Model Experiments of Autoxidation Reaction Fouling

Total Page:16

File Type:pdf, Size:1020Kb

Model Experiments of Autoxidation Reaction Fouling MODEL EXPERIMENTS OF AUTOXIDATION REACTION FOULING by David Ian Wilson M.A. (1988) Jesus College, Cambridge M.Eng. (1989) Jesus College, Cambridge A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Chemical Engineering We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA March, 1994 © D.I.Wilson, 1994 ____________________ In presenting this thesis in partial fulfilment of the requirements for an advanced degree the at University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver, Canada Date fl t9- DE-6 (2188) Abstract Chemical reaction fouling of heat exchangers is a severe problem in the petrochemicals industry, where deposits can be formed by a wide range of undesirable reactions. Autoxidation has been identified as a prime source of deposit formation in oxygenated process streams and fuel storage systems but the fouling mechanism has not been fuily investigated. The fouling of heat exchangers subject to autoxidative fouling was studied using model solutions of an active alkene, indene, in inert solvents saturated with air. The heat exchangers were operated at moderate surface temperatures (180-250°C) and at turbulent flow velocities. The experiments featured air pressures of 342-397 kPa and heat fluxes of 2. The effects of chemical reaction surface 90-280 kW/m rate, temperature and flow velocity were investigated and compared with existing chemical reaction fouling models. Chemical initiators were used to eliminate the chemical induction periods observed under ‘natural’ thermal initiation and permitted the study of the chemical reaction rate and surface temperature as separate variables. The chemistry of the physical system and the complex reaction mechanism prevented extensive model development. Two fouling probes were used: an annular probe which allowed visual inspection of deposit formation and a novel tubular heat exchanger constructed during this work which allowed inspection of the deposit in situ after an experiment. The same fouling mechanism was found to generate deposit in both probes. Chemical analyses were developed to monitor the autoxidation reaction during the batch fouling experiments. The results confirmed that fouling was caused by the deposition of insoluble polyperoxide gums generated by the reaction of indene and oxygen. The gums il aged on the heat exchanger surface to form complex oxygenated solids which were not easily removed. These results confirmed the hypotheses of Asomaning and Watkinson (1992). The kinetics of indene autoxidation was studied in a separate series of semi-batch stirred tank experiments. The rate of formation of polyperoxides was influenced by the solvent nature, temperature, oxygen concentration and mode of initiation. The aromatic polyperoxides exhibited limited solubility in aliphatic solvents. The kinetics of indene autoxidation could not be described by the schemes reported in the literature and were found to be subject to oxygen mass transfer effects. The fouling resistance behaviour was controlled by conditions in the bulk fluid. The initial, linear fouling rate decreased with increasing flow velocity and increased with bulk reaction rate and surface temperature. A simple fouling model, involving generation of deposit in the reaction zone next to the heat transfer surface and an attachment factor related to the mean fluid residence time, was fitted to the experimental data. Once the solubility limit was reached, the fouling resistance showed increasing rate behaviour, caused by the deposition of globules of insoluble gum. The