Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Table of Contents MOLECULAR POLYMORPHISMS FOR PHYLOGENY, PEDIGREE AND POPULATION STRUCTURE STUDIES by YEAN WANG UNIVERSITY OF SYDNEY SCHOOL OF BIOLOGICAL SCIENCES NSW, AUSTRALIA A thesis submitted in the fulfillment of the requirements for the degree of Doctor of Philosophy December 2006 Declaration This thesis is presented in fulfillment of the requirements for the degree of Doctor of Philosophy. I hereby declare that the work demonstrated in this thesis is my own unless indicated otherwise. No part of this work has been submitted for any degree or diploma. The microsatellite isolation in Bactrocera tryoni reported in Chapter 6 of this thesis was done jointly with MSc student Hong Yu as part of her project. This thesis may be made available for reference from the university library and may be photocopied or loaned to other libraries. Yean Wang December 2006 TABLE OF CONTENTS LIST OF FIGURE................................................................................................. V LIST OF TABLE ................................................................................................. VII Acknowledgements............................................................................................. IX Abstract............................................................................................................... XI Abbreviations ..................................................................................................... XV Chapter 1..............................................................................................................1 Introduction ...........................................................................................................1 1.1 Review of DNA polymorphisms .............................................................................. 2 1.1.1 Mitochondrial DNA........................................................................................... 2 1.1.2 Microsatellites.................................................................................................... 6 1.1.3 The Y chromosome.......................................................................................... 12 1.1.4 Other molecular polymorphic markers............................................................ 14 1.1.5 Sex specific molecular polymorphisms ........................................................... 16 1.1.6 Incongruencies between polymorphism types................................................. 18 1.2 The present study.................................................................................................... 20 1.2.1 Aims of the research ........................................................................................ 20 1.2.2 mtDNA and phylogeny.................................................................................... 20 1.2.3 Paternity testing and pedigree construction..................................................... 22 1.2.4 Population analysis within species or between sibling species ....................... 22 1.3 An outline of the thesis ........................................................................................... 23 Chapter 2............................................................................................................25 Complete mtDNA sequence of the green monkey..............................................25 2.1 Introduction............................................................................................................. 25 2.2 Materials and Methods............................................................................................ 27 2.2.2 mtDNA sequencing.......................................................................................... 27 2.2.2.1 Normal and long PCR............................................................................... 27 2.2.2.2 Cloning the heteroplasmic region............................................................. 30 2.2.2.3 Sequencing............................................................................................... 32 2.3 Results..................................................................................................................... 33 2.3.1 Complete mtDNA sequence ............................................................................ 33 2.3.2 Heteroplasmic control region........................................................................... 37 2.4 Discussion............................................................................................................... 43 2.4.1 Complete mtDNA comparison among primates.............................................. 43 2.4.2 Heteroplasmy in the control region of primate mtDNA.................................. 50 Chapter 3............................................................................................................52 Analysis of phylogeny of Cercopithecinae using complete mitochondrial DNA sequence ............................................................................................................52 3.1 Introduction............................................................................................................. 52 3.1.1 Nomenclature of the green monkey…………………………………………..52 3.1.2 Phylogenetic analysis of the primate…………………………………………56 3.2 Materials and Methods............................................................................................ 58 I 3.2.1 Data source ...................................................................................................... 58 3.2.2 Phylogeny reconstruction among the species of primates............................... 59 3.3 Results and discussion ............................................................................................ 59 3.3.1 Phylogenetic analysis using complete mtDNA among primates..................... 59 3.3.2 Taxonomic level of Chlorocebus sabaeus and C. aethiops............................. 62 3.3.3 Phylogenetic analysis using single genes of mtDNA among primates ........... 62 3.3.4 Conclusion ....................................................................................................... 68 Chapter 4............................................................................................................71 mtDNA SNPs detection and St Kitts monkey verification by 12S rRNA gene .....71 4.1 Introduction............................................................................................................. 71 4.2 Materials and Methods............................................................................................ 72 4.2.1 PCR.................................................................................................................. 72 4.2.2 Single nucleotide polymorphisms (SNP) screening using dHPLC ................. 73 4.2.3 Sequence and haplotype analysis of SNPs ...................................................... 74 4.2.4 12S rRNA analysis of geographical origin of St Kitts monkeys ..................... 75 4.3 Results..................................................................................................................... 75 4.3.1 SNP identification by dHPLC.......................................................................... 75 4.3.2 Verification of species of the St Kitts green monkey by 12S rRNA gene....... 79 4.4 Discussion............................................................................................................... 81 Chapter 5............................................................................................................83 Paternity and pedigree analysis using cross-amplified microsatellites in green moneys ...............................................................................................................83 5.1 Introduction............................................................................................................. 83 5.1.1 Vervet Monkey Research Colony.................................................................... 83 5.1.2 Paternity assignment........................................................................................ 84 5.1.3 Microsatellite cross-amplification ................................................................... 85 5.2 Materials and methods............................................................................................ 87 5.2.1 DNA isolation.................................................................................................. 87 5.2.1.1 Autopure DNA extraction ........................................................................ 89 5.2.1.2 Manual DNA extraction........................................................................... 90 5.2.2 PCR amplification and genotyping.................................................................. 90 5.2.3 Data analysis.................................................................................................... 93 5.3 Results..................................................................................................................... 94 5.3.1 DNA extraction yield....................................................................................... 94 5.3.2 Cross-amplification.......................................................................................... 95 5.3.3 Maternal mismatch pedigree errors ................................................................. 96 5.3.4 Hardy-Weinberg Equilibrium........................................................................ 101 5.3.5 Paternity analysis ..........................................................................................
