Dating Methods (Absolute and Relative) in Archaeology of Art

Total Page:16

File Type:pdf, Size:1020Kb

Dating Methods (Absolute and Relative) in Archaeology of Art D 2036 Dating Methods (Absolute and Relative) in Archaeology of Art is of a phenomenon related to but not the actual Dating Methods (Absolute time of manufacture of the art. If these indirect ages and Relative) in Archaeology of Art are in a stratigraphic relation to rock art (older or younger), then they produce minimum/maximum Juan Francisco Ruiz1 and Marvin W. Rowe2 direct dates for related imagery (Bednarik 2007; 1Facultad de Ciencias de la Educacio´n Morwood et al. 2010;Ruizetal.2012). y Humanidades, Universidad de Castilla La Rock art research has been treated for years as Mancha, Cuenca, Spain a minor aspect of archaeology. Lack of reliable 2Texas A&M University at Qatar, Museum of methods to date ancient imagery, both New Mexico, Santa Fe, NM, USA pictographs and petroglyphs on open-air sites or inside of deep caves, kept it outside of main- stream archaeology. This began to change with Introduction the introduction of scientific dating approaches, and there are reasons to feel optimistic about Chronology of rock art, ranging from Paleolithic dating rock art at this time. Several dating groups to present times, is a key aspect of the archaeol- are currently working on this around the world, ogy of art and one of the most controversial. It and it is now possible to hope for interlaboratory was based for decades in nonscientific methods comparison tests to help evaluate the reliability that used stylistic analysis of imagery to establish and accuracy of the techniques. one-way evolutionary schemes. Application of scientific methods, also called absolute dating, started to be used in the 1980s and since then Key Issues/Current Debates/Future has increased more and more its significance, as Directions/Examples judged by the large number of papers published in the last two decades on this subject (Rowe 2012). Archaeological studies of rock art demand a temporal framework in which a particular imagery was produced, as it is the only way to Definition relate decontextualized imagery to archaeological cultures. The earlier traditional methods to estab- Absolute and relative dating methods have been lish chronologies of rock art sites and imagery used to establish tentative chronologies for rock were based on assumptions made on iconography, art. Relative dating refers to non-chronometric style, and comparison with excavation evidence methodologies that produce seriation based on sty- and technical analysis. For example, Paleolithic listic comparison and stratigraphic assumptions. mobiliary art from excavated sites in Europe was On the other hand, absolute dating methods are used as a base for stylistic comparison with cave based on scientific techniques that yield imagery. These evidences, supported by superim- a chronometric age for a phenomenon in direct or position analyses, produced the great stylistic indirect physical relation to rock art (same age, schemes for Paleolithic art in Western Europe, older, or younger). Dating of some binders in pic- which defended a one-way evolution from simple tographs or the alterations of surfaces by petro- to complex figures, expanding from Aurignacian glyphs are examples of direct ages related to rock to Magdalenian times (Pettitt & Pike 2007). These art production. However, it is controversial to con- systems lack enough resolution to produce an sider these dates as “absolute” as they merely accurate temporal frame for rock art, above all reflect experimental propositions, which often for styles without consensus on their mobiliary lack independent verification (Bednarik 2007; parallels. Pettitt & Pike 2007). Most scientific dating Weaknesses of these stylistic paradigms were methods are indirect because they produce pointed out (see (Bednarik 2007; Pettitt & Pike constraining ages for imagery, and the age obtained 2007) for recent reviews of them), but it is Dating Methods (Absolute and Relative) in Archaeology of Art 2037 D important to recognize that they are still useful Dating of charcoal pictographs has been for rock art chronology because it is obviously broadly used in French and Spanish Paleolithic impossible to date every figure in a site and every caves (Alcolea & Balbı´n 2007; Steelman & Rowe site all over the world. A well-defined proxy with 2012), but also in North America and Australia, stylistic, technical, and chemical composition and other regions of the world. The largest part of data would be very helpful as a complement to the charcoal pigment dates is considered reliable scientific dating. A date archaeologically but, for example, in Chauvet Cave, dates decontextualized is of little value, so it must be are controversial because they are unusually stressed that any dating should be included in old and conflict with stylistic paradigm. Several D archaeological hypotheses. authors claimed for a likely contamination of The first radiocarbon dating on rock paintings datings of Chauvet, as the dates from different was carried out on a charcoal pictograph in South samples of one single figure in Pen˜a