Original Articles Anticipation Resulting in Elimination of the Myotonic

Total Page:16

File Type:pdf, Size:1020Kb

Original Articles Anticipation Resulting in Elimination of the Myotonic J7 Med Genet 1994;31:595-601 595 Original articles J Med Genet: first published as 10.1136/jmg.31.8.595 on 1 August 1994. Downloaded from Anticipation resulting in elimination of the myotonic dystrophy gene: a follow up study of one extended family C E M de Die-Smulders, C J Howeler, J F Mirandolle, H G Brunner, V Hovers, H Bruggenwirth, H J M Smeets, J P M Geraedts Abstract muscular manifestations, it is characterised by We have re-examined an extended myo- multiple systemic effects including cataract, tonic dystrophy (DM) family, previously mental retardation, cardiac involvement, and described in 1955, in order to study the testicular atrophy. Extreme variability is one of long term effects of anticipation in DM the hallmarks of the disease; clinical studies and in particular the implications for have led to the recognition of four disease types families affected by this disease. This fol- on the basis of age at onset and core symptoms: low up study provides data on 35 gene late onset (mild) type, adult onset (classical) carriers and 46 asymptomatic at risk type, childhood, and congenital type.'"3 family members in five generations. Anticipation, increasing severity and earlier Clinical anticipation, defined as the cas- age at onset in successive generations, has been cade ofmild, adult, childhood, or congen- observed in DM since the beginning of this ital disease in subsequent generations, century, but remained unexplained and contro- appeared to be a relentless process, oc- versial until recently."- With the discovery of curring in all affected branches of the an unstable CTG trinucleotide repeat in the 3' family. The cascade was found to proceed untranslated region of a protein kinase gene on asynchronously in the different branches, chromosome 19q, a biological explanation for mainly because of an unequal number of this phenomenon has emerged.>'4 The repeat generations with mild disease. The tran- length correlates with the severity of clinical sition from the mild to the adult type was symptoms and increases with transmission to associated with transmission through a subsequent generations.3 7 1516 However, most of http://jmg.bmj.com/ male parent. Stable transmission of the the dynamics of the unstable CTG trinucleo- asymptomatic/mild phenotype showed a tide repeat are not yet fully understood. female transmission bias. The exact implications of anticipation for We further examined the extent and DM families are still Department of unclear. As a rule the Clinical Genetics, causes of gene loss in this pedigree. Gene anticipation cascade proceeds and the pheno- University Hospital loss in the patient group was complete, type changes from mild type to adult type to Maastricht, PO Box owing to infertility of the male patients childhood/congenital type in subsequent gen- on September 26, 2021 by guest. Protected copyright. 1475, 6201 BL with Maastricht, The adult onset disease and the fact that erations. However, it is not known which events Netherlands mentally retarded patients did not pro- precede the cascade, which factors trigger C E M de Die-Smulders create. Out of the 46 at risk subjects in the the start of the cascade, and what happens after V Hovers two youngest generations, only one was the J P M Geraedts childhood/congenital onset generation. found to have a full mutation. This is the Fleischer4 argued that the disease would Department of only subject who may transmit the gene become extinct in families because of gene loss Neurology, University to the sixth Hospital Maastricht, generation. No protomu- in severely affected patients owing to celibacy, The Netherlands tation carriers were found in the fourth childless marriages, mental retardation, and C J Howeler and fifth generations. Therefore it is high infant mortality. Follow up studies to highly probable that the DM gene will be Department of determine whether the disease indeed disap- Neurology, de Wever eliminated from this pedigree within one pears from a given family have not been per- Hospital, Heerlen, generation. The high population fre- formed. We had the opportunity to re-examine The Netherlands quency of DM can at present not be a J F Mirandolle large DM family, the first three generations of explained by the contribution of asymp- which were described by de Jong"7 in 