Recommended publications
  • The Taxonomy of Primates in the Laboratory Context
    P0800261_01 7/14/05 8:00 AM Page 3 C HAPTER 1 The Taxonomy of Primates T HE T in the Laboratory Context AXONOMY OF P Colin Groves RIMATES School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia 3 What are species? D Taxonomy: EFINITION OF THE The biological Organizing nature species concept Taxonomy means classifying organisms. It is nowadays commonly used as a synonym for systematics, though Disagreement as to what precisely constitutes a species P strictly speaking systematics is a much broader sphere is to be expected, given that the concept serves so many RIMATE of interest – interrelationships, and biodiversity. At the functions (Vane-Wright, 1992). We may be interested basis of taxonomy lies that much-debated concept, the in classification as such, or in the evolutionary implica- species. tions of species; in the theory of species, or in simply M ODEL Because there is so much misunderstanding about how to recognize them; or in their reproductive, phys- what a species is, it is necessary to give some space to iological, or husbandry status. discussion of the concept. The importance of what we Most non-specialists probably have some vague mean by the word “species” goes way beyond taxonomy idea that species are defined by not interbreeding with as such: it affects such diverse fields as genetics, biogeog- each other; usually, that hybrids between different species raphy, population biology, ecology, ethology, and bio- are sterile, or that they are incapable of hybridizing at diversity; in an era in which threats to the natural all. Such an impression ultimately derives from the def- world and its biodiversity are accelerating, it affects inition by Mayr (1940), whereby species are “groups of conservation strategies (Rojas, 1992).
    [Show full text]
  • INTRODUCTION the Anuran Fauna of SE Asia, and Particularly That Of
    HERPETOLOGICAL JOURNAL, Vol. 5, pp. 293-297 (1995) MATING CALLS OF THREE SPECIES OF ANURANS FROM BORNEO M. J. SANCHEZ-HERRAIZ 1, R. MARQUEZ 2, L. J. BARBADILLO 3 AND J. BOSCH 2 1 Dept. Biodiversidad y Biolog[a Evolutiva, Museo Nacional de Ciencias Naturales, C.S.l.C., J. Gutierrez Abascal 2, Madrid 28006, Sp ain 2 Dept. Eco/og[a Evolutiva, Museo Nacional de Ciencias Naturales, C. S.1. C. , J. Gutierrez Abascal 2, Madrid 28006, Sp ain 3 Dept. Bio/og[a, Un iversidad Aut6noma de Madrid, Cantoblanco, 28049 Madrid, Sp ain Mating calls of three anuran species from Borneo, Rana glandulosa, R. signata and Polypedates leucomystax were analysed. The audiospectrograms obtained were compared with previously published descriptions of the calls of these species in different geographic areas. The comparisons revealed a high level of heterogeneity of the calls within the range of R. signata and P. leucomystax. The possible taxonomic implications of these fi ndings are also discussed. The first description of the mating call of R. glandulosa is presented. INTRODUCTION published descriptions of the same species, in an effort to determine the homogeneity of the calls within the The anuran fauna of SE Asia, and particularly that ranges of distribution of the species. These compari­ of Borneo, holds one of the highest levels of diversity sons may suggest lines for futuretaxonomic research. found in the world (Frost, 1985; Groombridge, 1992). In spite of this phenomenon, knowledge about the biology MATERIAL AND METHODS of most species is extremely limited, especially if com­ Specimens were recorded in Borneoin July and Au­ pared with the available information about the gust 1991.
