Synergism Between Phenolic Antioxidants in Autoxidation

Total Page:16

File Type:pdf, Size:1020Kb

Synergism Between Phenolic Antioxidants in Autoxidation 22 Journal of the Japan Petroleum Institute, 54, (1), 22-29 (2011) [Regular Paper] Synergism between Phenolic Antioxidants in Autoxidation Yasukazu OHKATSU* and Fumie SUZUKI Dept. of Applied Chemistry, Faculty of Engineering, Kogakuin University, 1-24-2 Nishi-shinjuku, Shinjuku-ku, Tokyo 163-6877, JAPAN (Received March 2, 2010) Combinations of two types of phenolic antioxidants were examined to assess synergistic or antagonistic inter- action from both radical scavenging rate constant (kinh) and radical scavenging number (n). The synergism of two types of phenols was observed especially with comparatively lower and similar oxidation potentials. In syn- ergism of kinh, a phenol with lower oxidation potential simply acts as a peroxy radical scavenger, whereas the other phenol with higher oxidation potential acts as a hydrogen donor in the regeneration of the former phenol from its phenoxy radical. On the other hand, synergism of n is seen for less or non-hindered phenols, especially with 4-methoxy substituent, and is controlled by the reaction conditions, such as solvent polarity. This is interpreted as a molecular association of phenols formed through hydrogen bonds and hydrophilic interactions, resulting in obstruction of coupling of the phenoxy radicals. As a result, 3,5-di-t-butyl-4-hydroxy-toluene (BHT) and 2-t-butyl-4-methoxyphenol (3 : 2 by mole ratio), and BHT and 4-methoxyphenol (3 : 2 by mole ratio) were esti- mated to show total synergism of 1.41 and 1.35 times, respectively, compared with the simple sum of the anti- oxidant activities in a hydrophobic system, such as chlorobenzene. These results are important for reduction of costs as well as environmental pollution by allowing decreased use of phenols. Keywords Phenolic antioxidant, Synergism, Antagonism, Kinetic treatment, Cost reduction 1. Introduction the number of radicals scavenged by a phenolic moirty, and kinh is the radical scavenging rate constant. Larger Polymeric materials such as plastic and rubber are n and/or kinh values will indicate better antioxidant extremely important materials in the contemporary properties. world. However, these materials gradually deteriorate d[O]2 kp[RH] R i under the influence of external factors such as light, − = = Ri ()1 (1) dt nkinh[AH] heat, and oxygen, which mainly cause autoxidation as a inh radical chain reaction. Control of this autoxidation Most antioxidants generally show some interactions mainly depends on methods to stop the chain reaction in combined use. Phenolic antioxidants are reported or to scavenge chain carriers. to interact with many other types of antioxidants, but In general, phenols are used as antioxidants for stabi- the interactions between different types of phenols re- lizing many polymeric products and petroleum1), main unclear. The synergism of two phenols has been because of their effective scavenging of peroxy radicals reported2),3), but the details are unknown. However, if responsible for polymer deterioration. Scheme 1 shows a general autoxidation mechanism in the pres- ence of phenolic antioxidants. The radical (R・) gener- ated in the initiation step of the deterioration promptly reacts with oxygen to form a peroxy radical, which ab- stracts a hydrogen atom from the substrates to form a hydroperoxide and R・. This sequence forms the chain reaction. Antioxidant AH can react with peroxy radi- cals faster than substrate RH, resulting in interruption of the chain reaction. In this mechanism, the oxygen uptake rate can be represented by Eq. (1), in which n is Ri=the rate of initiation step n=the number of peroxy radicals scavenged by a phenol kinh=the rate constant of peroxy radical scavenging step by a phenol * To whom correspondence should be addressed. * E-mail: [email protected] Scheme 1 Autoxidation in the Presence of Phenolic Antioxidant J. Jpn. Petrol. Inst., Vol. 54, No. 1, 2011 23 the required amounts of phenols can be reduced by such benzene as solvent, to estimate the association of phe- synergism, both costs and environmental pollution can nols in the solvent. be reduced. 