Thesis Submitted for the Degree of Doctor of Philosophy

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Submitted for the Degree of Doctor of Philosophy University of Bath PHD Population biology of Ixodes ticks Seelig, Frederik Award date: 2011 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. Sep. 2021 Population biology of Ixodes ticks By Frederik Seelig A thesis submitted for the degree of Doctor of Philosophy University of Bath Department of Biology and Biochemistry September 2011 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and they must not copy it or use material from it except as permitted by law or with the consent of the author. This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation. Author Signature ……………………………… "Science is the knowledge of consequences, and dependence of one fact upon another." — Thomas Hobbes, Leviathan. "'Is it about a bicycle?', he asked." — Flann O'Brien, The third policeman. Acknowledgements Acknowledgements First and foremost I would like to thank my late supervisor Klaus Kurtenbach, whose knowledge and enthusiasm about ticks, and about sharks, was truly infectious, and who is still dearly missed. This work would not have been possible to complete without the outstanding support that I received from Dr Gabi Margos and Professor Stuart Reynolds. They guided me through my PhD project as the best supervisors one could ask for. I am also most grateful to Dr Ed Feil, who made crucial suggestions about my work on tick endosymbionts, and who put up with my ignorance in phylogenetic matters. My friends and colleagues Stephanie Vollmer and Ruth Dinnis shared many hours of tick collecting, tick crushing, and tick sequence editing, which made these tasks far more entertaining than if I had been on my own. Dr Richard Birtles and Dr Kevin Bown were immensely helpful in establishing the blood meal analysis scheme in our lab, and provided ample suggestions and materials. Dr Nick Waterfield kindly agreed to let me use his clean room facilities for my experiments on borrelia. Stavros Gavkalias performed most of the PCR screening and amplification of Midichloria samples, which contributed greatly to the chapter on tick endosymbionts. Several members of the tick research community made very useful suggestions and offered kind words of encouragement, especially Sarah Randolph, Jean Tsao, Joe Piesman, and Reuben Kaufman. The members of my lab are to be thanked for giving helpful advice, having lunch breaks by the lake, and sharing my belief in a life outside the laboratory. My wonderful family encouraged and supported me through my entire studies in every possible way. Finally, I would like to thank Sara for being my North, South, East, and West whenever I lost my compass. iii Publications Publications • Host migration impacts on the phylogeography of Lyme Borreliosis spirochaete species in Europe. (2011). Stephanie A. Vollmer, Antra Bormane, Ruth E. Dinnis, Frederik Seelig, Andrew D.M. Dobson, David M. Aanensen, Marianne C. James, Michael Donaghy, Sarah E. Randolph, Edward J. Feil, Klaus Kurtenbach, Gabriele Margos. Environmental Microbiology. 13(1) 184-192. • Analysing the Genetic Diversity of Ixodes ricinus ticks using Multilocus Sequence Typing. Ruth E. Dinnis, Frederik Seelig, Antra Bormane, Michael Donaghy, Stephanie A. Vollmer, Edward J. Feil, Gabriele Margos, Klaus Kurtenbach. Submitted to Ticks and tick-borne diseases. See Appendix E for a current version of the manuscript. iv Abstract Abstract The hard tick Ixodes ricinus is one of the most important species of disease vectors worldwide. It transmits a variety of pathogens, including spirochaetes that are the causative agent of Lyme borreliosis (LB) in humans. This study aimed at analysing different aspects of the ecology, molecular evolution, and microbial associations of I. ricinus. A novel scheme for the phylogenetic analysis and genotyping of I. ricinus was established as part of this study. Phylogeographic clustering of I. ricinus samples from different European countries was observed, while samples from two different sites in Southwest England did not show spatial differentiation. The ecology and host abundance in these two habitats was assessed. Differences in the density of questing ticks and in the abundance of rodent hosts were observed. Both sites exhibited low densities