effect of an antioxidant on the fouling process was studied. The efficiency of the antioxidant, di-t-butyl-4-methylphenol, was found to be severely reduced under the enhanced thermal conditions in the heat exchanger. Simulated ageing experiments were performed to investigate the fate of polyperoxides exposed to the enhanced temperatures on the heat exchanger surface. The studies confirmed that the insoluble polyperoxide gums undergo ageing processes after deposition. U’ Table of Contents Abstract ii Table of Contents iv List of Tables vii List of Figures x Acknowledgement xvi INTRODUCTION 1 2. LITERATURE REVIEW 7 2.1 The Role of Autoxidation in Chemical Reaction Fouling 7 2.2 Experimental Studies in Autoxidation Reaction Fouling 11 2.2.1 Fuel Stability Studies 13 2.2.2 Thermal Fouling Studies 18 2.3 Autoxidation Chemistry 21 2.3.1 Autoxidation Mechanisms and Kinetics 21 2.3.2 Solvent and Additive Effects in9H8Autoxidation 25 2.3.3 The Autoxidation of Indene, C 28 2.3.4 Antioxidation 30 2.4 Mechanistic Modelling of Fouling 31 2.4.1 Transport and Adhesion Models 33 2.4.2 Transport and Reaction Models 36 2.4.3 Reaction Engineering 43 2.5 Objective 44 3. EXPERIMENTAL MATERIALS AND METHODS 46 3.1 Materials and Physical Properties 46 3.1.1 Model Solutions 46 3.1.2 Physical Properties 50 3.1.2.1 Kerosene Properties 50 3.1.2.2 Paraflex Properties 51 3.1.2.3 Concentration of Dissolved Gases 55 3.2 Portable Fouling Research Unit (PFRU) Apparatus 56 3.2.1 PFRU Heat Transfer 62 3.2.2 PFRU Experimental Procedure 64 3.3 Stirred Cell Reactor (SCR) 66 3.4 Tube Fouling Unit (TFU) 68 3.4.1 Tube Fouling Unit Apparatus 69 3.4.2 Surface Temperature Measurement 74 3.4.3 Data Collection and Processing 78 iv 3.4.4 TFUHeatTransfer 82 3.4.5 TFU Operating Procedures 86 3.5 GumAgeingOven 88 3.6 Chemical Analysis 90 3.6.1 Hydroperoxide Analysis- Peroxide Number (POx) 91 3.6.2 Polyperoxide Analysis (Gum in Solution Assay) 92 3.6.3 Indene Concentration- Gas Liquid Chromatography 95 3.6.4 Further Analysis- FTIR, SEM 99 4. AUTOXIDATION OF MODEL SOLUTIONS 100 4.1 Solvent Effects in Indene Autoxidation 100 4.2 Autoxidation Kinetics 106 4.2.1 Mass Transfer Effects in Autoxidation Kinetics 108 4.2.2 Kinetics of Autoxidation in Mass Transfer 112 4.2.3 Gas Phase Resistance Effects in Mass Transfer 117 4.2.4 Oxygen Effects in Autoxidation 121 4.3 Chemically Initiated Autoxidation of Indene 124 4.4 Temperature Effects in Autoxidation 127 4.5 Autoxidation in the Presence of Antioxidants 132 4.6 A Kinetic Model of Indene Autoxidation 135 4.7 Ageing of Polyperoxide Gums 146 4.8 Summary of Autoxidation Studies 151 5. INITIAL FOULING EXPERIMENTS 153 5.1 Model Solution Selection 153 5.1.1 Tetralin as Solvent 154 5.1.2 Hexadec-1-ene as Dopant 156 5.1.3 IndeneasDopant 160 5.1.4 Deposit Characterisation 162 5.1.5 Initial Mechanistic Insights 164 5.2 Effects of Dopant Concentration 167 5.3 Fouling in Model Solutions with Two Dopants 173 5.4 Temperature Effects in Thermally Initiated Fouling 177 5.5 Velocity and Surface Temperature Effects in Chemically Initiated Fouling 186 5.6 Stages in Autoxidation Fouling 191 5.7 Fouling in the Presence of Antioxidants 197 5.8 Summary of Initial Fouling Experiments 203 6. FOULING EXPERIMENTS IN THE TUBE FOULING UNIT 206 6.1 Autoxidation of Indene in the TFU 206 6.2 Initial Fouling Studies 209 6.2.1 TubePressureDrop 211 6.2.2 Local Fouling Behaviour 214 6.2.3 Deposit Distribution and Morphology 218 v 6.3 Surface Temperature Effects in TFU Fouling 226 6.4 Velocity Effects in TFU Fouling 229 6.5 Comparison of TFU and PFRU Fouling Probes 234 6.6 Summary of TFU Fouling Studies 237 7. MODELS OF ASPECTS OF AUTOXIDATION FOULING 240 7.1 Autoxidation Kinetics in the