2. 4. GC Measurement The present study investigated the interaction of two The consumed amount of phenols was measured by a types of phenolic antioxidants to try to identify cheap conventional gas chromatograph (GC) method using a and environmentally friendly combinations of phenolic 400-1HT column (Qudrex Corp.) to evaluate the inter- antioxidants. action of two types of phenols. 2. Experimental 3. Results and Discussion 2. 1. Phenolic Antioxidants 3. 1. Effect of Substituents on Characteristics of Seven types of phenolic antioxidants were purified Phenolic Antioxidants by conventional methods, so that the melting point was Table 1 shows the oxidation potentials and anti- within 0.5℃ of that reported for authentic samples: oxidant characteristics of the seven phenols. The oxi- 3,5-di-t-butyl-4-hydroxyanisole (BHA), 2-t-butyl-4- dation potentials are based on oxidation of the phenolic methoxyphenol, 4-methoxyphenol, BHT, 2-t-butyl-4- group, and apparently depend on the types and numbers methylphenol, 4-methylphenol, and 2-t-butylphenol. of substituents. It increased with lower steric hin- 2. 2. Redox Potential drance of the phenol group. The redox potential of each phenol was measured Electron donating substituents with higher electro- under nitrogen atmosphere using cyclic voltammetry philic substituent constant (σ+) at the o- and p-positions (CV) using a saturated calomel reference electrode enhance the activity of phenols, and a proposed mecha- (SCE), a Pt working electrode, and a Pt counter elec- nism for the hydrogen abstraction of a peroxy radical trode. The measured solution contained 0.1 mol/dm3 from a phenol is proposed as shown in Scheme 25). of tetra-butylammonium perchlorate as electrolyte and The hydrogen abstraction starts with electron transfer 10-3 mol/dm3 of phenol in acetonitrile. from the oxygen atom of the hydroxyl group to a per- 2. 3. Antioxidant Activity oxy radical, and ends by elimination of the phenolic The antioxidant activity of phenols was measured in hydrogen as a proton. This mechanism suggests that a chlorobenzene as follows: autoxidation of styrene phenol with low oxidation potential, which is oxidized 3 (2 mol/dm ) was carried out in the presence of phenolic easily, can be expected to have high kinh as an excellent antioxidant(s) using α,α’-azo-bis-isobutyronitrile (AIBN) antioxidant. The mechanism might be correct under (10-2 mol/dm3) as an initiator at 50℃ under oxygen. certain conditions, but Table 1 shows that phenols with The reaction was followed by measuring the uptake of low oxidation potential do not necessarily have high kinh oxygen, and analyzed in terms of n and kinh as defined on the basis of the nature and number of substituents. by Eq. (1). BHT was mainly used as the reference an- Peroxy radical can more easily approach the hydroxyl tioxidant. In addition, autoxidation was carried out group of a phenol with fewer o-substituent(s), resulting using benzonitrile or acetophenone in place of chloro- in easier formation of the intermediate shown in the Table 1 Oxidation Potential and Antioxidant Activities of Phenolic Antioxidants Phenolic Oxidation k Phenolic Oxidation k inh n inh n antioxidant potential [V] [×104 dm3・mol-1・s-1] antioxidant potential [V] [×104 dm3・mol-1・s-1] OH OH 0.90 1.8 1.8 1.27 1.7 1.7 OCH3 CH3 OH OH 0.99 3.6 2.2 1.29 3.3 1.6 OCH3 CH3 OH OH 1.04 3.2 1.6 1.42 5.3 1.3 OCH3 CH3 OH 1.45 3.4 1.4 J. Jpn. Petrol. Inst., Vol. 54, No. 1, 2011 24 Scheme 2 Hydrogen Abstraction from Phenol by Peroxy Radical appears as a solid line: the interaction is called “syner- gism” for a solid line above a broken line and “antago- nism” for a solid line below the broken line. The de- gree of “synergism” is assessed semi-quantitatively by the area between the broken and solid lines: the larger area is represented by a double circle. In Fig. 2, the vertical axis shows the kinh or n value obtained experi- mentally, and the horizontal axis shows the mixed mole ratios of the two phenols. The observed intera ctions are arranged to form inter- action maps (Figs. 3(a) and 3(b)), in which the interac- tion modes of kinh and n values are plotted against the redox potentials of phenols. Comparison of the inter- action modes of kinh with n shows that kinh has prefera- ble synergism in a wider combination of phenols. In Fig. 1 Relationship between kinh and n of Phenols particular, strong synergism of kinh was observed for combinations of phenols with lower oxidation poten- tials, such as phenols with a methoxy group on the parenthesis of Scheme 2. Therefore, such a chemical 4-position. In contrast, the combination of phenols structure should govern the reaction of Scheme 2 and with 4-methyl group and/or with a high difference of result in high kinh for the phenol. In fact, phenols show their redox potentials showed no interaction or antago- a higher kinh in the order of no o->one o->two o- nism. substituent(s). Therefore, the activity of a phenol is Figure 4 shows the representative synergism and likely controlled by the o-substituent rather than the antagonism profiles for kinh and n, respectively, to rec- oxidation potential. ognize how such phenomena are observed in the pres- Figure 1 shows the relationship between kinh and n ence of two types of phenolic antioxidants. The left of of the seven phenols. 4-Methyl-phenols showed some the Fig. 4 shows strong synergism for kinh of a combi- relationship between higher kinh and lower n. A simi- nation of 4-methoxyphenol and BHT, and the right of lar relationship is also observed for commercialized Fig.
Recommended publications
  • Peroxides and Peroxide- Forming Compounds
    FEATURE Peroxides and peroxide- forming compounds By Donald E. Clark Bretherick5 included a discussion of nated. However, concentrated hydro- organic peroxide5 in a chapter on gen peroxide (Ͼ30%), in contact with norganic and organic peroxides, highly reactive and unstable com- ordinary combustible materials (e.g., because of their exceptional reac- pounds and used “oxygen balance” to fabric, oil, wood, or some resins) Itivity and oxidative potential are predict the stability of individual com- poses significant fire or explosion haz- widely used in research laboratories. pounds and to assess the hazard po- ards. Peroxides of alkali metals are not This review is intended to serve as a tential of an oxidative reaction. Jack- particularly shock sensitive, but can 6 guide to the hazards and safety issues son et al. addressed the use of decompose slowly in the presence of associated with the laboratory use, peroxidizable chemicals in the re- moisture and may react violently with handling, and storage of inorganic and search laboratory and published rec- a variety of substances, including wa- organic peroxy-compounds and per- ommendations for maximum storage ter. Thus, the standard iodide test for oxide-forming compounds. time for common peroxide-forming peroxides must not be used with these The relatively weak oxygen-oxygen laboratory solvents. Several solvents, water-reactive compounds.1 linkage (bond-dissociation energy of (e.g., diethyl ether) commonly used in Inorganic peroxides are used as ox- 20 to 50 kcal moleϪ1) is the character- the laboratory can form explosive re- idizing agents for digestion of organic istic structure of organic and inor- action products through a relatively samples and in the synthesis of or- ganic peroxide molecules, and is the slow oxidation process in the pres- ganic peroxides.