of rodents and of ticks infesting them. A blood meal analysis revealed high proportions of mixed feedings and showed artiodactyls to be a main host group for immature I. ricinus ticks from Britain. The prevalence rates of Wolbachia endobacteria in British I. ricinus samples were higher than rates found in samples from other European countries. The unique endosymbiont Midichloria was detected in all female I. ricinus ticks that were screened. A newly developed multi gene analysis of Midichloria samples from six European countries showed a largely coordinated phylogeography with their tick hosts. Taken together, the findings of this thesis demonstrate that British I. ricinus ticks differ from their European counterparts in several ways, which has implications for the epidemiology of infectious diseases transmitted by this vector. v Table of contents Table of contents Cover sheet Acknowledgements iii Publications iv Abstract v Table of contents vi List of figures viii List of Tables x List of abbreviations xii 1. General introduction 15 1.1 A short history of ticks 15 1.2 General biology of Ixodes ticks 16 1.3 Pathogens transmitted by Ixodes ticks 26 1.4 Phylogenetics and multilocus sequence typing (MLST) of ticks 30 1.5 Overall aims and objectives of the sections in this thesis 33 2. Materials and methods 35 2.1 Field methods 35 2.2 Lab methods 42 2.3 Computer-based methods 50 3. Phylogenetic structure of Ixodes ticks in Europe and North America 53 3.1 Introduction 53 3.2 Results 57 3.3 Discussion 66 3.4 Conclusions 74 4. Environmental conditions in two tick habitats near Bath, UK 75 4.1 Introduction 75 4.2 Results 76 4.3 Discussion 93 4.4 Conclusions 101 5. Host blood meal analysis of I. ricinus samples 102 5.1 Introduction 102 5.2 Results 105 5.3 Discussion 125 5.4 Conclusions 131 6. Endobacterial fauna of I. ricinus 132 6.1 Introduction 132 vi Table of contents 6.2 Results 134 6.3 Discussion 144 6.4 Conclusions 149 7. General Discussion 150 7.1 Summary of findings 150 7.2 Discussion 151 7.3 Future work 154 7.4 Final summary 155 8. Bibliography 156 Appendices 177 A. List of tick collection sites 177 B. PCR conditions 178 C. List of BMA oligo probes 180 D. Scanned slides of BMA films 182 E. Manuscript of I. ricinus mtMLST paper by Dinnis et al. 195 vii List of figures List of figures Chapter 1: Fig. 1.1. General phylogeny of the Acari. Fig. 1.2. Phylogeny of the families and subfamilies of the suborder Ixodida. Fig. 1.3. Bayesian phylogenetic inference of 27 Ixodes species, based on 16S rDNA sequences. Fig. 1.4. General anatomic features of a female ixodid tick. Fig. 1.5. Life cycle of Ixodes ricinus. Fig. 1.6. Geographical distribution of four Ixodes species. Fig. 1.7. Genome organisation of non-Australasian Ixodes ticks Chapter 2: Fig. 2.1. Satellite image of the area surrounding the main campus of Bath University Fig. 2.2. Terrain contour map of the area surrounding the main campus of Bath University Fig. 2.3. Parts of a Longworth trap. Fig. 2.4. Sexual characteristics of male and female rodents. Fig. 2.5. Characteristic features of I. ricinus anatomy. Chapter 3: Fig. 3.1. Map of established and reported distribution of the Lyme disease vectors Ixodes scapularis and I. pacificus, by county, United States, 1907-1996. Fig. 3.2. Geographical distribution of reported human cases of Lyme disease in the continental United States in 2009. Fig. 3.3. Phylogenetic reconstruction inferred from the concatenated MLST mtDNA sequences of 40 ticks sampled in BW and RW in 2007 and 2008 using the Neighbour-Joining (NJ) method. Fig. 3.4. Phylogenetic reconstruction inferred from the concatenated MLST mtDNA sequences of 40 ticks sampled in BW and RW in 2007 and 2008 using the Maximum Likelihood (ML) method. Fig. 3.5. Phylogenetic reconstruction inferred from the concatenated MLST mtDNA sequences of 37 borrelia-positive and negative ticks sampled in BW and RW in 2006 using the Neighbour- Joining (NJ) method. Fig. 3.6. Phylogenetic reconstruction inferred from the concatenated MLST mtDNA sequences of 37 borrelia-positive and negative ticks sampled in BW and RW in 2006 using the Maximum Likelihood (ML) method. Fig. 3.7. Phylogenetic reconstruction inferred from the concatenated MLST mtDNA sequences of 40 ticks sampled in Latvia and Britain in 2007 using the Neighbour-Joining (NJ) method. Fig. 3.8.