    [Show full text]
  • NATIONAL STUDBOOK Pig Tailed Macaque (Macaca Leonina)
    NATIONAL STUDBOOK Pig Tailed Macaque (Macaca leonina) Published as a part of the Central Zoo Authority sponsored project titled “Development and maintenance of studbooks for selected endangered species in Indian zoos” Data: Till December 2013 Published: March 2014 NATIONAL STUDBOOK Pig Tailed Macaque (Macaca leonine) Published as a part of the Central Zoo Authority sponsored project titled “Development and maintenance of studbooks for selected endangered species in Indian zoos” Compiled and analyzed by Ms. Nilofer Begum Junior Research Fellow Project Consultant Dr. Anupam Srivastav, Ph.D. Supervisors Dr. Parag Nigam Shri. P.C. Tyagi Copyright © WII, Dehradun, and CZA, New Delhi, 2014 This report may be quoted freely but the source must be acknowledged and cited as: Nigam P., Nilofer B., Srivastav A. & Tyagi P.C. (2014) National Studbook of Pig-tailed Macaque (Macaca leonina), Wildlife Institute of India, Dehradun and Central Zoo Authority, New Delhi. FOREWORD For species threatened with extinction in their natural habitats ex-situ conservation offers an opportunity for ensuring their long-term survival. This can be ensured by scientific management to ensure their long term genetic viability and demographic stability. Pedigree information contained in studbooks forms the basis for this management. The Central Zoo Authority (CZA) in collaboration with zoos in India has initiated a conservation breeding program for threatened species in Indian zoos. As a part of this endeavor a Memorandum of Understanding has been signed with the Wildlife Institute of India for compilation and update of studbooks of identified species in Indian zoos. As part of the project outcomes the WII has compiled the studbook for Pig tailed macaque (Macaca leonina) in Indian zoos.
    [Show full text]
  • The Genome of the Vervet (Chlorocebus Aethiops Sabaeus)
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Resource The genome of the vervet (Chlorocebus aethiops sabaeus) Wesley C. Warren,1 Anna J. Jasinska,2,3 Raquel García-Pérez,4 Hannes Svardal,5 Chad Tomlinson,1 Mariano Rocchi,6 Nicoletta Archidiacono,6 Oronzo Capozzi,6 Patrick Minx,1 Michael J. Montague,1 Kim Kyung,1 LaDeana W. Hillier,1 Milinn Kremitzki,1 Tina Graves,1 Colby Chiang,1 Jennifer Hughes,7 Nam Tran,2 Yu Huang,2 Vasily Ramensky,2 Oi-wa Choi,2 Yoon J. Jung,2 Christopher A. Schmitt,2 Nikoleta Juretic,8 Jessica Wasserscheid,8 Trudy R. Turner,9,10 Roger W. Wiseman,11 Jennifer J. Tuscher,11 Julie A. Karl,11 Jörn E. Schmitz,12 Roland Zahn,13 David H. O’Connor,11 Eugene Redmond,14 Alex Nisbett,14 Béatrice Jacquelin,15 Michaela C. Müller-Trutwin,15 Jason M. Brenchley,16 Michel Dione,17 Martin Antonio,17 Gary P. Schroth,18 Jay R. Kaplan,19 Matthew J. Jorgensen,19 Gregg W.C. Thomas,20 Matthew W. Hahn,20 Brian J. Raney,21 Bronwen Aken,22 Rishi Nag,22 Juergen Schmitz,23 Gennady Churakov,23,24 Angela Noll,23 Roscoe Stanyon,25 David Webb,26 Francoise Thibaud-Nissen,26 Magnus Nordborg,5 Tomas Marques-Bonet,4 Ken Dewar,8 George M. Weinstock,27 Richard K. Wilson,1 and Nelson B. Freimer2 1The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA; 2Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA; 3Institute of Bioorganic Chemistry, Polish Academy
    [Show full text]
  • Ancestral Facial Morphology of Old World Higher Primates (Anthropoidea/Catarrhini/Miocene/Cranium/Anatomy) BRENDA R
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 5267-5271, June 1991 Evolution Ancestral facial morphology of Old World higher primates (Anthropoidea/Catarrhini/Miocene/cranium/anatomy) BRENDA R. BENEFIT* AND MONTE L. MCCROSSINt *Department of Anthropology, Southern Illinois University, Carbondale, IL 62901; and tDepartment of Anthropology, University of California, Berkeley, CA 94720 Communicated by F. Clark Howell, March 11, 1991 ABSTRACT Fossil remains of the cercopithecoid Victoia- (1, 5, 6). Contrasting craniofacial configurations of cercopithe- pithecus recently recovered from middle Miocene deposits of cines and great apes are, in consequence, held to be indepen- Maboko Island (Kenya) provide evidence ofthe cranial anatomy dently derived with regard to the ancestral catarrhine condition of Old World monkeys prior to the evolutionary divergence of (1, 5, 6). This reconstruction has formed the