de Candamo Africa in the late 1980s quickly followed by (Asturias, Spain) showed that results by others in 1990 in Australia, the USA, and Europe, Geochron Lab (USA) were 15,000 years younger which added to pioneer research on engravings than those produced by LSCE (France), respon- dating. A few years later, a broader conscience sible of all Chauvet dates (Pettitt & Pike 2007). about these new possibilities dictated that This situation reflects pitfalls of the method that scientific dating of the passage of time became could be accompanied by contamination of an alternative to stylistic paradigms (Lorblanchet unknown origin, possible repainting for younger & Bahn 1993). However, debates on very old dates, mistakes in laboratory treatment of sam- AMS 14C dates from Chauvet Cave (France) ples, and the presence of carbon of different ori- and very young ones on open-air engravings gin, for example, incomplete dissolution of dated by several methods in Foz Coˆa (Portugal) calcium oxalates. An improved specific protocol showed that style and scientific dates were still to remove contamination produced by calcium necessary for archaeology of art. oxalates from charcoal paintings has recently The most common technique for dating rock been developed (Bonneau et al. 2011). paintings worldwide is the radiocarbon dating of It is indispensable to follow a strict protocol to the charcoal pigments often used to construct the collect samples during fieldwork. The protocol drawings. A large number of publications have described in literature tries to avoid contamina- been collected in the bibliography composed by tions using sterile latex gloves and surgical Rowe (2012). Dating charcoal has been well masks. Samples are removed from walls with honed by the radiocarbon community, and the a sterile surgical blade, which is changed and results can be considered to be generally reliable. discarded after each sample. They are put inside The main disadvantage to radiocarbon dating of a sheet of folded sterile aluminum foil and charcoal pigments is that the date measured is placed inside of a labeled plastic bag. The exact NOT that of the time of execution of the painting. position where samples were removed should be Rather it dates the pigment and there are two recorded with photographs. Extreme care caveats that accompany any date of charcoal: ought to be observed on the selection of the old wood and old charcoal (Steelman & Rowe sampling points to avoid major visual impact or 2012). Old wood phenomena are situations, usu- harm to the pictographs, for example, selecting ally encountered in desert areas where wood flakes that appear likely to spall from the walls decays slowly, in which the wood burned to naturally. The size of samples required is uncer- make charcoal may be up to centuries old. Old tain but around 2 cm2 is generally used for charcoal may occur when freshly hewn wood is pictographs with inorganic pigments and much burned, but not used to construct a painting until less for charcoal-pigmented paintings, as for much later. Both these caveats should be kept in AMS 14C dating only 50–100 mg of carbon is mind at all times when interpreting charcoal pig- needed for an accurate date. For pictographs ment radiocarbon dates. with inorganic pigments, e.g., iron ochre or D 2038 Dating Methods (Absolute and Relative) in Archaeology of Art manganese oxides, it is essential to take an It has been shown to be useful to get minimum unpainted rock sample as near to the sample ages for petroglyphs and minimum/maximum taken as is feasible. That background rock sample ages for pictographs. On certain locations, should be processed identically to the pictograph researchers has bracketed dates for rock paintings sample. A more detailed report on sampling between two oxalate skins, producing a temporal protocol, reporting of radiocarbon results and frame for pictographs in agreement with archaeo- laboratory pretreatment of samples, has been logical expectations (Ruiz et al. 2012). just published (Steelman & Rowe 2012). Sample removal procedure is similar to AMS 14C has been used to date any other kind that described for radiocarbon dating (Cole & of carbon-bearing substances related to picto- Watchman 2005). Sample sizes range from graphs or petroglyphs (Aubert 2012). The 25 mm2 to1cm2, depending on oxalate content. presence of binders has been used to produce Oxalate dating demands microstratigraphic direct radiocarbon dates of beeswax paintings in analysis and micro-excavation techniques to Australia (Morwood et al. 2010). Vegetal resins avoid contamination between upper and lower and wax are binders of these paints. It is consid- layers of calcium oxalate. Mechanical proce- ered that wax would have been fresh when duresandlaserablationhavebeenusedsofar applied on walls to construct the drawings, so it for this purpose (Watchman 2000). There are should be ambient source of carbon to date rock two main drawbacks for oxalate dates: (1) radio- art. In the Australian Kimberley area, a range of carbon age of any calcium oxalate crust is dates from 3,780 Æ 60 BP to present times were a weighted “average” of oxalate deposited for obtained (Morwood et al.