1955, and Department of tomatic cases in the younger generations so we could gain data on five generations. The Human Genetics, of known families, but is probably caused aim was to University Hospital study the consequences of anticipa- Nijmegen, The by the events in the ancestral genera- tion over more generations than can be studied Netherlands tions. in transverse studies. The inter- and intrage- H G Brunner nerational phenotypic variation was studied by H Briiggenwirth (J Med Genet H J M Smeets 1994;31:595-601) combining clinical and DNA data. The repro- ductive fitness of male and female patients was Correspondence to Dr de Die-Smulders. compared. To examine whether progressive Received 21 March 1994 Myotonic dystrophy (DM) is an autosomal severity leads to the extinction of the disease Accepted for publication dominant disorder with myotonia and muscular from a given pedigree, descendants of the third 18 April 1994 weakness as diagnostic features. Apart from the and fourth symptomatic generations were 596 de Die-Smulders, Howeler, Mirandolle, Brunner, Hovers, Bruggenwirth, Smeets, Geraedts studied, and the extent and causes of gene loss disease status of the intermediate family mem- in the youngest generations were evaluated. ber(s) was unknown. One at risk subject (V.20) was included in the group of gene carriers after DNA examination showed that she had inher- J Med Genet: first published as 10.1136/jmg.31.8.595 on 1 August 1994. Downloaded from Methods ited the expanded CTG repeat from her affec- FAMILY ted father. Eighteen out of the 36 gene carriers In 1955 de Jong'7 described an extended DM were no longer alive at the time of the study. family with three symptomatic generations (pedigree G). He gave detailed information on 50 family members, 16 of whom were desig- EXAMINATIONS nated as affected. Neurological examination and Careful histories from the patients or their slit lamp examination by an ophthalmologist family members or both were obtained to docu- were used as diagnostic methods. Electromyo- ment the age of onset and current clinical graphy was not available then. We carefully symptoms. When available, clinical records reviewed his data and only subjects showing were reviewed. Muscular weakness or myotonia definite signs of DM were classified as affected. or both, myotonic cataract, neonatal symptoms, We added data on the descendants of III.12, or mental retardation defined the onset of dis- who were examined by de Jong in 1958 (figure). ease. Neurological examination was performed II.2 and her descendants are not included in using a standardised form. Ophthalmological this follow up study, because she was not ex- assessments were carried out using a portable amined by de Jong. III.8, III.9, and III.10 and slit lamp. EMG examination was only per- their children were found to be normal in 1955. formed when the examination took place in They live abroad and were excluded from the hospital. present study. The living members of genera- tions IV and V were re-examined and so we were able to obtain data on five generations. CLINICAL CLASSIFICATION This follow up study was started with the To compare the disease types within and patients and at risk family members already between generations four clinical categories known to the Departments of Clinical Genetics were used, adapted from the classification of and Neurology of the University Hospital Harley et aP: mild, adult, childhood, and con- Maastricht and the Department of Neurology genital types. We added a category of additional of the De Wever Hospital in Heerlen, the later symptoms, because several of the present Netherlands. They were asked to approach patients have had symptomatic DM for over 40 their relatives. Most family members were years (table 1). Conclusions regarding the dis- visited and examined in their own homes, ease type were made on the basis of the results which turned out to have a significant advan- of our recent examination in combination with tage in terms of cooperation in the study. the data from medical records and de Jong's The total study comprises data on 81 family descriptions. members: initially there were 35 symptomatic http://jmg.bmj.com/ patients or obligate gene carriers (including de Jong's patients) and 46 at risk subjects. The at DNA ANALYSIS risk group comprised asymptomatic first degree Chromosomal DNA was isolated from peri- relatives of DM patients. Second and third pheral blood cells from 16 patients and 39 at degree relatives were defined as at risk if the risk subjects. Molecular analyses were 1 on September 26, 2021 by guest. Protected copyright. 