Fouling Apparatus 242 7.1.1 Model Development 242 7.1.2 Model Performance 246 7.2 Fouling Mechanisms in the Initial Fouling Regime 249 7.2.1 Particulate Fouling Models 249 7.2.2 Chemical Reaction Fouling Models 254 7.3 Analysis of Fouling Rate and Behaviour 257 7.3.1 Formulation of a Lumped Parameter Fouling Model 258 7.3.2 Analysis of Experimental Fouling Data 260 8. CONCLUSIONS 270 9. RECOMIVIENDATIONS FOR FURTHER STUDY 275 Abbreviations 277 Nomenclature 278 References 283 APPENDICES A. 1 Experimental Apparatus and Configuration 294 A.2 Experimental Summaries 301 A.3 Sample Calculations 307 A.4 Fouling Model Calculations 312 B.1 DataSummary 316 vi LIST OF TABLES 2.1 Examples of Chemical Reaction Fouling in Refineries 8 2.2 Summary of Autoxidation Related Fouling Studies 12 2.3 Fouling Results of Taylor (1969b) and Asomaning and Watkinson (1992) 14 2.4 Activation Energies Reported in Chemical Reaction Fouling 16 2.5 Velocity Effects Reported in Chemical Reaction Fouling 17 2.6 Summary of Chemical Reaction Fouling Models 34 3.1 Alkenes Used in Model Solutions 48 3.2 Properties of Solvents Used in Model Solutions 49 3.3 Physical Properties of Initiators and Antioxidants 48 3.4 Estimates of Dissolved Oxygen Concentration in Paraflex and Kerosene 55 3.5 Comparison of Nusselt Numbers in PFRU Heat Transfer 63 3.6 TFUAlarmMatrix 72 4.1 Solvent Effects in the Autoxidation of Model Solutions of Indene 104 4.2 Mass Transfer Effects in Batch Autoxidation of Indene 110 4.3 Regression of Thermally Initiated Autoxidation Data to Mass Transfer Models 118 4.4 Gas Phase Resistance Effects in Autoxidation Kinetics 120 4.5 Comparison of Autoxidation Kinetics in the SCR and PFRU 120 4.6 Oxygen Effects in the Initiated Autoxidation of Indene in Paraflex 123 4.7 Chemically Initiated
Recommended publications
  • Peroxides and Peroxide- Forming Compounds
    FEATURE Peroxides and peroxide- forming compounds By Donald E. Clark Bretherick5 included a discussion of nated. However, concentrated hydro- organic peroxide5 in a chapter on gen peroxide (Ͼ30%), in contact with norganic and organic peroxides, highly reactive and unstable com- ordinary combustible materials (e.g., because of their exceptional reac- pounds and used “oxygen balance” to fabric, oil, wood, or some resins) Itivity and oxidative potential are predict the stability of individual com- poses significant fire or explosion haz- widely used in research laboratories. pounds and to assess the hazard po- ards. Peroxides of alkali metals are not This review is intended to serve as a tential of an oxidative reaction. Jack- particularly shock sensitive, but can 6 guide to the hazards and safety issues son et al. addressed the use of decompose slowly in the presence of associated with the laboratory use, peroxidizable chemicals in the re- moisture and may react violently with handling, and storage of inorganic and search laboratory and published rec- a variety of substances, including wa- organic peroxy-compounds and per- ommendations for maximum storage ter. Thus, the standard iodide test for oxide-forming compounds. time for common peroxide-forming peroxides must not be used with these The relatively weak oxygen-oxygen laboratory solvents. Several solvents, water-reactive compounds.1 linkage (bond-dissociation energy of (e.g., diethyl ether) commonly used in Inorganic peroxides are used as ox- 20 to 50 kcal moleϪ1) is the character- the laboratory can form explosive re- idizing agents for digestion of organic istic structure of organic and inor- action products through a relatively samples and in the synthesis of or- ganic peroxide molecules, and is the slow oxidation process in the pres- ganic peroxides.