Recommended publications
  • New Molecular High Throughput Methods for Ehrlichia Ruminantium Tick Screening and Characterization of Strain Genetic Structure in Mozambique and at Worldwide Scale
    New molecular high throughput methods for Ehrlichia ruminantium tick screening and characterization of strain genetic structure in Mozambique and at worldwide scale Nídia Cangi Thesis presented on the 30th of January 2017 to obtain the grade of Doctor of Philosophy in Life Science, speciality in Molecular biology and Genetics, from the Université des Antilles Jury members: Reviewer: Prof. Christine MARITZ-OLIVIER Reviewer: Dr Eric DUCHAUD Examiner: Dr Nicola COLLINS Examiner: Prof. Jérôme GUERLOTTE Guest members: Thesis director: Prof. Olivier GROS Thesis co-director: Prof. Luís NEVES Thesis co-director: Dr Nathalie VACHIÉRY Acknowledgments I would like to express my gratitude to several people and institutions that contributed directly and indirectly to complete this thesis. I would like to thank sincerely my supervisors Dr Nathalie Vachiéry and Prof. Luís Neves for all their support and guidance, teaching, kindness and especially patience throughout the project. I would not be able to cross the many barriers on my way without their helping hands. I also would like to thank all members of CIRAD-Guadeloupe for receiving me, for their friendship, ideas and help in times of need, especially to Laure Bournez, Soledad Castano, Valerie Pinarello, Rosalie Aprelon, Christian Sheikboudou, Isabel Marcelino, Emmanuel Albina, as well as Adela Chavez, Jonathan Gordon and Mathilde Gondard. To CB-UEM for contributing to my academic development and to my supportive and friendly colleagues. To Prof. Olivier Gros and the University of Antilles for all the administrative support. To all my family and friends, especially my mother Balbina Müller and my husband Nilton Vaz that even without understanding the science behind my work always encouraged and loved me.
    [Show full text]
  • An Investigation on First Outbreak of Kyasanur Forest Disease In
    Journal of Entomology and Zoology Studies 2015; 3(6): 239-240 E-ISSN: 2320-7078 P-ISSN: 2349-6800 An investigation on first outbreak of Kyasanur JEZS 2015; 3(6): 239-240 © 2015 JEZS forest disease in Wayanad district of Kerala Received: 18-09-2015 Accepted: 21-10-2015 Prakasan K Prakasan K Abstract Post Graduate and Research As a new challenge to health scenario of Kerala, an outbreak of Kyasanur Forest Disease was reported Dept. of Zoology Maharajas from Wayanad and Malappuram districts of Kerala, India from January to March 2015. A study on tick College Ernakulam Kerala- vectors of Wayanad district confirmed the presence of larval and nymphal Haemaphysalis spinigera, the 682011, India. chief vector of KFD in the forest pastures of Pulppally area. But in other sites viz Kalpetta and Mananthavady its prevalence was found to be low. Presence of tick species like Haemaphysalis bispinosa, Haemaphysalis spinigera, Amblyomma integrum. and Boophilus(Rhipicephalus) annulatus. was also noticed from the host animals surveyed. Keywords: Kyasanur Forest Disease, Ixodid ticks, Ectoparasite, Haemaphysalis Kyasanur Forest Disease (KFD) 1. Introduction Kyasanur Forest Disease (KFD), also referred to as monkey fever is an infectious bleeding disease in monkey and human caused by a highly pathogenic virus called KFD virus. It is an acute prostrating febrile illness, transmitted by infective ticks, especially, Haemaphysalis spinigera. Later KFD viruses also reported from sixteen other species of ticks. Rodents, Shrews, Monkeys and birds upon tick bite become reservoir for this virus. This disease was first reported from the Shimoga district of Karnataka, India in March 1955. Common targets of the virus among monkeys are langur (Semnopithecus entellus) and bonnet monkey (Macaca radiata).