11 III IV V 323 2.5 0.9 LI 0 Normal on clinical/DNA examination El ( Asymptomatic gene carrier !l O Mild type [] Adult type In Childhood type ** Congenital type E9 Not examined Pedigree of the family. The numbers beneath the symbol denote the size (kb) of CTG repeat expansion by Southern blot analysis. Anticipation resulting in elimination of the myotonic dystrophy gene 597 Table 1 Disease types in DM related to age at onset and core symptoms Disease Age at Initial symptoms Additional later symptoms type onset (y) J Med Genet: first published as 10.1136/jmg.31.8.595 on 1 August 1994. Downloaded from Mild > 50 Cataract or
Recommended publications
  • The Genetic Background of Anticipation P Teisberg MD
    JOURNAL OF THE ROYAL SOCIETY OF MEDICINE Volume 88 April 1995 The genetic background of anticipation P Teisberg MD J R Soc Med 1995;88:185-187 Keywords: genetics; anticipation; triplet repeats; neurological disorders Anticipation was controversial impairment and increased infant mortality were observed. Anticipation may be defined as the occurrence of a genetic The sequence of events often ends in congenital MD with its disorder at progressively earlier ages in successive severe clinical manifestation of mental retardation and generations. The disease moreover occurs with increasing muscular dystrophy. Later, clinical studies confirmed these severity. The concept emerged early in this century mainly observations and described a dominant inheritance pattern through descriptive dinical studies ofmyotonic dystrophy1'2. which could not be explained by classical Mendelian Later studies have added other disease entities to a list of mechanisms8. states showing anticipation, the most notable being Another phenomenon which did not fit easily into the Huntington's disease3. In one form of inherited mental concepts of genetics was the finding that congenital MD was retardation, the fragile X syndrome, the term 'the Sherman transmitted almost exclusively via affected mothers9. paradox' describes a very similar phenomenon4. In the fragile X syndrome, anticipation is manifested in a Towards the middle of this century, basic research in different manner. This is the most common cause of familial genetics had given us a much clearer understanding of mental retardation. It segregates in families as an X-linked Mendelian inheritance. It became increasingly difficult to dominant disorder with reduced penetrance. When reconcile the originally described phenomenon of chromosomes are stained a fragile site on the X anticipation with a concept of genes as stable elements chromosome may be seen in a proportion of cells taken only changed by the rare mutation.
    [Show full text]
  • Fact Sheet 54| FRAGILE X SYNDROME This Fact Sheet
    11111 Fact Sheet 54| FRAGILE X SYNDROME This fact sheet describes the condition Fragile X and includes a discussion of the symptoms, causes and available testing. In summary Fragile X is a condition caused by a change in the FMR-1 gene, on the X chromosome It is characterised by particular physical features, varying degrees of learning difficulties and behavioural and emotional problems Fragile X affects around 1 in 4,000 males and between 1 in 5,000 and 1 in 8,000 females. WHAT IS FRAGILE X SYNDROME? WHAT CAUSES FRAGILE X SYNDROME? Fragile X syndrome is the most common known Fragile X syndrome is caused by a variation in the cause of inherited intellectual disability. genetic information in the FMR-1 gene. Genes are Intellectual problems in people with fragile X made up of a string of three letter ‘words’, or syndrome can vary from mild learning difficulties triplets, using the letters A,T, C & G. The FMR-1 through to severe intellectual disability. gene codes for a protein called FMRP that is necessary for usual brain development and/or Emotional and behavioural problems may also be function. In the FMR-1 gene, the triplet word present. ‘CGG’ can be repeated many times. When the Females with fragile X syndrome show varying number of ‘CGG’ repeats in the FMR-1 gene degrees of the condition, but are usually less increases over a critical number, the gene severely affected than males. becomes so long that it becomes faulty and the production of the FMRP is disrupted. The features of the condition, and their severity, are related to the genetic information in the faulty gene causing the condition.