    [Show full text]
  • Autoxidation Vs. Antioxidants – the Fight for Forever
    Electronic Supplementary Material (ESI) for Chemical Society Reviews. This journal is © The Royal Society of Chemistry 2021 Supplementary Information for Autoxidation vs. antioxidants – the fight for forever Julian Helberg and Derek A. Pratt* Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt. Ottawa, ON K1N 6N5, Canada. Table S1: References for the kp values / BDEs plotted in Figure 1 (ordered by kp): -1 -1 Compound kp / M s Source BDE kcal / Source mol retinal 5656 (Do, Lee et al. 2021) -- -- 7-dehydrocholesterol 2737 (Do, Lee et al. 2021) -- -- 1,4-cyclohexadiene 1400 (Valgimigli and Pratt 2012) 76.0 (Luo 2007) conjugated linolenic acid 18:3 1235 (Do, Lee et al. 2021) -- -- vitamin d3 1031 (Do, Lee et al. 2021) -- -- docosahexaenoic acid 22:6 334 (Xu, Davis et al. 2009) -- -- arachidonic acid 20:4 197 (Xu, Davis et al. 2009) -- -- 2,4-hexadiene 165 (Do, Lee et al. 2021) -- -- linolenic acid 18:3 144 (Do, Lee et al. 2021) -- -- conjugated linoleic acid 18:2 118 (Do, Lee et al. 2021) -- -- 2,4-dimethyl-1,3-pentadiene 97 (Do, Lee et al. 2021) -- -- indene 80 (Do, Lee et al. 2021) 83.0 (Luo 2007) 1,3-hexadiene 65 (Do, Lee et al. 2021) -- -- linoleic acid 18:2 62 (Xu, Davis et al. 2009) -- -- 1,3-pentadiene 34 (Do, Lee et al. 2021) 83.3 (Luo 2007) styrene 17 (Do, Lee et al. 2021) -- -- 1,4-pentadiene 14 (Howard and Ingold 1967) 76.6 (Luo 2007) cholesterol 11 (Xu, Davis et al. 2009) 83.2 (Porter, Xu et al.
    [Show full text]
  • 4. AUTOXIDATION and OTHER LIPID REACTIONS A) Technologically
    4. AUTOXIDATION AND OTHER LIPID REACTIONS A) Technologically significant reactions (oleochemistry) 1. esterification enzymatic (lipases) nonenzymatic (acid and base catalysis) 1.1 esterifications 20-100 °C, H2SO4, HCl 1 1 R-OH + R -COOH R -COOR + H2O glycols, alditols + FA emulsifiers glycerol + FA (hydroxyl acid) emulsifiers 1.2 interesterification acidolysis R1-COOR + R2-COOH R2-COOR + R1-COOH without catalyst, 250-300 °C; with catalyst H2SO4, 150-170 °C TAG + abietic acid. varnish TAG + phthalic acid glyptals (drying oil ~ natural resins exchange lower/higher FA coconut oil, palm kernel fat alcoholysis R1-COOR + R2-OH R1-COOR2+ R-OH NaOH, NaOR 20 °C and more, H2SO4 ~ 100 °C, with catalyst at 250 °C methanolysis Me-esters, biofuels butanolysis Bu-esters (plasts softenings) glycerolysis parcial esters (emulsifiers) transesterification R1-COOR + R2-COOR3 R1-COOR3 + R2-COOR without catalyst ~ 250 °C, acidic, basic catalyst 100 °C cacao butter, randomisation (melting point higher for about 20 °C) oil + tallow digestability , consistence 2. molecule splitting H2O R1-COOR R1-COOH + R-OH saponification 1-2 MPa hydroxides, soaps as products 3. hydrogenation -CH=CH- -CH2-CH2- H2, 150-200 °C, Ni-catalyst; 0,1-0,2 MPa hardened fats (hardening, hydrogenation) composition of fatty acids (book 1, tab.3.43) 13 12 11 10 9 1 2 R CH2 CH2 CH2 CH CH R olejová 13 12 11 10 9 H2 H 13 12 11 10 9 1 2 2 1 2 R CH CH CH2 CH CH R R CH2 CH2 CH2 CH2 CH2 R k k linolová 1 2 stearová 13 12 11 10 9 1 2 R CH CH CH2 CH2 CH2 R oktadec-12-enová stability against oxidation, consistency, absence of trans-acids side-reactions cis/trans isomerisation (30-45 % trans-isomers) positional isomerisation (unusual isomers) hydrogenation smell: -linolenoic (Z,E)-oktadeca-9,15-dienoic (E)-non-6-enal other products (fatty alcohols, ethers) FA R-OH (~ 20 MPa) esters ethers type R-O-R1 (nonresorbate fats) B.