    [Show full text]
  • Autoxidation Vs. Antioxidants – the Fight for Forever
    Electronic Supplementary Material (ESI) for Chemical Society Reviews. This journal is © The Royal Society of Chemistry 2021 Supplementary Information for Autoxidation vs. antioxidants – the fight for forever Julian Helberg and Derek A. Pratt* Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt. Ottawa, ON K1N 6N5, Canada. Table S1: References for the kp values / BDEs plotted in Figure 1 (ordered by kp): -1 -1 Compound kp / M s Source BDE kcal / Source mol retinal 5656 (Do, Lee et al. 2021) -- -- 7-dehydrocholesterol 2737 (Do, Lee et al. 2021) -- -- 1,4-cyclohexadiene 1400 (Valgimigli and Pratt 2012) 76.0 (Luo 2007) conjugated linolenic acid 18:3 1235 (Do, Lee et al. 2021) -- -- vitamin d3 1031 (Do, Lee et al. 2021) -- -- docosahexaenoic acid 22:6 334 (Xu, Davis et al. 2009) -- -- arachidonic acid 20:4 197 (Xu, Davis et al. 2009) -- -- 2,4-hexadiene 165 (Do, Lee et al. 2021) -- -- linolenic acid 18:3 144 (Do, Lee et al. 2021) -- -- conjugated linoleic acid 18:2 118 (Do, Lee et al. 2021) -- -- 2,4-dimethyl-1,3-pentadiene 97 (Do, Lee et al. 2021) -- -- indene 80 (Do, Lee et al. 2021) 83.0 (Luo 2007) 1,3-hexadiene 65 (Do, Lee et al. 2021) -- -- linoleic acid 18:2 62 (Xu, Davis et al. 2009) -- -- 1,3-pentadiene 34 (Do, Lee et al. 2021) 83.3 (Luo 2007) styrene 17 (Do, Lee et al. 2021) -- -- 1,4-pentadiene 14 (Howard and Ingold 1967) 76.6 (Luo 2007) cholesterol 11 (Xu, Davis et al. 2009) 83.2 (Porter, Xu et al.
    [Show full text]
  • 4. AUTOXIDATION and OTHER LIPID REACTIONS A) Technologically
    4. AUTOXIDATION AND OTHER LIPID REACTIONS A) Technologically significant reactions (oleochemistry) 1. esterification enzymatic (lipases) nonenzymatic (acid and base catalysis) 1.1 esterifications 20-100 °C, H2SO4, HCl 1 1 R-OH + R -COOH R -COOR + H2O glycols, alditols + FA emulsifiers glycerol + FA (hydroxyl acid) emulsifiers 1.2 interesterification acidolysis R1-COOR + R2-COOH R2-COOR + R1-COOH without catalyst, 250-300 °C; with catalyst H2SO4, 150-170 °C TAG + abietic acid. varnish TAG + phthalic acid glyptals (drying oil ~ natural resins exchange lower/higher FA coconut oil, palm kernel fat alcoholysis R1-COOR + R2-OH R1-COOR2+ R-OH NaOH, NaOR 20 °C and more, H2SO4 ~ 100 °C, with catalyst at 250 °C methanolysis Me-esters, biofuels butanolysis Bu-esters (plasts softenings) glycerolysis parcial esters (emulsifiers) transesterification R1-COOR + R2-COOR3 R1-COOR3 + R2-COOR without catalyst ~ 250 °C, acidic, basic catalyst 100 °C cacao butter, randomisation (melting point higher for about 20 °C) oil + tallow digestability , consistence 2. molecule splitting H2O R1-COOR R1-COOH + R-OH saponification 1-2 MPa hydroxides, soaps as products 3. hydrogenation -CH=CH- -CH2-CH2- H2, 150-200 °C, Ni-catalyst; 0,1-0,2 MPa hardened fats (hardening, hydrogenation) composition of fatty acids (book 1, tab.3.43) 13 12 11 10 9 1 2 R CH2 CH2 CH2 CH CH R olejová 13 12 11 10 9 H2 H 13 12 11 10 9 1 2 2 1 2 R CH CH CH2 CH CH R R CH2 CH2 CH2 CH2 CH2 R k k linolová 1 2 stearová 13 12 11 10 9 1 2 R CH CH CH2 CH2 CH2 R oktadec-12-enová stability against oxidation, consistency, absence of trans-acids side-reactions cis/trans isomerisation (30-45 % trans-isomers) positional isomerisation (unusual isomers) hydrogenation smell: -linolenoic (Z,E)-oktadeca-9,15-dienoic (E)-non-6-enal other products (fatty alcohols, ethers) FA R-OH (~ 20 MPa) esters ethers type R-O-R1 (nonresorbate fats) B.