Recommended publications
  • Geologic Time Two Ways to Date Geologic Events Steno's Laws
    Frank Press • Raymond Siever • John Grotzinger • Thomas H. Jordan Understanding Earth Fourth Edition Chapter 10: The Rock Record and the Geologic Time Scale Lecture Slides prepared by Peter Copeland • Bill Dupré Copyright © 2004 by W. H. Freeman & Company Geologic Time Two Ways to Date Geologic Events A major difference between geologists and most other 1) relative dating (fossils, structure, cross- scientists is their concept of time. cutting relationships): how old a rock is compared to surrounding rocks A "long" time may not be important unless it is greater than 1 million years 2) absolute dating (isotopic, tree rings, etc.): actual number of years since the rock was formed Steno's Laws Principle of Superposition Nicholas Steno (1669) In a sequence of undisturbed • Principle of Superposition layered rocks, the oldest rocks are • Principle of Original on the bottom. Horizontality These laws apply to both sedimentary and volcanic rocks. Principle of Original Horizontality Layered strata are deposited horizontal or nearly horizontal or nearly parallel to the Earth’s surface. Fig. 10.3 Paleontology • The study of life in the past based on the fossil of plants and animals. Fossil: evidence of past life • Fossils that are preserved in sedimentary rocks are used to determine: 1) relative age 2) the environment of deposition Fig. 10.5 Unconformity A buried surface of erosion Fig. 10.6 Cross-cutting Relationships • Geometry of rocks that allows geologists to place rock unit in relative chronological order. • Used for relative dating. Fig. 10.8 Fig. 10.9 Fig. 10.9 Fig. 10.9 Fig. Story 10.11 Fig.
    [Show full text]
  • Lab 7: Relative Dating and Geological Time
    LAB 7: RELATIVE DATING AND GEOLOGICAL TIME Lab Structure Synchronous lab work Yes – virtual office hours available Asynchronous lab work Yes Lab group meeting No Quiz None – Test 2 this week Recommended additional work None Required materials Pencil Learning Objectives After carefully reading this chapter, completing the exercises within it, and answering the questions at the end, you should be able to: • Apply basic geological principles to the determination of the relative ages of rocks. • Explain the difference between relative and absolute age-dating techniques. • Summarize the history of the geological time scale and the relationships between eons, eras, periods, and epochs. • Understand the importance and significance of unconformities. • Explain why an understanding of geological time is critical to both geologists and the general public. Key Terms • Eon • Original horizontality • Era • Cross-cutting • Period • Inclusions • Relative dating • Faunal succession • Absolute dating • Unconformity • Isotopic dating • Angular unconformity • Stratigraphy • Disconformity • Strata • Nonconformity • Superposition • Paraconformity Time is the dimension that sets geology apart from most other sciences. Geological time is vast, and Earth has changed enough over that time that some of the rock types that formed in the past could not form Lab 7: Relative Dating and Geological Time | 181 today. Furthermore, as we’ve discussed, even though most geological processes are very, very slow, the vast amount of time that has passed has allowed for the formation of extraordinary geological features, as shown in Figure 7.0.1. Figure 7.0.1: Arizona’s Grand Canyon is an icon for geological time; 1,450 million years are represented by this photo.