    [Show full text]
  • Amblyomma Hebraeum Is a Hard Tick That Infests Livestock and Wildlife
    Amblyomma Importance Amblyomma hebraeum is a hard tick that infests livestock and wildlife. It also hebraeum bites humans. The long mouthparts of Amblyomma ticks make them difficult to remove manually; these ticks also leave large wounds that may become infected by Bont Tick, bacteria or infested by screwworms. A. hebraeum can transmit Ehrlichia ruminantium Southern Africa Bont Tick (formerly Cowdria ruminantium), the agent of heartwater. This tick also carries Rickettsia africae, the agent of African tick-bite fever, an emerging zoonosis in rural sub-Saharan Africa and the Caribbean Last Updated: December 2006 Species Affected Immature A. hebraeum ticks feed on small mammals, ground-feeding birds and reptiles. Adult ticks can be found on livestock and wildlife including antelope. Geographic Distribution A. hebraeum is found in the tropics and subtropics. It prefers moderately humid, warm savannas. This tick is endemic in African countries including South Africa, Zimbabwe, Botswana, Namibia, Malawi, Mozambique and Angola. Life Cycle Amblyomma hebraeum is a three-host tick. Immature ticks feed on small mammals, ground-feeding birds, reptiles and all domestic ruminant species. Adult ticks can be found on livestock and wildlife including antelope, and are usually located on the relatively hairless parts of the body. Most are found on the ventral body surface, the perineum, and the axillae, as well as under the tail. Identification A. hebraeum is a member of the family Ixodidae (hard ticks). Hard ticks have a dorsal shield (scutum) and their mouthparts (capitulum) protrude forward when they are seen from above. Amblyomma ticks are large variegated ticks with long, strong mouthparts.
    [Show full text]
  • Artificial Feeding of All Consecutive Life Stages of Ixodes Ricinus
    Article Artificial Feeding of All Consecutive Life Stages of Ixodes ricinus Nina Militzer 1, Alexander Bartel 2 , Peter-Henning Clausen 1, Peggy Hoffmann-Köhler 1 and Ard M. Nijhof 1,* 1 Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; [email protected] (N.M.); [email protected] (P.-H.C.); [email protected] (P.H.-K.) 2 Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, 14163 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-30-838-62326 Abstract: The hard tick Ixodes ricinus is an obligate hematophagous arthropod and the main vector for several zoonotic diseases. The life cycle of this three-host tick species was completed for the first time in vitro by feeding all consecutive life stages using an artificial tick feeding system (ATFS) on heparinized bovine blood supplemented with glucose, adenosine triphosphate, and gentamicin. Relevant physiological parameters were compared to ticks fed on cattle (in vivo). All in vitro feedings lasted significantly longer and the mean engorgement weight of F0 adults and F1 larvae and nymphs was significantly lower compared to ticks fed in vivo. The proportions of engorged ticks were significantly lower for in vitro fed adults and nymphs as well, but higher for in vitro fed larvae. F1-females fed on blood supplemented with vitamin B had a higher detachment proportion and engorgement weight compared to F1-females fed on blood without vitamin B, suggesting that vitamin B supplementation is essential in the artificial feeding of I.