    [Show full text]
  • Oxidation Inhibition by Interaction of Quinones with HALS (Hindered Amine Light Stabilizers) Kazuo YAMAGUCHI, Yasukazu OHKATSU*, and Toru KUSANO
    458 石 油 学 会 誌 Sekiyu Gakkaishi, 34, (5), 458-463 (1991) Oxidation Inhibition by Interaction of Quinones with HALS (hindered amine light stabilizers) Kazuo YAMAGUCHI, Yasukazu OHKATSU*, and Toru KUSANO Dept. of Industrial Chemistry, Faculty of Engineering, Kogakuin University, 1-24-2 Nishishinjyuku, Shinjyuku-ku, Tokyo 163-91 (Received January 18, 1991) The interaction of quinones with HALS (hindered amine light stabilizers) was examined in autoxidation reactions, and it was found that oxidation was little inhibited or retarded when either a quinone or HALS was used in a concentration of 10-4M. A combination of a quinone with HALS in the same concentrations, however, resulted in a remarkable inhibition of oxidation, especially under the irradiation of light. Furthermore, cooperative inhibition of a quinone and HALS was enhanced by the addition of hydroperoxide. Analyses of the inhibited solutions by means of both prussian blue test and FT-IR confirmed that some phenol derivatives were formed by the interaction of a quinone with HALS. 1. Introduction concentrate was added and, further aqueous sodium nitrite (5.55g, 0.08mol) solution was Antioxidants or stabilizers are used for many added dropwise and stirred, keeping the tem- kinds of petroleum products such as fuels, lubri- perature at 0-5℃. The resulting reaction cants, plastics, etc. In the field of polymer indus- solution, containing yellow crystals, was poured tries, HALS (hindered amine light stabilizers) have into cold water and 2,6-di-tert-butyl-1,4-ben- attracted considerable attention, because of their zoquinone-4-monooxime and then isolated by excellent light stabilizing abilities compared with filtration.
    [Show full text]
  • Autoxidation of Lipids and Antioxidation by A-Tocopherol And
    Proc. Nati. Acad. Sci. USA Vol. 90, pp. 45-49, January 1993 Medical Sciences Autoxidation of lipids and antioxidation by a-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: Unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein (atherosclerosis/ascorbate/superoxide/protein thiols) KEITH U. INGOLD*t, VINCENT W. BOWRYt, R. STOCKERS, AND CHEVES WALLING§ *Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, ON, KlA OR6, Canada; tHeart Research Institute, 145 Missenden Road, Camperdown, Sydney, New South Wales 2050, Australia; and §Box 537, Jaffrey, NH 03452 Contributed by Cheves Walling, August 5, 1992 ABSTRACT Recent studies on the initial stages in oxida- The hydrogen atoms abstracted from LH in reactions 1 and tion of low density lipoprotein (LDL) have revealed certain 3 come principally from the bisallylic methylene groups ofthe previously unrecognized similarities to emulsion polymeriza- polyunsaturated fatty acids (PUFA) (-CH==CH--CH- tion and some quite unexpected features including the follow- CH=CH-) since these C-H bonds in lipids are by far the ing: (i) ascorbate is an extremely effective antioxidant for LDL most readily cleaved by attacking peroxyl radicals (17). containing a-tocopherol (a-TOH); (i) in the presence of Most free radical-trapping antioxidants (AH) capture per- a-TOH and in the absence of both ascorbate and ubiquinol 10 oxyl radicals by the transfer of a hydrogen atom (16) (QloH2), oxidation of LDL occurs via a free radical chain; (ii) Q1oH2 is a much better antioxidant for LDL than a-TOH, R(L)OO + AH -- R(L)OOH + A' [5] although the reverse is true in homogeneous systems.