    [Show full text]
  • Ice-Core Dating of the Pleistocene/Holocene
    [RADIOCARBON, VOL 28, No. 2A, 1986, P 284-291] ICE-CORE DATING OF THE PLEISTOCENE/HOLOCENE BOUNDARY APPLIED TO A CALIBRATION OF THE 14C TIME SCALE CLAUS U HAMMER, HENRIK B CLAUSEN Geophysical Isotope Laboratory, University of Copenhagen and HENRIK TAUBER National Museum, Copenhagen, Denmark ABSTRACT. Seasonal variations in 180 content, in acidity, and in dust content have been used to count annual layers in the Dye 3 deep ice core back to the Late Glacial. In this way the Pleistocene/Holocene boundary has been absolutely dated to 8770 BC with an estimated error limit of ± 150 years. If compared to the conventional 14C age of the same boundary a 0140 14C value of 4C = 53 ± 13%o is obtained. This value suggests that levels during the Late Glacial were not substantially higher than during the Postglacial. INTRODUCTION Ice-core dating is an independent method of absolute dating based on counting of individual annual layers in large ice sheets. The annual layers are marked by seasonal variations in 180, acid fallout, and dust (micro- particle) content (Hammer et al, 1978; Hammer, 1980). Other parameters also vary seasonally over the annual ice layers, but the large number of sam- ples needed for accurate dating limits the possible parameters to the three mentioned above. If accumulation rates on the central parts of polar ice sheets exceed 0.20m of ice per year, seasonal variations in 180 may be discerned back to ca 8000 BP. In deeper strata, ice layer thinning and diffusion of the isotopes tend to obliterate the seasonal 5 pattern.1 Seasonal variations in acid fallout and dust content can be traced further back in time as they are less affected by diffusion in ice.
    [Show full text]
  • Scientific Dating of Pleistocene Sites: Guidelines for Best Practice Contents
    Consultation Draft Scientific Dating of Pleistocene Sites: Guidelines for Best Practice Contents Foreword............................................................................................................................. 3 PART 1 - OVERVIEW .............................................................................................................. 3 1. Introduction .............................................................................................................. 3 The Quaternary stratigraphical framework ........................................................................ 4 Palaeogeography ........................................................................................................... 6 Fitting the archaeological record into this dynamic landscape .............................................. 6 Shorter-timescale division of the Late Pleistocene .............................................................. 7 2. Scientific Dating methods for the Pleistocene ................................................................. 8 Radiometric methods ..................................................................................................... 8 Trapped Charge Methods................................................................................................ 9 Other scientific dating methods ......................................................................................10 Relative dating methods ................................................................................................10
    [Show full text]
  • Personal Details: Relative Dating Methods Archaeology; Principles
    Component-I (A) – Personal details: Archaeology; Principles and Methods Relative Dating Methods Prof. P. Bhaskar Reddy Sri Venkateswara University, Tirupati. Prof. K.P. Rao University of Hyderabad, Hyderabad. Prof. K. Rajan Pondicherry University, Pondicherry. Prof. R. N. Singh Banaras Hindu University, Varanasi. 1 Component-I (B) – Description of module: Subject Name Indian Culture Paper Name Archaeology; Principles and Methods Module Name/Title Relative Dating Methods Module Id IC / APM / 17 Pre requisites Objectives Archaeology / Stratigraphy / Dating / Keywords Geochronology E-Text (Quadrant-I) : 1. Introduction In archaeology, the material unearthed in the excavations and archaeological remains surfaced and documented in the explorations are dated by following two methods namely, absolute dating method and relative dating method. In the former method, the artefacts are being preciously dated using various scientific techniques and in a few cases it is dated based on the hidden historical data available with historical documents such as inscriptions, copper plates, seals, coins, inscribed portrait sculptures and monuments. In the latter method, a tentative date is achieved based on archaeological stratigraphy, seriation, palaeography, linguistic style, context, art and architectural features. Though the absolute dates are the most desirable one, the significance of relative dates increases manifold when the absolute dates are not available. Till advent of the scientific techniques, most of the archaeological and historical objects were dated based on relative dating methods. Archaeologists are resorted to the use of relative dating techniques when the absolute dates are not possible or feasible. Estimation of the age was merely a guess work in the initial stage of archaeological investigation particularly in 18th-19th centuries.