    [Show full text]
  • Oxidation Inhibition by Interaction of Quinones with HALS (Hindered Amine Light Stabilizers) Kazuo YAMAGUCHI, Yasukazu OHKATSU*, and Toru KUSANO
    458 石 油 学 会 誌 Sekiyu Gakkaishi, 34, (5), 458-463 (1991) Oxidation Inhibition by Interaction of Quinones with HALS (hindered amine light stabilizers) Kazuo YAMAGUCHI, Yasukazu OHKATSU*, and Toru KUSANO Dept. of Industrial Chemistry, Faculty of Engineering, Kogakuin University, 1-24-2 Nishishinjyuku, Shinjyuku-ku, Tokyo 163-91 (Received January 18, 1991) The interaction of quinones with HALS (hindered amine light stabilizers) was examined in autoxidation reactions, and it was found that oxidation was little inhibited or retarded when either a quinone or HALS was used in a concentration of 10-4M. A combination of a quinone with HALS in the same concentrations, however, resulted in a remarkable inhibition of oxidation, especially under the irradiation of light. Furthermore, cooperative inhibition of a quinone and HALS was enhanced by the addition of hydroperoxide. Analyses of the inhibited solutions by means of both prussian blue test and FT-IR confirmed that some phenol derivatives were formed by the interaction of a quinone with HALS. 1. Introduction concentrate was added and, further aqueous sodium nitrite (5.55g, 0.08mol) solution was Antioxidants or stabilizers are used for many added dropwise and stirred, keeping the tem- kinds of petroleum products such as fuels, lubri- perature at 0-5℃. The resulting reaction cants, plastics, etc. In the field of polymer indus- solution, containing yellow crystals, was poured tries, HALS (hindered amine light stabilizers) have into cold water and 2,6-di-tert-butyl-1,4-ben- attracted considerable attention, because of their zoquinone-4-monooxime and then isolated by excellent light stabilizing abilities compared with filtration.
    [Show full text]
  • Autoxidation of Lipids and Antioxidation by A-Tocopherol And
    Proc. Nati. Acad. Sci. USA Vol. 90, pp. 45-49, January 1993 Medical Sciences Autoxidation of lipids and antioxidation by a-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: Unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein (atherosclerosis/ascorbate/superoxide/protein thiols) KEITH U. INGOLD*t, VINCENT W. BOWRYt, R. STOCKERS, AND CHEVES WALLING§ *Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, ON, KlA OR6, Canada; tHeart Research Institute, 145 Missenden Road, Camperdown, Sydney, New South Wales 2050, Australia; and §Box 537, Jaffrey, NH 03452 Contributed by Cheves Walling, August 5, 1992 ABSTRACT Recent studies on the initial stages in oxida- The hydrogen atoms abstracted from LH in reactions 1 and tion of low density lipoprotein (LDL) have revealed certain 3 come principally from the bisallylic methylene groups ofthe previously unrecognized similarities to emulsion polymeriza- polyunsaturated fatty acids (PUFA) (-CH==CH--CH- tion and some quite unexpected features including the follow- CH=CH-) since these C-H bonds in lipids are by far the ing: (i) ascorbate is an extremely effective antioxidant for LDL most readily cleaved by attacking peroxyl radicals (17). containing a-tocopherol (a-TOH); (i) in the presence of Most free radical-trapping antioxidants (AH) capture per- a-TOH and in the absence of both ascorbate and ubiquinol 10 oxyl radicals by the transfer of a hydrogen atom (16) (QloH2), oxidation of LDL occurs via a free radical chain; (ii) Q1oH2 is a much better antioxidant for LDL than a-TOH, R(L)OO + AH -- R(L)OOH + A' [5] although the reverse is true in homogeneous systems.