    [Show full text]
  • Interrupted Blood Feeding in Ticks: Causes and Consequences
    University of Rhode Island DigitalCommons@URI Plant Sciences and Entomology Faculty Publications Plant Sciences and Entomology 2020 Interrupted Blood Feeding in Ticks: Causes and Consequences Djamel Tahir Leon Meyer Josephus Fourie Frans Jongejan Thomas N. Mather University of Rhode Island, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.uri.edu/pls_facpubs Citation/Publisher Attribution Tahir, D.; Meyer, L.; Fourie, J.; Jongejan, F.; Mather, T.; Choumet, V.; Blagburn, B.; Straubinger, R.K.; Varloud, M. Interrupted Blood Feeding in Ticks: Causes and Consequences. Microorganisms 2020, 8, 910. Available at: https://doi.org/10.3390/microorganisms8060910 This Article is brought to you for free and open access by the Plant Sciences and Entomology at DigitalCommons@URI. It has been accepted for inclusion in Plant Sciences and Entomology Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Djamel Tahir, Leon Meyer, Josephus Fourie, Frans Jongejan, Thomas N. Mather, Valérie Choumet, Byron Blagburn, Reinhard K. Straubinger, and Marie Varloud This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/pls_facpubs/36 Review Interrupted Blood Feeding in Ticks: Causes and Consequences Djamel Tahir 1, Leon Meyer 1, Josephus Fourie 2, Frans Jongejan 3, Thomas Mather 4, Valérie Choumet 5, Byron Blagburn 6, Reinhard K. Straubinger 7 and Marie Varloud 8,* 1 Clinvet Morocco,
    [Show full text]
  • Ventilation in the Adults of Amblyomma Hebraeum and A. Marmoreum
    Retour au menu STVM-93 L.J. Fielden 1 Ventilation in the adults of Amblyomma ED. Duncan l hebraeum and A. marmoreum J.R.B. Lighton * (Acarina, Ixodidae), vectors of heartwater Y. Rechav 3 I in Southern Africa FIELDEN (L.J.), DUNCAN (F.D.), LIGHTON (J.R.B.), RECHAV Control of spiracular opening is also important in restric- (Y.). Ventilation chez les adultes d’Amblyommn hebraeum et A. manno- ting water loss. Ticks possess only one pair of spiracles reum @carina, Ixodidae), vecteurs de la cowdriose en Afrique australe. Revue Elev. Méd. vét. pays trop., 1993, 46 (l-2) : 335-338 which in unfed adult ticks have been shown to open on an intermittent basis (2). These findings provide strong evi- Cette étude avait pour but de déterminer les caractéristiques princi- dence for the occurrence of discontinuous ventilation in pales de l’échange des gaz respiratoires chez les adultes à jeun des tiques Amblyomma hebraeum et A.marmoreum, vecteurs de la cow- ticks (i.e. ventilation involving periodic bursts or emissions driose en Afrique australe. L’émission de dioxyde de carbone a été of CO, and intermittent uptake of 0,). mesurée à 25 “C par respirométrie afin de déterminer le taux de métabolisme standard (TMS) et l’évolution dans le temps de I’émis- Discontinuous ventilation has been found to be wide sion gazeuse. Le TMS était extrêmement bas pour les deux espèces et environ 100 fois moindre que celui prévisible pour un insecte d’une spread in insects and its chief selective advantage is masse corporelle équivalente. La ventilation chez des tiques inactives believed to lie in a reduction of respiratory water loss as a était discontinue et caractérisée par des éruptions périodiques de CO, result of the loss of water vapour,being restricted to dis- lors de l’ouverture des spiracles.
    [Show full text]
  • Emergence and Resurgence of Zoonotic Infectious Diseases
    WellBeing International WBI Studies Repository 2007 The Human/Animal Interface: Emergence and Resurgence of Zoonotic Infectious Diseases Michael Greger The Humane Society of the United States Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_tzd Part of the Animal Studies Commons, Other Animal Sciences Commons, and the Veterinary Infectious Diseases Commons Recommended Citation Greger, M. (2007). The human/animal interface: emergence and resurgence of zoonotic infectious diseases. Critical Reviews in Microbiology, 33(4), 243-299. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact [email protected]. The Human/Animal Interface: Emergence and Resurgence of Zoonotic Infectious Diseases Michael Greger The Humane Society of the United States CITATION Greger, M. (2007). The human/animal interface: emergence and resurgence of zoonotic infectious diseases. Critical reviews in microbiology, 33(4), 243-299. KEYWORDS agriculture, Avian Influenza, Borrelia burgdorferi, Bovine Spongiform Encephalopathy, bushmeat, Campylobacter; concentrated animal feeding operations, deltaretroviruses, disease ecology, disease evolution, domestic fowl, emerging infectious diseases, Escherichia coli O157, extraintestinal pathogenic Escherichia coli, farm animals, HIV, Influenza A Virus Subtype H5N1, Listeria monocytogenes, multiple drug resistance, Nipah
    [Show full text]
  • Are Ticks Venomous Animals? Alejandro Cabezas-Cruz1,2 and James J Valdés3*
    Cabezas-Cruz and Valdés Frontiers in Zoology 2014, 11:47 http://www.frontiersinzoology.com/content/11/1/47 RESEARCH Open Access Are ticks venomous animals? Alejandro Cabezas-Cruz1,2 and James J Valdés3* Abstract Introduction: As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses. Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the venomous properties of tick saliva. Results: Based on our extensive literature mining and in silico research, we demonstrate that ticks share several similarities with other venomous taxa. Many tick salivary protein families and their previously described functions are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a structural and functional convergence between several molecular components in tick saliva and the venoms from other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore, by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with that of ticks we find evidence that ticks resemble more venomous than non-venomous animals.