basis of influential the extant subfamilies Colobinae and Cercopithecinae. Victoria- cladistic assessments ofthe phylogenetic relationships between pithecus shares a suite ofcraniofacial features with the Oligocene extant and extinct catarrhines (1, 2). catarrhine Aegyptopithecus and early Miocene hominoid Afro- Reconstructions of the ancestral catarrhine morphotype pithecus. AU three genera manifest supraorbital costae, anteri- are based on commonalities of subordinate morphotypes for orly convergent temporal lines, the absence of a postglabellar Cercopithecoidea and Hominoidea (1, 5, 6). Broadly distrib- fossa, a moderate to long snout, great facial
    [Show full text]
  • Hormonal and Morphological Aspects of Growth and Sexual Maturation in Wild-Caught Male Vervet Monkeys (Chlorocebus Aethiops Pygerythrus) Tegan J
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations December 2012 Hormonal and Morphological Aspects of Growth and Sexual Maturation in Wild-Caught Male Vervet Monkeys (Chlorocebus aethiops pygerythrus) Tegan J. Gaetano University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Animal Sciences Commons, Developmental Biology Commons, and the Endocrinology Commons Recommended Citation Gaetano, Tegan J., "Hormonal and Morphological Aspects of Growth and Sexual Maturation in Wild-Caught Male Vervet Monkeys (Chlorocebus aethiops pygerythrus)" (2012). Theses and Dissertations. 30. https://dc.uwm.edu/etd/30 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. HORMONAL AND MORPHOLOGICAL ASPECTS OF GROWTH AND SEXUAL MATURATION IN WILD-CAUGHT MALE VERVET MONKEYS (CHLOROCEBUS AETHIOPS PYGERYTHRUS) by Tegan J. Gaetano A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Anthropology at The University of Wisconsin at Milwaukee December 2012 ABSTRACT ENDOCRINE AND MORPHOLOGICAL ASPECTS OF GROWTH AND SEXUAL MATURATION IN WILD-CAUGHT MALE VERVET MONKEYS (CHLOROCEBUS AETHIOPS PYGERYTHRUS) by Tegan J. Gaetano The University of Wisconsin at Milwaukee, 2012 Under the Supervision of Dr. Trudy R. Turner Knowledge of baseline changes in testosterone (T) and other androgens is central to both investigations of morphological, physiological, and behavioral correlates of inter-individual variation in the timing and shape of key events and transitions over the life course and questions of the evolution of species-specific schedules of maturation in primates.
    [Show full text]
  • Call Characteristics of Two Sympatric and Morphologically Similar Tree
    Asian Herpetological Research 2018, 9(4): 240–249 ORIGINAL ARTICLE DOI: 10.16373/j.cnki.ahr.180025 Call Characteristics of Two Sympatric and Morphologically Similar Tree Frogs Species, Polypedates megacephalus and Polypedates mutus (Anura: Rhacophoridae), from Hainan, China Qiucheng LIU, Tongliang WANG, Xiaofei ZHAI and Jichao WANG* Ministry of Education Key Laboratory for Tropical Island Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China Abstract Anuran calls are usually species-specific and therefore valued as a tool for species identification. Call characteristics are a potential honest signal in sexual selection because they often reflect male body size. Polypedates megacephalus and P. mutus are two sympatric and morphologically similar tree frogs, but it remains unknown whether their calls are associated with body size. In this study, we compared call characteristics of these two species and investigated any potential relationships with body size. We found that P. megacephalus, males produced six call types which consisting of three distinct notes, while P. mutus males produced five types consisting of two types of notes. Dominant frequency, note duration, pulse duration, and call duration exhibited significant interspecific differences. In P. megacephalus, one note exhibited a dominant frequency that was negatively correlated with body mass, snout-vent length, head length, and head width. In P. mutus, the duration of one note type was positively correlated with body mass and head width. These differences in call characteristics may play an important role in interspecific recognition. Additionally, because interspecific acoustic variation reflects body size, calls may be relevant for sexual selection. Taken together, our results confirmed that calls are a valid tool for distinguishing between the two tree-frog species in the field.
