Sarraceniaceae – Pitcher-Plant Family

Total Page:16

File Type:pdf, Size:1020Kb

Sarraceniaceae – Pitcher-Plant Family SARRACENIACEAE – PITCHER-PLANT FAMILY Plant: herbs, carnivorous plant Stem: Root: Leaves: modified into a pitcher-like container that holds water, sometimes winged, sometimes with downward pointed hairs Flowers: perfect, actinomorphic; 5 petals or none, 4-5 sepals (usually colored), usually solitary on scape but rarely a raceme; many stamens; ovary superior, 3-5 carpels, 1 style Fruit: a capsule Other: Dicotyledons Group Genera: 3 genera; locally Sarracenia WARNING – family descriptions are only a layman’s guide and should not be used as definitive SARRACENIACEAE – PITCHER-PLANT FAMILY Crimson [White Top] Pitcher Plant; Sarracenia leucophylla Raf. [Purple] Northern PitcherPlant; Sarracenia purpurea L. ssp. purpurea Crimson [White Top] USDA Pitcher Plant Sarracenia leucophylla Raf. Sarraceniaceae (Pitcher-Plant Family) Tarkiln Bayou Preserve State Park, Escambia County, Florida Notes: flower nodding, 5 petals and sepals of usually maroon or red, petals usually fall early, on long scape; leaves modified into a white-topped (veined with red and purple) pitcher container that holds water – insects provide nutrients for the plant; bogs and low areas; spring [V Max Brown, 2012] [Purple] Northern Pitcherplant USDA Sarracenia purpurea L. ssp. purpurea Sarraceniaceae (Pitcher-Plant Family) Waterloo Recreation Area, Washtenaw County, Michigan Notes: 5 petals and sepals of usually red, petals usually fall early, on long scape; leaves modified into pitcher container that holds water – insects provide nutrients for the plant, downward pointed hairs help to contain insects; bogs; late spring to early fall [V Max Brown, 2008].
Recommended publications
  • (Apidae, Bombus Spp.) by the Invasive Pitcher Plant Sarracenia Purpurea
    Arthropod-Plant Interactions (2017) 11:79–88 DOI 10.1007/s11829-016-9468-2 ORIGINAL PAPER Exploring the predation of UK bumblebees (Apidae, Bombus spp.) by the invasive pitcher plant Sarracenia purpurea: examining the effects of annual variation, seasonal variation, plant density and bumblebee gender 1 2 1 Elizabeth Franklin • Damian Evans • Ann Thornton • 3 1 1 Chris Moody • Iain Green • Anita Diaz Received: 31 July 2015 / Accepted: 14 October 2016 / Published online: 26 November 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Invasive carnivorous plant species can impact including that the bumblebees may be using S. purpurea as the native invertebrate communities on which they prey. a resource. Further work is required to establish the exact This article explores the predation of native UK bumble- underpinning mechanisms and the relative roles of plant bees (Bombus spp.) by the invasive pitcher plant species and bumblebee behaviour within the relationship. Such Sarracenia purpurea and discusses the potential effect of S. interaction complexity may have consequences for con- purpurea on native bumblebees. Specifically, it evaluates sideration in invasive carnivorous plant management. whether the extent to which bumblebees are captured varies (i) over successive years, (ii) across June and July, Keywords Pitcher plants Á Bumblebees Á Invasive Á (iii) with density of distribution of pitchers or (iv) with Pollinators bumblebee gender. Pitcher contents were examined from an established population of Sarracenia purpurea growing in Dorset, UK. Results show that the total extent to which Introduction bumblebees were captured differed over the years 2012–2014 inclusive.
    [Show full text]
  • Creation and Carnivory in the Pitcher Plants of Nepenthaceae and Sarraceniaceae
    OPEN ACCESS JCTS Article SERIES B Creation and Carnivory in the Pitcher Plants of Nepenthaceae and Sarraceniaceae R.W. Sanders and T.C. Wood Core Academy of Science, Dayton, TN Abstract The morphological adaptations of carnivorous plants and taxonomic distributions of those adaptations are reviewed, as are the conflicting classifications of the plants based on the adaptations, reproductive morphology, and DNA sequences. To begin developing a creationist understanding of the origin of plant carnivory, we here focus specifically on pitcher plants of Nepenthaceae and Sarraceniaceae because their popularity as cultivated curiosities has generated a literature resource amenable to baraminological analysis. Hybridization records were augmented by total nucleotide differences to assess species similarities. Nonhybridizing species falling within the molecular range of hybridizing species were included in the monobaramin of the hybridizing species. The combined data support each of the three genera of the Sarraceniaceae as a monobaramin, but the three could not be combined into a larger monobaramin. With the Nepenthaceae, the data unequivocally place 73% of the species in a single monobaramin, strongly suggesting the whole genus (and, thus, family) is a monobaramin. The lack of variation in the carnivorous habit provides no evidence for the intrabaraminic origin of carnivory from non-carnivorous plants. An array of fascinating symbiotic relationships of pitchers in some species with unusual bacteria, insects, and vertebrates are known and suggest the origin of carnivory from benign functions of the adaptive structures. However, these symbioses still do not account for the apparent complex design for carnivory characteristic of all species in the two families. Editor: J.W.