    [Show full text]
  • Ice-Core Dating and Chemistry by Direct-Current Electrical Conductivity Kenorick Taylor
    The University of Maine DigitalCommons@UMaine Earth Science Faculty Scholarship Earth Sciences 1992 Ice-core Dating and Chemistry by Direct-current Electrical Conductivity Kenorick Taylor Richard Alley Joe Fiacco Pieter Grootes Gregg Lamorey See next page for additional authors Follow this and additional works at: https://digitalcommons.library.umaine.edu/ers_facpub Part of the Glaciology Commons, Hydrology Commons, and the Sedimentology Commons Repository Citation Taylor, Kenorick; Alley, Richard; Fiacco, Joe; Grootes, Pieter; Lamorey, Gregg; Mayewski, Paul Andrew; and Spencer, Mary Jo, "Ice- core Dating and Chemistry by Direct-current Electrical Conductivity" (1992). Earth Science Faculty Scholarship. 273. https://digitalcommons.library.umaine.edu/ers_facpub/273 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Earth Science Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Authors Kenorick Taylor, Richard Alley, Joe Fiacco, Pieter Grootes, Gregg Lamorey, Paul Andrew Mayewski, and Mary Jo Spencer This article is available at DigitalCommons@UMaine: https://digitalcommons.library.umaine.edu/ers_facpub/273 Journal of Glaciology, Vo!. 38, No. 130, 1992 Ice-core dating and chentistry by direct-current electrical conductivity KENORICK TAYLOR, Water Resources Center, Desert Research Institute, University of Nevada System, Reno, Nevada, U.S.A. RICHARD ALLEY, Earth System Science Genter and Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, U.S.A. JOE FIACCO, Glacier Research Group, Institute of the Study of Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire, U.S.A. PIETER GROOTES, Qyaternary Isotope Laboratory, University of Washington, Seatae, Washington, U.S.A.
    [Show full text]
  • Relative Dating Unit B
    Geologic Time Part I: Relative Dating Unit B Unit A James Hutton conceived of the Principle of Uniformitarianism at Sicar Point, Scotland in 1785. Think about how much time would pass to create the rock record shown above. What sequence of events would occur to produce the above record? Unit B Unit A 1. Deposition of sediment comprising Unit A (Sedimentation rates in the deep ocean range from .0005 - .001 mm per year). How long would it take to accumulate 200 meters of sediment?) 2. burial compaction & lithification of Unit A, 3. deformation (folding) of Unit A, 4. uplift and erosion of Unit A, 5. Deposition of sediment (Unit B), 6. burial compaction & lithification of Unit B, 7. deformation (folding) of Unit B, 8. uplift and erosion of Unit B. These geologic events require millions of years of time! Principle of Original Horizontality: Layered sedimentary rock is typically deposited horizontally, but can be deformed by tectonic processes. Can you think of a depositional environment where sedimentary layers are not deposited horizontally? Geologists use sedimentary structures to determine whether sedimentary layers or beds are right-side up, vertical or overturned. The Principle of Uniformitarianism states that the “present is the key to the past.” Those processes operating at the earth’s surface today are inferred to have operated in the past, such as the mudcracks forming in a playa lake today. Note the blowing sand in the background will fill in the cracks. The mudcracks shown above formed over 1.1 billion years ago in a dry lake basin are now found in Glacier National Park, Montana.
    [Show full text]
  • Dating Techniques.Pdf
    Dating Techniques Dating techniques in the Quaternary time range fall into three broad categories: • Methods that provide age estimates. • Methods that establish age-equivalence. • Relative age methods. 1 Dating Techniques Age Estimates: Radiometric dating techniques Are methods based in the radioactive properties of certain unstable chemical elements, from which atomic particles are emitted in order to achieve a more stable atomic form. 2 Dating Techniques Age Estimates: Radiometric dating techniques Application of the principle of radioactivity to geological dating requires that certain fundamental conditions be met. If an event is associated with the incorporation of a radioactive nuclide, then providing: (a) that none of the daughter nuclides are present in the initial stages and, (b) that none of the daughter nuclides are added to or lost from the materials to be dated, then the estimates of the age of that event can be obtained if the ration between parent and daughter nuclides can be established, and if the decay rate is known. 3 Dating Techniques Age Estimates: Radiometric dating techniques - Uranium-series dating 238Uranium, 235Uranium and 232Thorium all decay to stable lead isotopes through complex decay series of intermediate nuclides with widely differing half- lives. 4 Dating Techniques Age Estimates: Radiometric dating techniques - Uranium-series dating • Bone • Speleothems • Lacustrine deposits • Peat • Coral 5 Dating Techniques Age Estimates: Radiometric dating techniques - Thermoluminescence (TL) Electrons can be freed by heating and emit a characteristic emission of light which is proportional to the number of electrons trapped within the crystal lattice. Termed thermoluminescence. 6 Dating Techniques Age Estimates: Radiometric dating techniques - Thermoluminescence (TL) Applications: • archeological sample, especially pottery.