    [Show full text]
  • Species Composition of Hard Ticks (Acari: Ixodidae) on Domestic Animals and Their Public Health Importance in Tamil Nadu, South India
    Acarological Studies Vol 3 (1): 16-21 doi: 10.47121/acarolstud.766636 RESEARCH ARTICLE Species composition of hard ticks (Acari: Ixodidae) on domestic animals and their public health importance in Tamil Nadu, South India Krishnamoorthi RANGANATHAN1 , Govindarajan RENU2 , Elango AYYANAR1 , Rajamannar VEERAMANO- HARAN2 , Philip Samuel PAULRAJ2,3 1 ICMR-Vector Control Research Centre, Puducherry, India 2 ICMR-Vector Control Research Centre Field Station, Madurai, Tamil Nadu, India 3 Corresponding author: [email protected] Received: 8 July 2020 Accepted: 4 November 2020 Available online: 27 January 2021 ABSTRACT: This study was carried out in Madurai district, Tamil Nadu State, South India. Ticks were collected from cows, dogs, goats, cats and fowls. The overall percentage of tick infestation in these domestic animals was 21.90%. The following ticks were identified: Amblyomma integrum, Haemaphysalis bispinosa, Haemaphysalis paraturturis, Haemaphy- salis turturis, Haemaphysalis intermedia, Haemaphysalis spinigera, Hyalomma anatolicum, Hyalomma brevipunctata, Hy- alomma kumari, Rhipicephalus turanicus, Rhipicephalus haemaphysaloides and Rhipicephalus sanguineus. The predomi- nant species recorded from these areas is R. sanguineus (27.03%) followed by both R (B.) microplus (24.12%) and R. (B.) decoloratus (18.82%). The maximum tick infestation rate was recorded in animals from rural areas (25.67%), followed by semi-urban (21.66%) and urban (16.05%) areas. This study proved the predominance of hard ticks as parasites on domestic animals and will help the public health personnel to understand the ground-level situation and to take up nec- essary control measures to prevent tick-borne diseases. Keywords: Ticks, domestic animals, Ixodidae, prevalence. Zoobank: http://zoobank.org/D8825743-B884-42E4-B369-1F16183354C9 INTRODUCTION longitude is 78.0195° E.
    [Show full text]
  • Preparation for the Examination Should Be Extensive, Thorough and in Detail
    PREPARATION FOR THE SOUTH AFRICAN VETERINARY COUNCIL REGISTRATION EXAMINATION - 2021 VETERINARY TECHNOLOGISTS Introduction The South African Veterinary Council (SAVC) registration exam is open to foreign candidates who hold an equivalent qualification to Veterinary Technology and wish to be employed in South Africa. Preparation for the examination should be extensive, thorough and in detail. The following document is a guide to potential candidates on how to prepare themselves for the examination to optimise their chances of passing. Structure of the examination The examination consists of a Computer Based Examination (CBE) and a practical examination. To do well in the examination, the following information may help: • Read the questions properly; • Read all the choices of multiple-choice questions before you answer; • There is no guessing penalty in the examination, therefore if you do not know the answer, always take an educated guess; • Do not change your answer unless you misread the question. Your first choice is often the correct choice; • A positive choice is more likely to be true than a negative one; • Usually the correct answer is the choice with the most information. Thorough preparation on the theoretical component as well as the practical aspect is very important for the examination. Study material and contact details • The SAVC is a regulatory body and not a training institution, therefore study material is not provided. • A list of the handbooks that could be used for preparation as well as a scope for each subject are listed below. • Veterinary and para-veterinary related legislation can be accessed at: www.savc.org.za • Contact the South African Association of Veterinary Technologists on www.saavt.co.za / +27 (0) 86 694 0418 Subjects PROTOZOOLOGY One reference is: Science Bulletin No 393: Ticks, mites and insects infesting domestic animals in South Africa.