    [Show full text]
  • Quadrant 3 Rancidity & Storage of Fats
    Code and Title of the Paper: F01FS Food Science Code and Title of the Module: F01FS35 Rancidity and Storage of fats Name of the Content Writer: Dr. Aruna Palta Quadrant 3 Rancidity & storage of fats Interesting Facts No. Interesting Facts 1. Lipid oxidation in one of the major causes of food spoilage. It leads to the development off-flavours and off-odours generally called rancidity. 2. Auto oxidation is the reaction of fats and oils with molecular oxygen. It consists of three steps namely, initiation, propagation and termination. 3. Volatile aldhehydes formed during autoxidation are mainly responsible for the rancid flavour of fats and oils. 4. The number, position and geometry of double bonds in the fatty acid chain affect the rate of oxidation. As the number of double bonds increase, there is an increase in the rate of oxidation. 5. Hydrolysis of ester bonds in lipids can occur by enzyme action, heat and moisture, resulting in the liberation of free fatty acid. 6. Lipid oxidation at high temperature involves both thermolytic and oxidative reactions leading to loss of flavor, appearance and nutritive value. 7. Antioxidants can delay the onset, or slow the rate of oxidation of fats and oils. Glossary Starting Term Definition Related Character term Rancidity The development of any disagreeable odour and flavor in fats & oils is called Rancidity. Autoxidation The spontaneous uptake of oxygen by the unsaturated oils exposed to air is known as autoxidation. Reversion Many fats & oils undergo a change in flavour before becoming Rancid. This change in flavour is different from the Rancid flavour & is known as reversion.
    [Show full text]
  • Understanding Rancidity of Nutritional Lipids
    [Nutritional Lipids] Vol. 14 No. 8 August 2009 Understanding Rancidity of Nutritional Lipids By Robin Koon, Contributing Editor Since ancient times, deterioration of lipids has been a major problem in the storage of oils and fats. Often referred to as rancidity, it is the natural process of decomposition (degradation) of fats or oils by either hydrolysis or oxidation, or both. The development of rancidity is accompanied by a marked increase in the acid value of the fat, which is tested by using two basic laboratory tests: Peroxide Value (PV) and Anisidine Value (AnV). The process of degradation converts fatty acid esters of oils into free fatty acids, by reaction with air, moisture and/or other materials. This includes triglycerides (95 percent of all dietary fats), which are naturally occurring esters of three fatty acids and glycerol. However, there are some oils that are naturally high in free fatty acids—think conjugated linoleic acid (CLA) or saw palmetto. These lipids degrade to the point of becoming either unpalatable or unhealthy to ingest. Ingestion of rancid lipids has been linked to the development or exacerbation of many diseases, including atherosclerosis, cataracts, diarrhea, kidney disease and heart disease, and can cause cellular membrane damage, nausea, neurodegeneration and carcinogenesis. Vegetable oils tend to be less stable and turn rancid more quickly than do animal fats. They can also become several times more rancid than animal fats, even before the human sense of smell can detect it. Unsaturated fats are more susceptible to oxidation than are saturated fats, meaning the more polyunsaturated a fat is, the faster it will go rancid.