    [Show full text]
  • Sediments to Sequences
    EPSC 425: Sediments to Sequences Galen Halverson Winter Semester, 2014 Contents 1 Introduction to Stratigraphy 1 1.1 Sedimentary Geology . 1 1.2 What is Stratigraphy? . 1 1.3 Strata as Temporal Archives . 2 1.4 Lithostratigraphy . 5 1.5 Depositional Environments . 8 1.6 Lithofacies and Associations . 14 1.7 Correlation . 16 2 Geophysical Data 18 2.1 Well Logs . 18 2.2 Seismic Exploration . 24 3 Sequence Stratigraphy 27 3.1 Introduction . 27 3.2 Fundamental concepts . 29 3.3 Shoreline trajectories and sediment stacking patterns . 30 3.4 Base-level changes and the development of systems tracts . 32 3.5 Sequence boundaries . 36 3.6 Stratal terminations . 38 3.7 Types of Sequences . 38 3.8 Sequence Stratigraphy of Carbonate Platforms . 42 4 Learning to Tell Geological Time 44 4.1 Introduction . 44 4.2 The Geological Time Scale . 45 4.3 Telling Time in the Stratigraphic Record . 47 5 Radiometric Techniques 51 5.1 Introduction . 51 5.2 U-Th-Pb System . 52 5.3 K-Ar System . 57 5.4 Re-Os System . 59 5.5 Radiocarbon Dating . 59 6 Magnetic Stratigraphy 62 i ii 7 Biochronology 65 7.1 Biostratigraphy . 65 7.2 Biochronology . 65 8 Sedimentary Cycles 67 8.1 Introduction . 67 8.2 Stratigraphic cycles . 67 8.3 Climate-independent cyclic sedimentary patterns . 68 8.4 Sedimentary parameters linked to climate change . 68 8.5 Astronomical Forcing . 71 9 Chemical Stratigraphy 76 9.1 Introduction . 76 9.2 Underlying Principles . 76 9.3 Development and Application of the Method . 78 9.4 Stable Isotope Systems .
    [Show full text]
  • SECTION C 12 Timescales
    SECTION c 12 Timescales The timescales adopted in geomorphology fall well within the c.4.6 billion years of Earth history, with some being a mere season or even a single event. In addition to continuous timescales, discrete periods of Earth history have been utilized. Six hierarchical levels are formally defined geologically, and these embrace the external or allogenic drivers for the long-term intrinsic or autogenic processes that have fashioned the Earth’s surface, some parts of which still bear ancient traces, whereas others have been fashioned more recently or are currently active. Contemporary problems demand attention to be given to recent timescales, the Quaternary and the Holocene, although these are less formally partitioned. Geomorphology- focused classifications have also been attempted with short, medium and long timescales conceived in relation to system states. An outstanding chal- lenge is to reconcile research at one timescale with results from another. Table 12.1 Historical naming of the geological epochs Eon Era Epoch Date Origin Phanerozoic Cenozoic Holocene 1885 3rd Int.Geol. Congress Pleistocene 1839 C. Lyell Pliocene 1833 C. Lyell Miocene 1833 C. Lyell Oligocene 1854 H.E. von Beyrich Eocene 1833 C. Lyell Palaeocene 1874 W.P. Schimper Mesozoic Cretaceous 1822 W.D. Conybeare/J.Phillips Jurassic 1839 L. von Buch Triassic 1834 F.A. von Albertini Palaeozoic Permian 1841 R.I. Murchison Carboniferous 1822 W.D. Conybeare/J.Phillips Devonian 1839 A.Sedgwick/R.I.Murchison Silurian 1839 R.I. Murchison Ordovician 1879 C. Lapworth Cambrian 1835 A. Sedgwick Precambrian Informal For contemporary usage see Figure 12.1; the Holocene and the Pleistocene are now taken to be epochs within the Quaternary Period, and earlier epochs are within the Palaeogene and Neogene Periods in the Cenozoic.