    [Show full text]
  • Checklist of Common Native Plants the Diversity of Acadia National Park Is Refl Ected in Its Plant Life; More Than 1,100 Plant Species Are Found Here
    National Park Service Acadia U.S. Department of the Interior Acadia National Park Checklist of Common Native Plants The diversity of Acadia National Park is refl ected in its plant life; more than 1,100 plant species are found here. This checklist groups the park’s most common plants into the communities where they are typically found. The plant’s growth form is indicated by “t” for trees and “s” for shrubs. To identify unfamiliar plants, consult a fi eld guide or visit the Wild Gardens of Acadia at Sieur de Monts Spring, where more than 400 plants are labeled and displayed in their habitats. All plants within Acadia National Park are protected. Please help protect the park’s fragile beauty by leaving plants in the condition that you fi nd them. Deciduous Woods ash, white t Fraxinus americana maple, mountain t Acer spicatum aspen, big-toothed t Populus grandidentata maple, red t Acer rubrum aspen, trembling t Populus tremuloides maple, striped t Acer pensylvanicum aster, large-leaved Aster macrophyllus maple, sugar t Acer saccharum beech, American t Fagus grandifolia mayfl ower, Canada Maianthemum canadense birch, paper t Betula papyrifera oak, red t Quercus rubra birch, yellow t Betula alleghaniesis pine, white t Pinus strobus blueberry, low sweet s Vaccinium angustifolium pyrola, round-leaved Pyrola americana bunchberry Cornus canadensis sarsaparilla, wild Aralia nudicaulis bush-honeysuckle s Diervilla lonicera saxifrage, early Saxifraga virginiensis cherry, pin t Prunus pensylvanica shadbush or serviceberry s,t Amelanchier spp. cherry, choke t Prunus virginiana Solomon’s seal, false Maianthemum racemosum elder, red-berried or s Sambucus racemosa ssp.
    [Show full text]
  • Seed Ecology Iii
    SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst
    [Show full text]
  • Jacqueline Marie Dennett
    Search and rescue: detection and mitigation of rare vascular plant species by Jacqueline Marie Dennett A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Conservation Biology Department of Renewable Resources University of Alberta © Jacqueline Marie Dennett, 2018 Abstract Understanding where and when populations occur is the first step to conservation and maintenance of biodiversity. Where human land-use overlaps with populations of conservation concern, population loss may occur, potentially reducing long-term persistence of species, particularly for those that are rare. Understanding the relationship between land-use change and extirpation is therefore essential to guiding conservation, but this can only be achieved through well-designed surveys and monitoring programs. One key aspect of surveys that is often overlooked is the ability to accurately and consistently detect populations, while the success of mitigation practices depends on a clear understanding of what techniques will best ensure the longevity of a given population. In this thesis, I examined factors that affect detection, extirpation of historic populations, and the efficacy of mitigative translocations for rare vascular plants in the oil sands region of Alberta. First, I used two field experiments to better understand and test the effects of scale (1 – 2500 m2), abundance (plant density), and observer experience on detection rates of rare plants in forested systems. Scale and abundance were the most important determinants of detection for plot-based surveys, whereas previous experience of the observer had limited influence. Plants at low abundance often went unrecorded in large plots (>1000 m2), even when they were morphologically distinct or flowering.