    [Show full text]
  • Influence of Zn(II) Ion on the Autoxidation of Pyrogallol And
    ACTA FACULTATIS MEDICAE NAISSENSIS UDC: 546.47:[542.943-92:547.565.3 DOI: 10.1515/afmnai-2015-0013 546.47:[542.943-92:547.587.2 Original article Influence of Zn(II) Ion on the Autoxidation of Pyrogallol and Gallic Acid in Weakly Acidic Aqueous Solutions Aleksandar M. Veselinović, Goran M. Nikolić University of Niš, Faculty of Medicine, Department of Chemistry, Niš, Serbia SUMMARY Pyrogallol-type phenolic compounds are widespread in nature and may have significant impact on human health. As Zn(II) ion was proved to be capable of enhancing some biological activities of pyrogallol-type natural phenolic compounds, we decided to study its influence on the autoxidation of pyrogallol and gallic acid in weakly acidic aqueous solutions. UV-Vis spectrophotometric measurements showed that autoxidation of pyrogallol was initiated by the influence of Zn(II) ions at pH 5.5 and pH 6.5. The differences in UV-Vis spectra of the first autoxidation products resolved by the application of multivariate curve resolution - alternating least squares (MCR-ALS) method indicated that pH change also changed the mechanism of autoxidation process. Formation of stable Zn(II) ion spin stabilized free radical obtained during the autoxidation of pyrogallol at pH 6.5 was confirmed by using electron spin resonance (ESR) spectroscopy and its structure was determined. Both UV-Vis spectrophotometric and ESR spectroscopic measurements did not give any evidence that gallic acid autoxidation was initiated by the influence of Zn(II) ions in weakly acidic aqueous solutions. The results of this study may be used for explaining possible differences in the Zn(II) ion influence on various biological activities of pyrogallol-type phenolic compounds containing simple pyrogallol moiety and the ones containing gallate moiety as a part of the molecule.
    [Show full text]
  • Antioxidant Properties of Phenolic Compounas Catherine A° R,Ceoevans, N,Cho,As J° @,,,Er and George Paganga
    ] ~|||L'{I] [~ i[1[:]1 reviews Antioxidant properties of phenolic compounas Catherine A° R,ceoEvans, N,cho,as J° @,,,er and George Paganga There is currently much interest in phytochemicals as bioactive components of food. The roles of fruit, vegetables and red wine in disease prevention have been attrib- uted, in part, to the antioxidant properties of their constituent polyphenols (vitamins E and C, and the carotenoids). Recent studies have shown that many dietary polyphenolic constituents derived from plants are more effective antioxidants in vitro than vitamins E or C, and thus might contribute significantly to the protective effects in vivo. It is now possible to establish the antioxidant activities of plant- derived flavonoids in the aqueous and lipophilic phases, and to assess the extent to which the total antioxidant potentials of wine and tea can be accounted for by the activities of individual polyphenols. tudies on the free radical-scavenging properties of properties, including: vitamins C and E; selenium and flavonoids have permitted characterization of the ma- other mineral micronutrients; carotenoids; phytoestrogens; S jor phenolic components of naturally occurring phyto- allium compounds; glucosinolates and indoles; dithiol- chemicals as antioxidants. Furthermore, the commercial thiones; isothiocyanates; protease inhibitors; fibre; and development of plants as sources of antioxidants that can folic acid. These compounds may act independently or in be used to enhance the properties of foods, for both nu- combination as anti-cancer or cardioprotective agents by a tritional purposes and for preservation, is currently of variety of mechanisms. One such protective mechanism, major interest. Numerous epidemiological surveys have attributed to vitamins C and E and the carotenoids, is shown an inverse relationship between the intake of fruit, antioxidant (radical-scavenging) activity.
