Chapter 6 an Introduction to Hydrodynamic Stability

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 6 an Introduction to Hydrodynamic Stability Chapter 6 An Introduction to Hydrodynamic Stability Anubhab Roy and Rama Govindarajan Abstract In this chapter, our objective is twofold: (1) to describe common physical mechanisms which cause flows to become unstable, and (2) to introduce recent viewpoints on the subject. In the former, we present some well-known instabili- ties, and also discuss how surface tension and viscosity can act as both stabilisers and destabilisers. The field has gone through a somewhat large upheaval over the last two decades, with the understanding of algebraic growth of disturbances, and of absolute instability. In the latter part we touch upon these aspects. 6.1 Introduction “... not every solution of the equations of motion, even if it is exact, can actually occur in Nature. The flows that occur in Nature must not only obey the equations of fluid dynamics, but also be stable.” – Landau & Lifshitz Flow stability has preoccupied fluid dynamicists for centuries. The ubiquitous nature of turbulence, and the inability to offer a universal theory of it, led many to try tackling what was perceived as a simpler problem: of transition from a laminar state to a turbulent one. In the last two centuries, such efforts many-a-times have offered remarkable insight and helped make successful predictions. The description has undergone major reforms from time to time, and the complete process is not fully understood. The transition to turbulence begins usually with an instability of the laminar state, which is the subject of this brief review. An effort is made to address the basic tenets of hydrodynamic stability with a focus on a few recent viewpoints on the subject. R. Govindarajan () Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India e-mail: [email protected] J.M. Krishnan et al. (eds.), Rheology of Complex Fluids, 131 DOI 10.1007/978-1-4419-6494-6 6, © Springer Science+Business Media, LLC 2010 132 A. Roy and R. Govindarajan Fig. 6.1 Normal modes. (a) A double pendulum exhibiting 2 normal modes – symmetric and anti-symmetric oscillations (b) A vibrating string with the first seven of its infinite normal modes Early studies in hydrodynamic stability arose in the theory of water waves by Newton followed by seminal work by Laplace, Cauchy, Poisson and later, by Stokes. Incidentally, most of the early work was done before the world got acquainted with Fourier series, although Cauchy employed defacto Fourier transforms [5, 6]. The advent of harmonic analysis facilitated the study of stability of mechanical sys- tems by introducing the notion of normal modes. A normal mode is a pattern of oscillations in which the entire system oscillates in space/time with the same wave- length/frequency. A coupled pendulum with two degrees of freedom has two normal modes, whereas a vibrating string has infinitely many normal modes, often labelled as harmonics in musical instruments (Fig. 6.1). The beauty of normal modes lies in their ability to offer a complete description for the evolution of any arbitrary dis- turbance in most cases. Helmholtz, Kelvin and Rayleigh were among the earliest to use normal modes to describe problems in hydrodynamic stability. We will discuss some instabilities named after them. 6.2 Waves in Fluids The variety of available restoring mechanisms allow a plethora of waves in flu- ids [20]. To name a few – compressibility gives rise to sound waves, variation in buoyancy leads to gravity waves, inertial waves owe their origin to rotation, mag- netic fields lead to Alfven waves, whereas a latitudinal variation of Coriolis force leads to Rossby waves. A typical example to understand the generation of oscillations in fluids is internal gravity waves. Consider a fluid at rest, whose density .z/ increases with the depth z, i.e., the fluid is stably stratified, with heavier fluid at the bottom and lighter fluid above. A fluid parcel of density 0 at z0, when displaced upward by a distance ız,is now surrounded by lighter fluid and thus sinks. In the absence of retarding forces due to viscosity, it would then overshoot its mean position and reach a neighbourhood of heavier fluid, where it experiences an upward thrust (Fig. 6.2). From Newton’s second law we have d2ız 0 Dı g; (6.1) dt 2 6 An Introduction to Hydrodynamic Stability 133 Fig. 6.2 Oscillations in a continuously and stably stratified fluid where g is the acceleration due to gravity and ı is the density difference between the parcel and the ambient fluid at z0 C ız.Sinceı is infinitesimal, it can be ex- pressed as ı Dız d=dz. We may rewrite (6.1)as 2 d ız C 2 D 2 N ız 0; (6.2) dt s g d where N D dz is the oscillation frequency, called the Brunt–V¨ais¨al¨a frequency. Thus, buoyancy provides a restoring force in this oscillatory motion. The reader can easily predict the effect of viscous forces on this oscillatory motion. Such wave-like motion in fluids is abundant in nature. Ripples generated on the surface of a pond to giant waves in oceans – all can be appreciated as oscillations over a quiescent flow state. 