    [Show full text]
  • Native Ground Covers & Low-Grows
    Native Ground Covers & Low-Grows For the Sun Anemone canadensis (Canada windflower) Antennaria spp. (pussy toes) Arctostaphylos uva-ursi (bearberry) Campanula rotundifolia (thread leaf bellflower) Cheilanthes lanosa (hairy lip fern) Coreopsis spp. (tickseed) Dodecatheon meadia (shooting star) Drosera spp. (sundew) Empetrum nigrum (black crow berry) Eragrostis spectabilis (purple love grass) Gaylussacia baccata (black huckleberry) Geum spp. (prairie smoke) Houstonia caerulea (bluets) Hypoxis hirsuta (yellow star grass) Iris cristata (dwarf iris) Juniperus communis (common juniper) Juniperus horizontalis (creeping juniper) Meehania cordata (creeping mint) Mitella diphylla (bishop’s cap) Opuntia humifusa (prickly pear) Paxistima canbyi (cliff green) Phlox subulata (moss phlox) Polemonium spp. (Jacob’s ladder) Sarracenia purpurea (pitcher plant) Sedum nevii (stonecrop) Sedum ternatum (stonecrop) Courtesy of Dan Jaffe Propagator and Stock Bed Grower New England Wild Flower Society [email protected] Native Ground Covers & Low-Grows Sibbaldiopsis tridentata (three toothed cinquefoil) Silene spp. (campion) Sisyrinchium angustifolium (blue eyed grass) Stokesia laevis (Stokes aster) Talinum calycinum (fame flower) Tellima grandiflora (frigecups) Uvularia sessifolia (bellflower) Vaccinium angustifolium (low-bush blueberry) Vaccinium macrocarpon (cranberry) Vaccinium vitis-idaea(mountain cranberry) Viola pedata (birds-foot violet) For the Shade Anemone spp. (Hepatica) Allium tricoccum (ramps) Asarum spp. (wild ginger) Asplenium spp. (spleenwort) Carex spp. (sedge) Chamaepericlymenum canadense (bunchberry) Chimaphila maculata (spotted wintergreen) Chrysogonum virginianum (green and gold) Claytonia virginica (spring beauty) Clintonia borealis (blue bead lily) Coptis trifolia (goldthread) Dicentra canadensis (squirrel corn) Dicentra cucullaria (Dutchmen’s breaches) Epigaea repens (mayflower) Courtesy of Dan Jaffe Propagator and Stock Bed Grower New England Wild Flower Society [email protected] Native Ground Covers & Low-Grows Erythronium spp.
    [Show full text]
  • Educational Posters on Threatened Plant Communities of North Carolina
    Submitted by Nicolette L. Cagle on June 26, 2012 Native Plant Studies Certificate Project: Educational Posters on Threatened Plant Communities of North Carolina Nonriverine Wet Hardwood Forest from the Coastal Plain, NC. [Photo by David Blevins, Ph.D.] Submitted by Nicolette L. Cagle on June 26, 2012 Table of Contents Background ................................................................................................................................................... 3 Project Description........................................................................................................................................ 3 Timeline......................................................................................................................................................... 4 Most Threatened Plant Communities in North Carolina .............................................................................. 4 Poster Display at the North Carolina Botanical Garden................................................................................ 5 Posters .......................................................................................................................................................... 6 Introduction .............................................................................................................................................. 6 Threatened Plant Communities ................................................................................................................ 7 Poster Project References
    [Show full text]
  • Carnivorous Plant Responses to Resource Availability
    Carnivorous plant responses to resource availability: environmental interactions, morphology and biochemistry Christopher R. Hatcher A doctoral thesis submitted in partial fulfilment of requirements for the award of Doctor of Philosophy of Loughborough University November 2019 © by Christopher R. Hatcher (2019) Abstract Understanding how organisms respond to resources available in the environment is a fundamental goal of ecology. Resource availability controls ecological processes at all levels of organisation, from molecular characteristics of individuals to community and biosphere. Climate change and other anthropogenically driven factors are altering environmental resource availability, and likely affects ecology at all levels of organisation. It is critical, therefore, to understand the ecological impact of environmental variation at a range of spatial and temporal scales. Consequently, I bring physiological, ecological, biochemical and evolutionary research together to determine how plants respond to resource availability. In this thesis I have measured the effects of resource availability on phenotypic plasticity, intraspecific trait variation and metabolic responses of carnivorous sundew plants. Carnivorous plants are interesting model systems for a range of evolutionary and ecological questions because of their specific adaptations to attaining nutrients. They can, therefore, provide interesting perspectives on existing questions, in this case trait-environment interactions, plant strategies and plant responses to predicted future environmental scenarios. In a manipulative experiment, I measured the phenotypic plasticity of naturally shaded Drosera rotundifolia in response to disturbance mediated changes in light availability over successive growing seasons. Following selective disturbance, D. rotundifolia became more carnivorous by increasing the number of trichomes and trichome density. These plants derived more N from prey and flowered earlier.