    [Show full text]
  • 1704632114.Full.Pdf
    Phylogenomics reveals rapid, simultaneous PNAS PLUS diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary Yan-Jie Fenga, David C. Blackburnb, Dan Lianga, David M. Hillisc, David B. Waked,1, David C. Cannatellac,1, and Peng Zhanga,1 aState Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; bDepartment of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611; cDepartment of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX 78712; and dMuseum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720 Contributed by David B. Wake, June 2, 2017 (sent for review March 22, 2017; reviewed by S. Blair Hedges and Jonathan B. Losos) Frogs (Anura) are one of the most diverse groups of vertebrates The poor resolution for many nodes in anuran phylogeny is and comprise nearly 90% of living amphibian species. Their world- likely a result of the small number of molecular markers tra- wide distribution and diverse biology make them well-suited for ditionally used for these analyses. Previous large-scale studies assessing fundamental questions in evolution, ecology, and conser- used 6 genes (∼4,700 nt) (4), 5 genes (∼3,800 nt) (5), 12 genes vation. However, despite their scientific importance, the evolutionary (6) with ∼12,000 nt of GenBank data (but with ∼80% missing history and tempo of frog diversification remain poorly understood. data), and whole mitochondrial genomes (∼11,000 nt) (7). In By using a molecular dataset of unprecedented size, including 88-kb the larger datasets (e.g., ref.
    [Show full text]
  • 1 Old World Monkeys
    2003. 5. 23 Dr. Toshio MOURI Old World monkey Although Old World monkey, as a word, corresponds to New World monkey, its taxonomic rank is much lower than that of the New World Monkey. Therefore, it is speculated that the last common ancestor of Old World monkeys is newer compared to that of New World monkeys. While New World monkey is the vernacular name for infraorder Platyrrhini, Old World Monkey is the vernacular name for superfamily Cercopithecoidea (family Cercopithecidae is limited to living species). As a side note, the taxon including Old World Monkey at the same taxonomic level as New World Monkey is infraorder Catarrhini. Catarrhini includes Hominoidea (humans and apes), as well as Cercopithecoidea. Cercopithecoidea comprises the families Victoriapithecidae and Cercopithecidae. Victoriapithecidae is fossil primates from the early to middle Miocene (15-20 Ma; Ma = megannum = 1 million years ago), with known genera Prohylobates and Victoriapithecus. The characteristic that defines the Old World Monkey (as synapomorphy – a derived character shared by two or more groups – defines a monophyletic taxon), is the bilophodonty of the molars, but the development of biphilophodonty in Victoriapithecidae is still imperfect, and crista obliqua is observed in many maxillary molars (as well as primary molars). (Benefit, 1999; Fleagle, 1999) Recently, there is an opinion that Prohylobates should be combined with Victoriapithecus. Living Old World Monkeys are all classified in the family Cercopithecidae. Cercopithecidae comprises the subfamilies Cercopithecinae and Colobinae. Cercopithecinae has a buccal pouch, and Colobinae has a complex, or sacculated, stomach. It is thought that the buccal pouch is an adaptation for quickly putting rare food like fruit into the mouth, and the complex stomach is an adaptation for eating leaves.