    [Show full text]
  • Diverse Mechanisms of Trinucleotide Repeat Disorders: an Exploration of Fragile X Syndrome and Huntington’S Disease Cara Strobel
    Undergraduate Review Volume 9 Article 30 2013 Diverse Mechanisms of Trinucleotide Repeat Disorders: An Exploration of Fragile X Syndrome and Huntington’s Disease Cara Strobel Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Part of the Cell Biology Commons Recommended Citation Strobel, Cara (2013). Diverse Mechanisms of Trinucleotide Repeat Disorders: An Exploration of Fragile X Syndrome and Huntington’s Disease. Undergraduate Review, 9, 151-156. Available at: http://vc.bridgew.edu/undergrad_rev/vol9/iss1/30 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2013 Cara Strobel Diverse Mechanisms of Trinucleotide Repeat Disorders: An Exploration of Fragile X Syndrome and Huntington’s Disease CARA STROBEL Cara Strobel authored this essay for the Cell Biology course in the spring semester of 2012. Given free rinucleotide repeat disorders are an umbrella group of genetic diseases reign with a cell biology related topic, that have been well described clinically for a long time; however, the she wanted to explore and contrast scientific community is only beginning to understand their molecular the specifics of several prevalent basis. They are classified in two basic groups depending on the location Tof the relevant triplet repeats in a coding or a non-coding region of the genome. disorders. Cara plans to apply to Repeat expansion past a disease-specific threshold results in molecular and cellular medical school in Spring 2013. abnormalities that manifest themselves as disease symptoms. Repeat expansion is postulated to occur via slippage during DNA replication and/or transcription- mediated DNA repair.
    [Show full text]
  • Relationship Between C9orf72 Repeat Size and Clinical Phenotype
    Available online at www.sciencedirect.com ScienceDirect Relationship between C9orf72 repeat size and clinical phenotype 1,2,3,4 1,2 1,2 Sara Van Mossevelde , Julie van der Zee , Marc Cruts 1,2 and Christine Van Broeckhoven Patient carriers of a C9orf72 repeat expansion exhibit Patients carrying a C9orf72 repeat expansion are remark- remarkable heterogeneous clinical and pathological able heterogeneous in clinical presentation, not only characteristics suggesting the presence of modifying factors. between families but also within families [3,4 ]. The In accordance with other repeat expansion diseases, repeat majority of the expansion carriers present clinically with length is the prime candidate as a genetic modifier. FTD and/or ALS. 73–100% of C9orf72 FTD patients Observations of earlier onset ages in younger generations of exhibit the behavioral variant (bvFTD) [5–15]. In C9orf72 large families suggested a mechanism of disease anticipation. ALS patients, the relative frequency of a bulbar symptom Yet, studies of repeat size and onset age have led to conflicting onset (29–89% [5,9,11,13,15–18]) is higher than in ALS results. Also, the correlation between repeat size and diagnosis patients without the expansion [13,16–18]. Apart from is poorly understood. We review what has been published FTD and ALS, several other clinical diagnoses have been regarding C9orf72 repeat size as modifier for phenotypic described (Figure 1) [9,19–31]. Parkinsonism is fre- characteristics. Conclusive evidence is lacking, partly due to quently reported in C9orf72 repeat expansion carriers, the difficulties in accurately defining the exact repeat size and but the expansion does not seem to be associated with the presence of repeat variability due to somatic mosaicism.
    [Show full text]
  • The Natural History of Machado-Joseph Disease an Analysis of 138 Personally Examined Cases A
    THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES QUEBEC COOPERATIVE STUDY OF FRIEDREICH'S ATAXIA The Natural History of Machado-Joseph Disease An analysis of 138 personally examined cases A. Barbeau, M. Roy, L. Cunha, A.N. de Vincente, R.N. Rosenberg, W.L. Nyhan, P.L. MacLeod, G. Chazot, L.B. Langston, D.M. Dawson and P. Coutinho ABSTRACT: We have examined 138 cases of a disorder previously described in people of Portuguese origin and which has received many names. By computer analysis of 46 different items of a standardized neurological examination carried out in each patient, we have been able to delineate the main components of the clinical presentation, to conclude that the marked variability in clinical expressions does not negate the homogeneity of the disorder, and to describe the natural history of this entity which should be called, for historical reasons, "Machado-Joseph Disease". This hereditary disease has an autosomal dominant pattern of inheritance, presenting as a progressive ataxia with external ophthalmoplegia, and should be classified within the group of "Ataxic multisystem degenerations". When the disease starts before the age of 20, it may present with marked spasticity, of a non progressive nature but often so severe that it can be accompanied by "Gegenhalten" countermovements and dystonic postures but little frank dystonia. There are few true extrapyramidal symptoms except akinesia. When the disease starts after the age of 50, the clinical spectrum is mostly that of an amyotrophic polyneuropathy with fasciculations accompanying the ataxia. For all the other cases the clinical picture is a c.ontinuum between these two extremes, the main determinant of the clinical phenotype being the age of onset and a secondary factor, the place of origin of the given kindred.