    [Show full text]
  • Quadrant 3 Rancidity & Storage of Fats
    Code and Title of the Paper: F01FS Food Science Code and Title of the Module: F01FS35 Rancidity and Storage of fats Name of the Content Writer: Dr. Aruna Palta Quadrant 3 Rancidity & storage of fats Interesting Facts No. Interesting Facts 1. Lipid oxidation in one of the major causes of food spoilage. It leads to the development off-flavours and off-odours generally called rancidity. 2. Auto oxidation is the reaction of fats and oils with molecular oxygen. It consists of three steps namely, initiation, propagation and termination. 3. Volatile aldhehydes formed during autoxidation are mainly responsible for the rancid flavour of fats and oils. 4. The number, position and geometry of double bonds in the fatty acid chain affect the rate of oxidation. As the number of double bonds increase, there is an increase in the rate of oxidation. 5. Hydrolysis of ester bonds in lipids can occur by enzyme action, heat and moisture, resulting in the liberation of free fatty acid. 6. Lipid oxidation at high temperature involves both thermolytic and oxidative reactions leading to loss of flavor, appearance and nutritive value. 7. Antioxidants can delay the onset, or slow the rate of oxidation of fats and oils. Glossary Starting Term Definition Related Character term Rancidity The development of any disagreeable odour and flavor in fats & oils is called Rancidity. Autoxidation The spontaneous uptake of oxygen by the unsaturated oils exposed to air is known as autoxidation. Reversion Many fats & oils undergo a change in flavour before becoming Rancid. This change in flavour is different from the Rancid flavour & is known as reversion.
    [Show full text]
  • Understanding Rancidity of Nutritional Lipids
    [Nutritional Lipids] Vol. 14 No. 8 August 2009 Understanding Rancidity of Nutritional Lipids By Robin Koon, Contributing Editor Since ancient times, deterioration of lipids has been a major problem in the storage of oils and fats. Often referred to as rancidity, it is the natural process of decomposition (degradation) of fats or oils by either hydrolysis or oxidation, or both. The development of rancidity is accompanied by a marked increase in the acid value of the fat, which is tested by using two basic laboratory tests: Peroxide Value (PV) and Anisidine Value (AnV). The process of degradation converts fatty acid esters of oils into free fatty acids, by reaction with air, moisture and/or other materials. This includes triglycerides (95 percent of all dietary fats), which are naturally occurring esters of three fatty acids and glycerol. However, there are some oils that are naturally high in free fatty acids—think conjugated linoleic acid (CLA) or saw palmetto. These lipids degrade to the point of becoming either unpalatable or unhealthy to ingest. Ingestion of rancid lipids has been linked to the development or exacerbation of many diseases, including atherosclerosis, cataracts, diarrhea, kidney disease and heart disease, and can cause cellular membrane damage, nausea, neurodegeneration and carcinogenesis. Vegetable oils tend to be less stable and turn rancid more quickly than do animal fats. They can also become several times more rancid than animal fats, even before the human sense of smell can detect it. Unsaturated fats are more susceptible to oxidation than are saturated fats, meaning the more polyunsaturated a fat is, the faster it will go rancid.