6.3 Instabilities We have given an example of a stable system in the above section, where the os- cillations are at best neutral, i.e., continue for ever with the same amplitude, and in most real situations, are damped out by a retarding force. What of the opposite situation, i.e., one in which small oscillations grow in amplitude? This is a common way in which a flow becomes unstable. In the above example, if the sign of d=dz were to be flipped, i.e., if the fluid were to be unstably stratified, one can see that the parcel of fluid would get accelerated away from its starting position rather than oscillate. In many flows, one may have growing oscillations instead, which could either be followed quite abruptly by a transition to turbulence, or be the first step in a long and eventful march towards turbulence. Flow instabilities occur all around 134 A. Roy and R. Govindarajan us in both desirable and undesirable situations. Thanks to the efforts of numerous remarkable mathematicians, engineers and physicists, a lot is known about them, but more continues to bewilder us. We consider a few model flow situations, concentrating on the physical mech- anisms responsible for destabilising simple orderly flows and taking them to a completely different state. We first discuss linear instability, i.e., when the orderly state is given a very small perturbation, and examine whether the resulting oscil- lations grow or decay. For extensions to more complicated flows, the interested reader may consult standard textbooks, some of which are listed at the end of this chapter. 6.3.1 Effect of Shear: Kelvin–Helmholtz Instability The classical problem serving as an excellent introduction to hydrodynamic instabil- ity is that of Kelvin–Helmholtz. Imagine two uniform streams of different velocities flowing past each other. Such a scenario is very commonly observed in nature, and is known as a mixing layer. The jump in the velocity across a layer of infinitesi- mal thickness is described as a vortex sheet (Fig. 6.3b). The vortex sheet consists of a constant density of point vortices, with their vorticities pointing out of the pa- per. The physical mechanism for the instability as described by Batchelor [2] relies purely on vortex dynamics. Let the vortex sheet be perturbed by a sinusoidal distur- bance so that the perturbed interface is located at D sin kx. In the neighbourhood of the nodes (A and B), the positive vorticity induces a clockwise circulating veloc- ity field. If @=@x > 0, the crest and trough move away from each other, leading to vorticity being swept off from nodes like A, whereas if @=@x < 0, the crest and trough come closer to each other, leading to vorticity being swept into nodes like B. Thus, accumulation of vorticity at points like B takes place unboundedly in the linear, non-dissipative scenario, giving exponential growth. This mechanism translates into the celebrated Rayleigh–Fjørtoft criterion in inviscid parallel shear flows – that there should exist a vorticity maximum somewhere in the base flow for instability to occur. To see the linear instability mathematically, we begin with the Euler equations in two dimensions (which are equivalent to the Navier–Stokes equa- tions without viscosity). Here, u is the component of the velocity in the streamwise Fig. 6.3 Kelvin–Helmholtz instability. (a) represents the unperturbed state and (b)the corresponding vortex sheet base state. A sinusoidal perturbation is imposed on the vortex sheet (c)which amplifies through vorticity induction (d) 6 An Introduction to Hydrodynamic Stability 135 direction x,andv the component in the normal direction z. We then split all flow quantities into their mean and a perturbed value, such as u D U.z/COu.x; z;t/.Intwo dimensions for an incompressible flow, the continuity equation r:u enables us to write both components of the velocity vector u in terms of the stream function , as u D @ =@y,andv D @ =@x. The perturbed quantities are considered in their normal mode form, such as O .x; z;t/ D .z/ expŒik.x ct/,wherek and c are the wavenumber and wave speed, respectively, with c D !=k, ! being the fre- quency of the disturbance. In the discussion here, we allow !, and therefore c,tobe a complex quantity, whose imaginary part tells us whether the disturbance grows or decays. We take the disturbance to be much smaller than the undisturbed flow, and so compared to the perturbation, we may neglect products of perturbation quantities, and the resulting equations are linear in the perturbations.
Recommended publications
  • James Clerk Maxwell
    James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only.