    [Show full text]
  • Patterns of Conservation of Spliceosomal Intron Structures and Spliceosome Divergence in Representatives of the Diplomonad and Parabasalid Lineages Andrew J
    Hudson et al. BMC Evolutionary Biology (2019) 19:162 https://doi.org/10.1186/s12862-019-1488-y RESEARCH ARTICLE Open Access Patterns of conservation of spliceosomal intron structures and spliceosome divergence in representatives of the diplomonad and parabasalid lineages Andrew J. Hudson1,2†, David C. McWatters1,2†, Bradley A. Bowser3, Ashley N. Moore1,2, Graham E. Larue3, Scott W. Roy3,4 and Anthony G. Russell1,2* Abstract Background: Two spliceosomal intron types co-exist in eukaryotic precursor mRNAs and are excised by distinct U2- dependent and U12-dependent spliceosomes. In the diplomonad Giardia lamblia, small nuclear (sn) RNAs show hybrid characteristics of U2- and U12-dependent spliceosomal snRNAs and 5 of 11 identified remaining spliceosomal introns are trans-spliced. It is unknown whether unusual intron and spliceosome features are conserved in other diplomonads. Results: We have identified spliceosomal introns, snRNAs and proteins from two additional diplomonads for which genome information is currently available, Spironucleus vortens and Spironucleus salmonicida, as well as relatives, including 6 verified cis-spliceosomal introns in S. vortens. Intron splicing signals are mostly conserved between the Spironucleus species and G. lamblia. Similar to ‘long’ G. lamblia introns, RNA secondary structural potential is evident for ‘long’ (> 50 nt) Spironucleus introns as well as introns identified in the parabasalid Trichomonas vaginalis. Base pairing within these introns is predicted to constrain spatial distances between splice junctions to similar distances seen in the shorter and uniformly-sized introns in these organisms. We find that several remaining Spironucleus spliceosomal introns are ancient. We identified a candidate U2 snRNA from S. vortens, and U2 and U5 snRNAs in S.
    [Show full text]
  • Why Do We Get New Families with Myotonic Dystrophy?
    5 to 20 mutation 5 This mutation event probably only occurred once in human evolution in the shared common ancestor of 13 all Myotonic Dystrophy families. 11 12 14 15 20 to 35 20 repeats Repeats in this 5 to 15 repeats range are not 21 Repeats in this range associated with any are not associated symptoms and are 22 with any symptoms present at quite and are present at high frequency high frequency in the in the general 23 general population. population. They are They are genetically genetically unstable 24 very stable when when transmit- transmitted chang- ted, but increase in ing only very rarely. length quite slowly. 25 There is essen- There is definite tially zero risk of new risk of new Myo- 27 Myotonic Dystrophy tonic Dystrophy families arising from families arising from individuals with such individuals with such 30 repeats. repeats, but it may take many hundreds 33 of generations. 40 to 50 repeats 35 Repeats in this range are not associated with any symptoms, but are present at only very 40 low frequencies in the general population. They are though genetically unstable when transmitted, increasing in length very rapidly 45 and leading to new Myotonic Dystrophy families within a few generations. 50 60 to 3000 repeats 80 Repeats in this range are associated directly with Myotonic Dystrophy symptoms. The repeat is genetically very unstable and expands 300 rapidly in sucessive generations giving rise to the increased severity and decreased age of onset 1000 observed in Myotonic Dystrophy families. Myotonic Dystrophy Support Group Helpline 0115 987 0080 Myotonic dystrophy affects a wide range of body systems and varies dramatically in the relative severity of the symptoms and the age at which the first symptoms appear.