    [Show full text]
  • Computational Analysis of Cyclooxygenase Inhibition
    COMPUTATIONAL ANALYSIS OF CYCLOOXYGENASE INHIBITION: ENERGETICS AND DYNAMICS By Christopher Williams Moth Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry May, 2008 Nashville, Tennessee Approved: Professor Terry P. Lybrand Professor Lawrence J. Marnett Professor Michael R. Waterman Professor Ned A. Porter Professor Alan R. Brash DEDICATION To my father, Brian, who wished he could have been a chemist. To my wife, Valerie, for encouraging me to pursue my dreams. ii ACKNOWLEDGEMENTS There are no adequate words to convey my sincerest thanks to Dr. Terry Lybrand for inviting me into in his lab, and to Dr. Larry Marnett for allowing me to attend his experimental lab meetings. I deeply appreciate the guidance and patience of my committee, as I navigated the murky waters of biomolecular simulation. The interdisciplinary atmosphere at Vanderbilt has provided a wonderful backdrop for all of my studies. Thanks to Al Beth and the Chemical and Physical Biology (CPB) program for funding a flexible starting point for my Ph.D. Studies. I have enjoyed financial support from the National Institute of Health through Chemistry Biology Interface training grant T32 GM65086-02 and N.I.H. Research grants NS33290 (Lybrand) and CA89450 (Marnett). And, thanks to the Vanderbilt Dept. of Chemistry for allowing me to T.A. and grade courses in order to fund the most recent years of my graduate studies. We are incredibly fortunate at the Structural Biology Center to have excellent computing resources, and support infrastructure. Special thanks to Jarrod Smith, Brandon Valentine, Roy Hoffman, Sabuj Pattanayek, and Holland Griffis for all their help keeping our software current, and our hardware working well.
    [Show full text]
  • Atmospheric Autoxidation Is Increasingly Important in Urban and Suburban North America
    Atmospheric autoxidation is increasingly important in urban and suburban North America Eric Praskea, Rasmus V. Otkjærb, John D. Crounsec, J. Caleb Hethcoxa, Brian M. Stoltza, Henrik G. Kjaergaardb,1, and Paul O. Wennbergc,d,1 aDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; bDepartment of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark; cDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; and dDivision of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125 Edited by Marsha I. Lester, University of Pennsylvania, Philadelphia, PA, and approved November 8, 2017 (received for review September 7, 2017) Gas-phase autoxidation—regenerative peroxy radical formation fol- hydroperoxide groups (31). Such compounds have recently been lowing intramolecular hydrogen shifts—is known to be important in observed to undergo gas–particle transfer (32) and have been the combustion of organic materials. The relevance of this chemistry shown to be important in particle nucleation (33–50). in the oxidation of organics in the atmosphere has received less at- While appreciation for the importance of autoxidation is in- tention due, in part, to the lack of kinetic data at relevant tempera- creasing, significant shortcomings exist that preclude adequate tures. Here, we combine computational and experimental approaches characterization of its impact. Research to date has failed to fully to investigate the rate of autoxidation for organic peroxy radicals describe the autoxidation mechanism of monoterpenes. Attempts (RO2) produced in the oxidation of a prototypical atmospheric pollut- have been made to explore autoxidation using cyclohexene as a ant, n-hexane.
    [Show full text]
  • A Comprehensive Review on Lipid Oxidation in Meat and Meat Products
    antioxidants Review A Comprehensive Review on Lipid Oxidation in Meat and Meat Products Rubén Domínguez 1 , Mirian Pateiro 1, Mohammed Gagaoua 2 , Francisco J. Barba 3 , Wangang Zhang 4 and José M. Lorenzo 1,* 1 Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain; [email protected] (R.D.); [email protected] (M.P.) 2 Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland; [email protected] 3 Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; [email protected] 4 Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; [email protected] * Correspondence: [email protected]; Tel.: +34-988-548-277; Fax: +34-988-548-276 Received: 27 August 2019; Accepted: 23 September 2019; Published: 25 September 2019 Abstract: Meat and meat products are a fundamental part of the human diet. The protein and vitamin content, as well as essential fatty acids, gives them an appropriate composition to complete the nutritional requirements. However, meat constituents are susceptible to degradation processes. Among them, the most important, after microbial deterioration, are oxidative processes, which affect lipids, pigments, proteins and vitamins. During these reactions a sensory degradation of the product occurs, causing consumer rejection. In addition, there is a nutritional loss that leads to the formation of toxic substances, so the control of oxidative processes is of vital importance for the meat industry.
    [Show full text]