    [Show full text]
  • Dating and Chronology Building - R
    ARCHAEOLOGY – Dating and Chronology Building - R. E. Taylor DATING AND CHRONOLOGY BUILDING R. E. Taylor University of California, USA Keywords: Dating methods, chronometric dating, seriation, stratigraphy, geochronology, radiocarbon dating, potassium-argon/argon-argon dating, Pleistocene, Quaternary. Contents 1. Chronological Frameworks 1.1 Relative and Chronometric Time 1.2 History and Prehistory 2. Chronology in Archaeology 2.1 Historical Development 2.2 Geochronological Units 3. Chronology Building 3.1 Development of Historic Chronologies 3.2 Development of Prehistoric Chronologies 3.3 Stratigraphy 3.4 Seriation 4. Chronometric Dating Methods 4.1 Radiocarbon 4.2 Potassium-argon and Argon-argon Dating 4.3 Dendrochronology 4.4 Archaeomagnetic Dating 4.5 Obsidian Hydration Acknowledgments Glossary Bibliography Biographical Sketch Summary One of the purposes of archaeological research is the examination of the evolution of human cultures.UNESCO Since a fundamental defini– tionEOLSS of evolution is “change over time,” chronology is a fundamental archaeological parameter. Archaeology shares with a number of otherSAMPLE sciences concerned with temporally CHAPTERS mediated phenomenon the need to view its data within an accurate chronological framework. For archaeology, such a requirement needs to be met if any meaningful understanding of evolutionary processes is to be inferred from the physical residue of past human behavior. 1. Chronological Frameworks Chronology orders the sequential relationship of physical events by associating these events with some type of time scale. Depending on the phenomenon for which temporal placement is required, it is helpful to distinguish different types of time scales. ©Encyclopedia of Life Support Systems (EOLSS) ARCHAEOLOGY – Dating and Chronology Building - R. E. Taylor Geochronological (geological) time scales temporally relates physical structures of the Earth’s solid surface and buried features, documenting the 4.5–5.0 billion year history of the planet.
    [Show full text]
  • Relative Dating Foldable.Notebook May 02, 2012
    Relative Dating Foldable.notebook May 02, 2012 Geologic Principles Learning Target: I can create a foldable about the geologic principles that are used to relatively date rock sequences. 1 Relative Dating Foldable.notebook May 02, 2012 Geologic Principles Foldable • You will need 3 pieces of paper to make your foldable. • Stagger the papers out so that you have a 1­inch tab for each different color. • Hold the 3 papers together staggered and fold in half • Staple the papers along the binding 2 Relative Dating Foldable.notebook May 02, 2012 Six­Tab Foldable Booklet Principle of Superposition Principle of Cross­cutting Principle of Inclusions Principle of Baked Contacts Principle of Original Horizontality Principle of Original Continuity 3 Relative Dating Foldable.notebook May 02, 2012 1st Flap youngest This principle states that the oldest C rock layers are on the bottom. B A oldest Principle of Superposition Principle of Cross­cutting Principle of Inclusions Principle of Baked Contacts Principle of Original Horizontality Principle of Original Continuity 4 Relative Dating Foldable.notebook May 02, 2012 Principle of Superposition – This principle states that The oldest rock layers are on the bottom. http://faculty.icc.edu/easc111lab/labs/labf/prelab_f.htm 5 Relative Dating Foldable.notebook May 02, 2012 Superposition 6 Relative Dating Foldable.notebook May 02, 2012 2nd Flap C Fault This principle states D B C A D that if one geological B intrusion feature cuts across A another, the feature that has been cut is older. Principle of Cross­cutting Principle of Inclusions Principle of Baked Contacts Principle of Original Horizontality Principle of Original Continuity 7 Relative Dating Foldable.notebook May 02, 2012 Principle of Cross­cutting Intrusion http://faculty.icc.edu/easc111lab/labs/labf/igneousintrusion/igneousintrusion.html 8 Relative Dating Foldable.notebook May 02, 2012 Flap 3 This principle states that if an igneous rock intrusion such as a dike contains xenoliths (rock fragments) the rock fragments must be older.
    [Show full text]