, but it may take many hundreds 33 of generations. 40 to 50 repeats 35 Repeats in this range are not associated with any symptoms, but are present at only very 40 low frequencies in the general population. They are though genetically unstable when transmitted, increasing in length very rapidly 45 and leading to new Myotonic Dystrophy families within a few generations. 50 60 to 3000 repeats 80 Repeats in this range are associated directly with Myotonic Dystrophy symptoms. The repeat is genetically very unstable and expands 300 rapidly in sucessive generations giving rise to the increased severity and decreased age of onset 1000 observed in Myotonic Dystrophy families. Myotonic Dystrophy Support Group Helpline 0115 987 0080 Myotonic dystrophy affects a wide range of body systems and varies dramatically in the relative severity of the symptoms and the age at which the first symptoms appear.
    [Show full text]
  • C9orf72 Repeat Size Correlates with Onset Age of Disease, DNA Methylation and Transcriptional Downregulation of the Promoter
    Molecular Psychiatry (2016) 21, 1112–1124 OPEN © 2016 Macmillan Publishers Limited All rights reserved 1359-4184/16 www.nature.com/mp ORIGINAL ARTICLE The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter I Gijselinck1,2, S Van Mossevelde1,2, J van der Zee1,2, A Sieben1,2,3, S Engelborghs2,4, J De Bleecker3, A Ivanoiu5, O Deryck6, D Edbauer7,8, M Zhang9, B Heeman1,2, V Bäumer1,2, M Van den Broeck1,2, M Mattheijssens1,2, K Peeters1,2, E Rogaeva9,10, P De Jonghe1,2,11, P Cras2,11, J-J Martin2, PP de Deyn2,4,12, M Cruts1,2 and C Van Broeckhoven1,2 on behalf of the BELNEU CONSORTIUM13 Pathological expansion of a G4C2 repeat, located in the 5' regulatory region of C9orf72, is the most common genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). C9orf72 patients have highly variable onset ages suggesting the presence of modifying factors and/or anticipation. We studied 72 Belgian index patients with FTLD, FTLD–ALS or ALS and 61 relatives with a C9orf72 repeat expansion. We assessed the effect of G4C2 expansion size on onset age, the role of anticipation and the effect of repeat size on methylation and C9orf72 promoter activity. G4C2 expansion sizes varied in blood between 45 and over 2100 repeat units with short expansions (45–78 units) present in 5.6% of 72 index patients with an expansion. Short expansions co-segregated with disease in two families. The subject with a short expansion in blood but an indication of mosaicism in brain showed the same pathology as those with a long expansion.
    [Show full text]
  • Myotonic Dystrophy
    Myotonic dystrophy Description Myotonic dystrophy is part of a group of inherited disorders called muscular dystrophies. It is the most common form of muscular dystrophy that begins in adulthood. Myotonic dystrophy is characterized by progressive muscle wasting and weakness. People with this disorder often have prolonged muscle contractions (myotonia) and are not able to relax certain muscles after use. For example, a person may have difficulty releasing their grip on a doorknob or handle. Also, affected people may have slurred speech or temporary locking of their jaw. Other signs and symptoms of myotonic dystrophy include clouding of the lens of the eye (cataracts) and abnormalities of the electrical signals that control the heartbeat (cardiac conduction defects). Some affected individuals develop a condition called diabetes mellitus, in which blood sugar levels can become dangerously high. The features of myotonic dystrophy often develop during a person's twenties or thirties, although they can occur at any age. The severity of the condition varies widely among affected people, even among members of the same family. There are two major types of myotonic dystrophy: type 1 and type 2. Their signs and symptoms overlap, although type 2 tends to be milder than type 1. The muscle weakness associated with type 1 particularly affects muscles farthest from the center of the body (distal muscles), such as those of the lower legs, hands, neck, and face. Muscle weakness in type 2 primarily involves muscles close to the center of the body ( proximal muscles), such as the those of the neck, shoulders, elbows, and hips. The two types of myotonic dystrophy are caused by mutations in different genes.
    [Show full text]
  • Genetic Testing in Spinocerebellar Ataxias Defining a Clinical Role
    NEUROLOGICAL REVIEW Genetic Testing in Spinocerebellar Ataxias Defining a Clinical Role Eng-King Tan, MD; Tetsuo Ashizawa, MD lthough genetic tests for known spinocerebellar ataxia (SCA) genes are increasingly available, their exact clinical role has received much less attention. Currently avail- able DNA tests can define the genotypes of up to two thirds of patients with domi- nantly inherited SCAs. Certain characteristic clinical features and ethnic predilection Aof some of the SCA subtypes may help prioritize specific SCA gene testing. Available data on genotype- phenotype correlation suggest that currently available DNA tests cannot accurately predict age of onset or prognosis. Because of the mostly adult-onset symptoms and the absence of effective treat- ment, genetic counseling is essential for addressing ethical, social, legal, and psychological issues associated with SCA DNA testing. Arch Neurol. 2001;58:191-195 GENETIC CLASSIFICATION lated region of the SCA8 gene that produces antisense messenger RNA to the Spinocerebellar ataxias (SCAs) are a group KLHL1 gene on the complementary of neurodegenerative diseases character- strand.6 In SCA10, the disease-causing ex- ized by cerebellar dysfunction alone or in pansion occurs in the ATTCT penta- combination with other neurological ab- nucleotide repeat of intron 9 of SCA10, a normalities. Spinocerebellar ataxias have gene of unknown function widely ex- become a focus of human genetics re- pressed in the brain.7 Five additional SCA search since expansions of coded CAG tri- loci have
    [Show full text]
  • Autosomal Dominant Polycystic Kidney Disease with Anticipation and Caroli's Disease Associated with a PKD1 Mutation Rapid Communication
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Kidney International, Vol. 52 (1997), pp.33—38 Autosomal dominant polycystic kidney disease with anticipation and Caroli's disease associated with a PKD1 mutation Rapid Communication ROSER Toiu&, CELIA BADENAS, ALEJANDRO DARNELL, CoNcEPcIO BRi, ANGELS ESCORSELL, and XAVIER ESTIVILL Nephrology Service, Genetics Service, Sonography Section of the Radiology Service, and Hepatology Service, Hospital ClInic, Barcelona, Spain Autosomal dominant polycystic kidney disease with anticipation and (ESRD) than PKD1 patients [14]. The PKD1 transcript consists Caroli's disease associated with a PKD1 mutation. Autosomal dominant of 14,148 bp, distributed among 46 exons, spanning 52 kb. An polycystic kidney disease (ADPKD) is the most common renal hereditary interesting feature of this gene is that all but 3.5 kb at the 3'end disorder. Clinical expression of ADPKDshowsinterfamilial and intrafa- milial variability. We screened for mutations the 3' region of the PKD1 of the transcript is encoded by a region repeated several times, gene, from exon 43 to exon 46, in a family showing anticipation and proximally in the same chromosome. Until now very few muta- Caroli's disease and have found a 28 base pairs deletion in exon 46tions [15—19] have been reported in the PKDI gene, mainly due to (12801de128) and a new DNA variant in exon 43 (12184 C to G conserving the this fact, and most of them are located in the non-repeated Ala 3991) segregating with the disease. The mutation should result in a3'region. Only one of these mutations has been reported in more protein 44aminoacids longer than the wild-type PKD1.
    [Show full text]