    [Show full text]
  • Influence of Zn(II) Ion on the Autoxidation of Pyrogallol And
    ACTA FACULTATIS MEDICAE NAISSENSIS UDC: 546.47:[542.943-92:547.565.3 DOI: 10.1515/afmnai-2015-0013 546.47:[542.943-92:547.587.2 Original article Influence of Zn(II) Ion on the Autoxidation of Pyrogallol and Gallic Acid in Weakly Acidic Aqueous Solutions Aleksandar M. Veselinović, Goran M. Nikolić University of Niš, Faculty of Medicine, Department of Chemistry, Niš, Serbia SUMMARY Pyrogallol-type phenolic compounds are widespread in nature and may have significant impact on human health. As Zn(II) ion was proved to be capable of enhancing some biological activities of pyrogallol-type natural phenolic compounds, we decided to study its influence on the autoxidation of pyrogallol and gallic acid in weakly acidic aqueous solutions. UV-Vis spectrophotometric measurements showed that autoxidation of pyrogallol was initiated by the influence of Zn(II) ions at pH 5.5 and pH 6.5. The differences in UV-Vis spectra of the first autoxidation products resolved by the application of multivariate curve resolution - alternating least squares (MCR-ALS) method indicated that pH change also changed the mechanism of autoxidation process. Formation of stable Zn(II) ion spin stabilized free radical obtained during the autoxidation of pyrogallol at pH 6.5 was confirmed by using electron spin resonance (ESR) spectroscopy and its structure was determined. Both UV-Vis spectrophotometric and ESR spectroscopic measurements did not give any evidence that gallic acid autoxidation was initiated by the influence of Zn(II) ions in weakly acidic aqueous solutions. The results of this study may be used for explaining possible differences in the Zn(II) ion influence on various biological activities of pyrogallol-type phenolic compounds containing simple pyrogallol moiety and the ones containing gallate moiety as a part of the molecule.
    [Show full text]
  • Antioxidant Properties of Phenolic Compounas Catherine A° R,Ceoevans, N,Cho,As J° @,,,Er and George Paganga
    ] ~|||L'{I] [~ i[1[:]1 reviews Antioxidant properties of phenolic compounas Catherine A° R,ceoEvans, N,cho,as J° @,,,er and George Paganga There is currently much interest in phytochemicals as bioactive components of food. The roles of fruit, vegetables and red wine in disease prevention have been attrib- uted, in part, to the antioxidant properties of their constituent polyphenols (vitamins E and C, and the carotenoids). Recent studies have shown that many dietary polyphenolic constituents derived from plants are more effective antioxidants in vitro than vitamins E or C, and thus might contribute significantly to the protective effects in vivo. It is now possible to establish the antioxidant activities of plant- derived flavonoids in the aqueous and lipophilic phases, and to assess the extent to which the total antioxidant potentials of wine and tea can be accounted for by the activities of individual polyphenols. tudies on the free radical-scavenging properties of properties, including: vitamins C and E; selenium and flavonoids have permitted characterization of the ma- other mineral micronutrients; carotenoids; phytoestrogens; S jor phenolic components of naturally occurring phyto- allium compounds; glucosinolates and indoles; dithiol- chemicals as antioxidants. Furthermore, the commercial thiones; isothiocyanates; protease inhibitors; fibre; and development of plants as sources of antioxidants that can folic acid. These compounds may act independently or in be used to enhance the properties of foods, for both nu- combination as anti-cancer or cardioprotective agents by a tritional purposes and for preservation, is currently of variety of mechanisms. One such protective mechanism, major interest. Numerous epidemiological surveys have attributed to vitamins C and E and the carotenoids, is shown an inverse relationship between the intake of fruit, antioxidant (radical-scavenging) activity.