    [Show full text]
  • Partial Skeleton of Theropithecus Brumpti (Primates, Cercopithecidae) from the Chemeron Formation of the Tugen Hills, Kenya
    Journal of Human Evolution 61 (2011) 347e362 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Partial skeleton of Theropithecus brumpti (Primates, Cercopithecidae) from the Chemeron Formation of the Tugen Hills, Kenya Christopher C. Gilbert a,b,c,*, Emily D. Goble d, John D. Kingston e, Andrew Hill d a Department of Anthropology, Hunter College of the City University of New York, 695 Park Avenue, NY 10021, USA b Department of Anthropology, Graduate Center of the City University of New York, 365 Fifth Avenue, NY 10016, USA c New York Consortium in Evolutionary Primatology, New York, NY, USA d Department of Anthropology, Yale University, PO Box 208277, New Haven, CT 06520-8277, USA e Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA 30322, USA article info abstract Article history: Here we describe a complete skull and partial skeleton of a large cercopithecoid monkey (KNM-TH Received 27 October 2010 46700) discovered in the Chemeron Formation of the Tugen Hills at BPRP Site #152 (2.63 Ma). Associated Accepted 21 April 2011 with the skeleton was a mandible of an infant cercopithecoid (KNM-TH 48364), also described here. KNM-TH 46700 represents an aged adult female of Theropithecus brumpti, a successful Pliocene papionin Keywords: taxon better known from the Omo Shungura Formation in Ethiopia and sites east and west of Lake Cercopithecoid Turkana, Kenya. While the morphology of male T. brumpti is well-documented, including a partial Papionin skeleton with both cranial and postcranial material, the female T. brumpti morphotype is not well- Crania fi Postcrania known.
    [Show full text]
  • Skeletal and Dental Morphology Supports Diphyletic Origin of Baboons and Mandrills (Primate Phylogeny͞papionini͞molecular Systematics͞feeding Ecology)
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 1157–1161, February 1999 Anthropology Skeletal and dental morphology supports diphyletic origin of baboons and mandrills (primate phylogenyyPapioniniymolecular systematicsyfeeding ecology) JOHN G. FLEAGLE*† AND W. SCOTT MCGRAW‡ *Department of Anatomical Sciences, School of Medicine, Health Sciences Center, State University of New York, Stony Brook, NY 11794-8081; and ‡Department of Anatomy, New York College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568 Communicated by David Pilbeam, Harvard University, Cambridge, MA, December 4, 1998 (received for review July 30, 1998) ABSTRACT Numerous biomolecular studies from the that the central African mandrills and drills (Mandrillus) are past 20 years have indicated that the large African monkeys the sister taxon of Cercocebus whereas Lophocebus, Papio, and Papio, Theropithecus, and Mandrillus have a diphyletic rela- Theropithecus form a separate, unresolved clade. tionship with different species groups of mangabeys. Accord- Despite considerable molecular evidence that mandrills are ing to the results of these studies, mandrills and drills phylogenetically distinct from baboons and geladas and mor- (Mandrillus) are most closely related to the torquatus–galeritus phological studies documenting differences between Cercoce- group of mangabeys placed in the genus Cercocebus, whereas bus and Lophocebus, there is limited morphological evidence baboons (Papio) and geladas (Theropithecus) are most closely supporting the Cercocebus–Mandrillus
    [Show full text]
  • Developmental Instability in Wild Nigerian Olive Baboons (Papio Anubis)
    Developmental instability in wild Nigerian olive baboons (Papio anubis) Kara C. Hoover1,2, Emily Gelipter3, Volker Sommer4,5 and Kris Kovarovic3 1 Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK, United States of America 2 Department of Biochemistry and Molecular Biology, University of Alaska—Fairbanks, Fairbanks, AK, United States of America 3 Department of Anthropology, Durham University, Durham, United Kingdom 4 Gashaka Primate Project, Serti, Taraba, Nigeria 5 Department of Anthropology, University College London, University of London, London, United Kingdom ABSTRACT Background: Developmental instability in archaeological samples can be detected through analysis of skeletal and dental remains. During life, disruptions to biological internal homeostasis that occur during growth and development redirect bodily resources to returning to homeostasis and away from normal processes such as symmetrical development. Because dental enamel does not remodel in life, any deviations from normal development are left behind. Even subtle disturbances to developmental trajectory may be detected in asymmetrical development of traits, specifically a random variation in sides termed fluctuating asymmetry. Human dental fluctuating asymmetry studies are common, but here we investigate the permanent dentition of a non-human primate Papio anubis, for potential fluctuating asymmetry relative to sex, weaning, and reproductive maturity. The sample stems from an outlier population that lives in the wettest and most humid habitat of any studied baboon group. Methods: The skulls of adult baboons were collected after their natural death in Gashaka Gumti National Park, Nigeria. The permanent dentition of antimeric teeth Submitted 16 March 2021 30 June 2021 (paired) were measured for maximum length and breadth using standard methods.
    [Show full text]