    [Show full text]
  • Prevalence and Taxonomic Identification of Hard Ticks (Ixodidea) Found in Livestock of Harnai District, Balochistan, Pakistan
    Pure Appl. Biol., 9(4): 2330-2338, December, 2020 http://dx.doi.org/10.19045/bspab.2020.90247 Research Article Prevalence and taxonomic identification of hard ticks (Ixodidea) found in livestock of Harnai District, Balochistan, Pakistan Saqiba Bibi1, Nosheen Rafique1, Aasia Karim1, Muhammad Kamran Taj2*, Kiran Iqbal1, Asifa Bibi1, Muhammad Shafiq3, Gulshan Ghafoor1, Aeysha Ghafoor1 and Ambreen Ijaz1 1. Department of Zoology, Sardar Bahadur Khan Women University, Quetta, Pakistan 2. CASVAB, University of Baluchistan 3. Department of Commerce, University of Baluchistan-Pakistan *Corresponding author’s email: [email protected] Citation Saqiba Bibi, Nosheen Rafique, Aasia Karim, Muhammad Kamran Taj, Kiran Iqbal, Asifa Bibi, Muhammad Shafiq, Gulshan Ghafoor, Aeysha Ghafoor and Ambreen Ijaz. Prevalence and taxonomic identification of hard ticks (Ixodidea) found in livestock of Harnai District, Balochistan, Pakistan. Pure and Applied Biology. Vol. 9, Issue 4, pp2330-2338. http://dx.doi.org/10.19045/bspab.2020.90247 Received: 28/03/2020 Revised: 30/05/2020 Accepted: 08/06/2020 Online First: 08/07/2020 Abstract Ticks cause considerable damage to the livestock in tropical and subtropical areas. Because of climatic and environmental changes, the frequencies of tick-borne infections are increasing day by day. This research trial displays an outline about the different species of hard ticks (Family; Ixodidae) found in sheep, goats, cows, buffaloes and camels in District Harnai, Baluchistanon. The study duration of the present research trial was from 1st December 2018 to 1st December 2019. Ticks were collected from different parts of the body and examined for species identification. Total 913 ticks were collected from livestock. Most susceptible animal was cow (65%) followed by buffalo (55%), camel (47.5%), sheep (30%) and goats (27.5%).
    [Show full text]
  • Parasites of Bears: a Review
    Third International Conference on Bears Paper 42 Parasites of Bears: A Review LYNN L. ROGERS Bell Museum of Natural History, University of Minnesota, Minneapolis, Minnesota, U.S.A. and SUSANNE M. ROGERS Wildlife Research Institute, 1909 Third Street N.E., Minneapolis, Minnesota, U.S.A. INTRODUCTION This paper is an attempt to summarize the available information on parasites of bears. Knowledge of ursine parasites has expanded considerably since the subject was reviewed by Stiles and Baker in 1935; more than 90 additional reports on the subject have been published, and at least 43 additional parasites have been reported. In this paper, available information is summarized for each of 77 species of parasites, including (1) species of host, (2) pathological effects, (3) whether hosts were captive or wild, (4) the proportion of the bears from a given geographic location that were infected, and (5) sources of information. Parasites also are listed by host. Topics discussed include transmission of trichinosis and parasitism during hibernation. PROTOZOA Hair and Mahrt (1970) reported two new species of coccidia from wild black bears (Ursus americanus} in Alberta, Canada. They examined 52 fecal samples and found oocysts of Eimeria albertensis in four and oocysts of E. borealis in three of them. Coccidia also were reported from the USSR, where E. ursi was reported from the brown bear (Ursus arctos) (Yakimoff and Matschoulsky 1935) and Isospora fonsecai was reported from the red bear (Ursus arctos isabellinus) (Yakimoff and Matschoulsky 1940). Couturier (1954) thought Coccidia and Infusoria make bears slightly ill. Stiles and Baker (1935) reported a haemosporidean parasite (Babesia sp.) from an unidentified bear in a zoo at St.
    [Show full text]