    [Show full text]
  • Carnivorous Plant Newsletter V42 N3 September 2013
    Technical Refereed Contribution Phylogeny and biogeography of the Sarraceniaceae JOHN BRITTNACHER • Ashland, Oregon • USA • [email protected] Keywords: History: Sarraceniaceae evolution The carnivorous plant family Sarraceniaceae in the order Ericales consists of three genera: Dar- lingtonia, Heliamphora, and Sarracenia. Darlingtonia is represented by one species that is found in northern California and western Oregon. The genus Heliamphora currently has 23 recognized species all of which are native to the Guiana Highlands primarily in Venezuela with some spillover across the borders into Brazil and Guyana. Sarracenia has 15 species and subspecies, all but one of which are located in the southeastern USA. The range of Sarracenia purpurea extends into the northern USA and Canada. Closely related families in the plant order Ericales include the Roridu- laceae consisting of two sticky-leaved carnivorous plant species, Actinidiaceae, the Chinese goose- berry family, Cyrillaceae, which includes the common wetland plant Cyrilla racemiflora, and the family Clethraceae, which also has wetland plants including Clethra alnifolia. The rather charismatic plants of the Sarraceniaceae have drawn attention since the mid 19th century from botanists trying to understand how they came into being, how the genera are related to each other, and how they came to have such disjunct distributions. Before the advent of DNA sequencing it was very difficult to determine their relationships. Macfarlane (1889, 1893) proposed a phylogeny of the Sarraceniaceae based on his judgment of the overlap in features of the adult pitchers and his assumption that Nepenthes is a member of the family (Fig. 1a). He based his phy- logeny on the idea that the pitchers are produced from the fusion of two to five leaflets.
    [Show full text]
  • Jennifer Goedhart
    Effect of Allochthonous Inputs on the Inquiline Community in Saracenia purpurea (purple pitcher plant) BIOS 569: Practicum in Field Biology Jennifer Goedhart Advisor: David Hoekman 2007 2 Abstract: The purple pitcher plant (Saracenia purpurea) forms a rosette of cup like leaves each season which catch water from rainfall events. Living in the water is an inquiline community that is reliant on insects drowning in the water to provide resources for consumption. This experiment was designed to determine what is the effect of various resource additions to the richness and diversity of the protozoa, rotifer, and mite inquilines. Five treatments were used (control (no resources added), unground midges, ground midges, unground June beetle, and ground June beetle) to test whether small particle size ground inputs support a more diverse community than whole insect inputs. Whole June beetles were found to foster statistically richer populations than ground midge, and overall unground insect inputs had statistically richer populations than ground insects. However, the control had more diversity than pitchers with either ground or unground insects. These findings suggest that the pitchers may have been resource overloaded resulting in rapid population growth of a few inquiline species which reduced the diversity of species living in the treated pitchers. Introduction: Saracenia purpurea (purple pitcher plant) is a carnivorous species common to wetlands, and bogs along the east coast of the United States and Canada stretching west through the Great Lakes region and even further west in Canada (Bradshaw et al. 2000; Chapin and Pastor 1995). Of special use to this species are the pitcher shaped leaves that collect up to fifty milliliters of water from rainfall events.
    [Show full text]
  • The Quarterly Journal of the Florida Native Plant Society Palmetto
    Volume 30: Number 4 > Fall 2013 The Quarterly Journal of the Florida Native Plant Society Palmetto Swamp Fern Experimental Hammock ● Mockernuts ● Tarkiln Bayou ● Carex ArticleTarkiln and photos by Glenn Butts Bayou Preserve State Park All state lands managed observed areas most indicative of the nature of this by the state of Florida, park, including the unique habitats that prompted the such as parks and forests, purchase of the lands for preservation. The following have approved land morning we presented our field observations, and filled management plans to out land management review forms. facilitate the management In the 1980s, a proposal was made to dredge of the property according Tarkiln Bayou out into Perdido Bay for a marina, to the original intent of the purchase. A land management housing development, and wastewater treatment plant. review (LMR) is conducted on each property on a five year Since no uplands were available for the wastewater cycle, and the results obtained from the review may be plant or the sprayfield disposal of effluent, the project used to update an individual plan as newly acquired was rejected. Lack of approval for the development data suggests. LMR teams, consisting of park personnel, a project allowed the Tarkiln Bayou site west of Bauer Florida Department of Environmental Protection (FDEP) Road to become available for state purchase. representative, and interested private citizens partici- In 1994, this site had been targeted as part of the pate in the process. Other attendees may include soil Conservation and Recreation Lands Program (CARL) conservation districts and environmental groups. priority list for the Perdido Pitcher Plant Prairie.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]