    [Show full text]
  • Computational Analysis of Cyclooxygenase Inhibition
    COMPUTATIONAL ANALYSIS OF CYCLOOXYGENASE INHIBITION: ENERGETICS AND DYNAMICS By Christopher Williams Moth Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry May, 2008 Nashville, Tennessee Approved: Professor Terry P. Lybrand Professor Lawrence J. Marnett Professor Michael R. Waterman Professor Ned A. Porter Professor Alan R. Brash DEDICATION To my father, Brian, who wished he could have been a chemist. To my wife, Valerie, for encouraging me to pursue my dreams. ii ACKNOWLEDGEMENTS There are no adequate words to convey my sincerest thanks to Dr. Terry Lybrand for inviting me into in his lab, and to Dr. Larry Marnett for allowing me to attend his experimental lab meetings. I deeply appreciate the guidance and patience of my committee, as I navigated the murky waters of biomolecular simulation. The interdisciplinary atmosphere at Vanderbilt has provided a wonderful backdrop for all of my studies. Thanks to Al Beth and the Chemical and Physical Biology (CPB) program for funding a flexible starting point for my Ph.D. Studies. I have enjoyed financial support from the National Institute of Health through Chemistry Biology Interface training grant T32 GM65086-02 and N.I.H. Research grants NS33290 (Lybrand) and CA89450 (Marnett). And, thanks to the Vanderbilt Dept. of Chemistry for allowing me to T.A. and grade courses in order to fund the most recent years of my graduate studies. We are incredibly fortunate at the Structural Biology Center to have excellent computing resources, and support infrastructure. Special thanks to Jarrod Smith, Brandon Valentine, Roy Hoffman, Sabuj Pattanayek, and Holland Griffis for all their help keeping our software current, and our hardware working well.
    [Show full text]
  • Atmospheric Autoxidation Is Increasingly Important in Urban and Suburban North America
    Atmospheric autoxidation is increasingly important in urban and suburban North America Eric Praskea, Rasmus V. Otkjærb, John D. Crounsec, J. Caleb Hethcoxa, Brian M. Stoltza, Henrik G. Kjaergaardb,1, and Paul O. Wennbergc,d,1 aDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; bDepartment of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark; cDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; and dDivision of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125 Edited by Marsha I. Lester, University of Pennsylvania, Philadelphia, PA, and approved November 8, 2017 (received for review September 7, 2017) Gas-phase autoxidation—regenerative peroxy radical formation fol- hydroperoxide groups (31). Such compounds have recently been lowing intramolecular hydrogen shifts—is known to be important in observed to undergo gas–particle transfer (32) and have been the combustion of organic materials. The relevance of this chemistry shown to be important in particle nucleation (33–50). in the oxidation of organics in the atmosphere has received less at- While appreciation for the importance of autoxidation is in- tention due, in part, to the lack of kinetic data at relevant tempera- creasing, significant shortcomings exist that preclude adequate tures. Here, we combine computational and experimental approaches characterization of its impact. Research to date has failed to fully to investigate the rate of autoxidation for organic peroxy radicals describe the autoxidation mechanism of monoterpenes. Attempts (RO2) produced in the oxidation of a prototypical atmospheric pollut- have been made to explore autoxidation using cyclohexene as a ant, n-hexane.
    [Show full text]
  • A Comprehensive Review on Lipid Oxidation in Meat and Meat Products
    antioxidants Review A Comprehensive Review on Lipid Oxidation in Meat and Meat Products Rubén Domínguez 1 , Mirian Pateiro 1, Mohammed Gagaoua 2 , Francisco J. Barba 3 , Wangang Zhang 4 and José M. Lorenzo 1,* 1 Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain; [email protected] (R.D.); [email protected] (M.P.) 2 Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland; [email protected] 3 Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; [email protected] 4 Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; [email protected] * Correspondence: [email protected]; Tel.: +34-988-548-277; Fax: +34-988-548-276 Received: 27 August 2019; Accepted: 23 September 2019; Published: 25 September 2019 Abstract: Meat and meat products are a fundamental part of the human diet. The protein and vitamin content, as well as essential fatty acids, gives them an appropriate composition to complete the nutritional requirements. However, meat constituents are susceptible to degradation processes. Among them, the most important, after microbial deterioration, are oxidative processes, which affect lipids, pigments, proteins and vitamins. During these reactions a sensory degradation of the product occurs, causing consumer rejection. In addition, there is a nutritional loss that leads to the formation of toxic substances, so the control of oxidative processes is of vital importance for the meat industry.
    [Show full text]