    [Show full text]
  • C9orf72 Repeat Size Correlates with Onset Age of Disease, DNA Methylation and Transcriptional Downregulation of the Promoter
    Molecular Psychiatry (2016) 21, 1112–1124 OPEN © 2016 Macmillan Publishers Limited All rights reserved 1359-4184/16 www.nature.com/mp ORIGINAL ARTICLE The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter I Gijselinck1,2, S Van Mossevelde1,2, J van der Zee1,2, A Sieben1,2,3, S Engelborghs2,4, J De Bleecker3, A Ivanoiu5, O Deryck6, D Edbauer7,8, M Zhang9, B Heeman1,2, V Bäumer1,2, M Van den Broeck1,2, M Mattheijssens1,2, K Peeters1,2, E Rogaeva9,10, P De Jonghe1,2,11, P Cras2,11, J-J Martin2, PP de Deyn2,4,12, M Cruts1,2 and C Van Broeckhoven1,2 on behalf of the BELNEU CONSORTIUM13 Pathological expansion of a G4C2 repeat, located in the 5' regulatory region of C9orf72, is the most common genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). C9orf72 patients have highly variable onset ages suggesting the presence of modifying factors and/or anticipation. We studied 72 Belgian index patients with FTLD, FTLD–ALS or ALS and 61 relatives with a C9orf72 repeat expansion. We assessed the effect of G4C2 expansion size on onset age, the role of anticipation and the effect of repeat size on methylation and C9orf72 promoter activity. G4C2 expansion sizes varied in blood between 45 and over 2100 repeat units with short expansions (45–78 units) present in 5.6% of 72 index patients with an expansion. Short expansions co-segregated with disease in two families. The subject with a short expansion in blood but an indication of mosaicism in brain showed the same pathology as those with a long expansion.
    [Show full text]
  • Myotonic Dystrophy
    Myotonic dystrophy Description Myotonic dystrophy is part of a group of inherited disorders called muscular dystrophies. It is the most common form of muscular dystrophy that begins in adulthood. Myotonic dystrophy is characterized by progressive muscle wasting and weakness. People with this disorder often have prolonged muscle contractions (myotonia) and are not able to relax certain muscles after use. For example, a person may have difficulty releasing their grip on a doorknob or handle. Also, affected people may have slurred speech or temporary locking of their jaw. Other signs and symptoms of myotonic dystrophy include clouding of the lens of the eye (cataracts) and abnormalities of the electrical signals that control the heartbeat (cardiac conduction defects). Some affected individuals develop a condition called diabetes mellitus, in which blood sugar levels can become dangerously high. The features of myotonic dystrophy often develop during a person's twenties or thirties, although they can occur at any age. The severity of the condition varies widely among affected people, even among members of the same family. There are two major types of myotonic dystrophy: type 1 and type 2. Their signs and symptoms overlap, although type 2 tends to be milder than type 1. The muscle weakness associated with type 1 particularly affects muscles farthest from the center of the body (distal muscles), such as those of the lower legs, hands, neck, and face. Muscle weakness in type 2 primarily involves muscles close to the center of the body ( proximal muscles), such as the those of the neck, shoulders, elbows, and hips. The two types of myotonic dystrophy are caused by mutations in different genes.
    [Show full text]
  • Genetic Testing in Spinocerebellar Ataxias Defining a Clinical Role
    NEUROLOGICAL REVIEW Genetic Testing in Spinocerebellar Ataxias Defining a Clinical Role Eng-King Tan, MD; Tetsuo Ashizawa, MD lthough genetic tests for known spinocerebellar ataxia (SCA) genes are increasingly available, their exact clinical role has received much less attention. Currently avail- able DNA tests can define the genotypes of up to two thirds of patients with domi- nantly inherited SCAs. Certain characteristic clinical features and ethnic predilection Aof some of the SCA subtypes may help prioritize specific SCA gene testing. Available data on genotype- phenotype correlation suggest that currently available DNA tests cannot accurately predict age of onset or prognosis. Because of the mostly adult-onset symptoms and the absence of effective treat- ment, genetic counseling is essential for addressing ethical, social, legal, and psychological issues associated with SCA DNA testing. Arch Neurol. 2001;58:191-195 GENETIC CLASSIFICATION lated region of the SCA8 gene that produces antisense messenger RNA to the Spinocerebellar ataxias (SCAs) are a group KLHL1 gene on the complementary of neurodegenerative diseases character- strand.6 In SCA10, the disease-causing ex- ized by cerebellar dysfunction alone or in pansion occurs in the ATTCT penta- combination with other neurological ab- nucleotide repeat of intron 9 of SCA10, a normalities. Spinocerebellar ataxias have gene of unknown function widely ex- become a focus of human genetics re- pressed in the brain.7 Five additional SCA search since expansions of coded CAG tri- loci have
    [Show full text]
  • Autosomal Dominant Polycystic Kidney Disease with Anticipation and Caroli's Disease Associated with a PKD1 Mutation Rapid Communication
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Kidney International, Vol. 52 (1997), pp.33—38 Autosomal dominant polycystic kidney disease with anticipation and Caroli's disease associated with a PKD1 mutation Rapid Communication ROSER Toiu&, CELIA BADENAS, ALEJANDRO DARNELL, CoNcEPcIO BRi, ANGELS ESCORSELL, and XAVIER ESTIVILL Nephrology Service, Genetics Service, Sonography Section of the Radiology Service, and Hepatology Service, Hospital ClInic, Barcelona, Spain Autosomal dominant polycystic kidney disease with anticipation and (ESRD) than PKD1 patients [14]. The PKD1 transcript consists Caroli's disease associated with a PKD1 mutation. Autosomal dominant of 14,148 bp, distributed among 46 exons, spanning 52 kb. An polycystic kidney disease (ADPKD) is the most common renal hereditary interesting feature of this gene is that all but 3.5 kb at the 3'end disorder. Clinical expression of ADPKDshowsinterfamilial and intrafa- milial variability. We screened for mutations the 3' region of the PKD1 of the transcript is encoded by a region repeated several times, gene, from exon 43 to exon 46, in a family showing anticipation and proximally in the same chromosome. Until now very few muta- Caroli's disease and have found a 28 base pairs deletion in exon 46tions [15—19] have been reported in the PKDI gene, mainly due to (12801de128) and a new DNA variant in exon 43 (12184 C to G conserving the this fact, and most of them are located in the non-repeated Ala 3991) segregating with the disease. The mutation should result in a3'region. Only one of these mutations has been reported in more protein 44aminoacids longer than the wild-type PKD1.
    [Show full text]
  • Basic Molecular Genetics for Epidemiologists F Calafell, N Malats
    398 GLOSSARY Basic molecular genetics for epidemiologists F Calafell, N Malats ............................................................................................................................. J Epidemiol Community Health 2003;57:398–400 This is the first of a series of three glossaries on CHROMOSOME molecular genetics. This article focuses on basic Linear or (in bacteria and organelles) circular DNA molecule that constitutes the basic physical molecular terms. block of heredity. Chromosomes in diploid organ- .......................................................................... isms such as humans come in pairs; each member of a pair is inherited from one of the parents. general increase in the number of epide- Humans carry 23 pairs of chromosomes (22 pairs miological research articles that apply basic of autosomes and two sex chromosomes); chromo- science methods in their studies, resulting somes are distinguished by their length (from 48 A to 257 million base pairs) and by their banding in what is known as both molecular and genetic epidemiology, is evident. Actually, genetics has pattern when stained with appropriate methods. come into the epidemiological scene with plenty Homologous chromosome of new sophisticated concepts and methodologi- cal issues. Each of the chromosomes in a pair with respect to This fact led the editors of the journal to offer the other. Homologous chromosomes carry the you a glossary of terms commonly used in papers same set of genes, and recombine with each other applying genetic methods to health problems to during meiosis. facilitate your “walking” around the journal Sex chromosome issues and enjoying the articles while learning. Sex determining chromosome. In humans, as in Obviously, the topics are so extensive and inno- all other mammals, embryos carrying XX sex vative that a single short glossary would not be chromosomes develop as females, whereas XY sufficient to provide you with the minimum embryos develop as males.
    [Show full text]