    [Show full text]
  • Principles of Instability and Stability in Digital PID Control Strategies and Analysis for a Continuous Alcoholic Fermentation Tank Process Start-Up
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 July 2019 doi:10.20944/preprints201809.0332.v2 Principles of Instability and Stability in Digital PID Control Strategies and Analysis for a Continuous Alcoholic Fermentation Tank Process Start-up Alexandre C. B. B. Filhoa a Faculty of Chemical Engineering, Federal University of Uberlândia (UFU), Av. João Naves de Ávila 2121 Bloco 1K, Uberlândia, MG, Brazil. [email protected] Abstract The art work of this present paper is to show properly conditions and aspects to reach stability in the process control, as also to avoid instability, by using digital PID controllers, with the intention of help the industrial community. The discussed control strategy used to reach stability is to manipulate variables that are directly proportional to their controlled variables. To validate and to put the exposed principles into practice, it was done two simulations of a continuous fermentation tank process start-up with the yeast strain S. Cerevisiae NRRL-Y-132, in which the substrate feed stream contains different types of sugar derived from cane bagasse hydrolysate. These tests were carried out through the resolution of conservation laws, more specifically mass and energy balances, in which the fluid temperature and level inside the tank were the controlled variables. The results showed the facility in stabilize the system by following the exposed proceedings. Keywords: Digital PID; PID controller; Instability; Stability; Alcoholic fermentation; Process start-up. © 2019 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 July 2019 doi:10.20944/preprints201809.0332.v2 1.
    [Show full text]
  • Hydrodynamic Instabilities in Laser Produced Plasmas
    the united nations educational, scientific abdus salam and cultural organization international centre for theoretical physics international atomic energy agency SMR 1521/17 AUTUMN COLLEGE ON PLASMA PHYSICS 13 October - 7 November 2003 Hydrodynamic Instabilities in Laser Produced Plasmas S. Atzeni Universita' "La Sapienza" and INFM Roma, Italy These are preliminary lecture notes, intended only for distribution to participants. strada costiera, I I - 34014 trieste italy - tel.+39 040 22401 I I fax+39 040 224163 - [email protected] -www.ictp.trieste.it UNIVERSITA' DEGLI STUDI DI ROMA LA SAPIENZA DIPARTIMENTO DI ENERGETICA Hydrodynamic Instabilities in Laser Produced Plasmas Stefano Atzeni Dipartimento di Energetica Universita di Roma "La Sapienza" and INFM Via A. Scarpa, 14-16, 00161 Roma, Italy E-mail: [email protected] Autumn College on Plasma Physics The Abdus Salam International Centre for Theoretical Physics Trieste, 13 October - 7 November 2003 The following material is Chapter 8 of the book "Physics of inertial confinement fusion" by S. Atzeni and J. Meyer-ter-Vehn Clarendon Press, Oxford (to appear in Spring 2004) -io Ok) 8 HYDRODYNAMIC STABILITY This chapter is devoted to hydrodynamic instabilities. ICF capsule implosions are inherently unstable. In particular, the Rayleigh-Taylor instability (RTI) tends to destroy the imploding shell (see Fig. 8.1). It should be clear that the goal of central hot spot ignition depends most critically on how to control the instability. Fig. 8.1 This is a major challenge facing ICF. For this reason, large efforts have been undertaken over the last two decades to study all aspects of RTI and related instabilities.
    [Show full text]
  • Control Theory
    Control theory S. Simrock DESY, Hamburg, Germany Abstract In engineering and mathematics, control theory deals with the behaviour of dynamical systems. The desired output of a system is called the reference. When one or more output variables of a system need to follow a certain ref- erence over time, a controller manipulates the inputs to a system to obtain the desired effect on the output of the system. Rapid advances in digital system technology have radically altered the control design options. It has become routinely practicable to design very complicated digital controllers and to carry out the extensive calculations required for their design. These advances in im- plementation and design capability can be obtained at low cost because of the widespread availability of inexpensive and powerful digital processing plat- forms and high-speed analog IO devices. 1 Introduction The emphasis of this tutorial on control theory is on the design of digital controls to achieve good dy- namic response and small errors while using signals that are sampled in time and quantized in amplitude. Both transform (classical control) and state-space (modern control) methods are described and applied to illustrative examples. The transform methods emphasized are the root-locus method of Evans and fre- quency response. The state-space methods developed are the technique of pole assignment augmented by an estimator (observer) and optimal quadratic-loss control. The optimal control problems use the steady-state constant gain solution. Other topics covered are system identification and non-linear control. System identification is a general term to describe mathematical tools and algorithms that build dynamical models from measured data.
    [Show full text]
  • Local and Global Instability of Buoyant Jets and Plumes
    XXIV ICTAM, 21-26 August 2016, Montreal, Canada LOCAL AND GLOBAL INSTABILITY OF BUOYANT JETS AND PLUMES Patrick Huerre1a), R.V.K. Chakravarthy1 & Lutz Lesshafft 1 1Laboratoire d’Hydrodynamique (LadHyX), Ecole Polytechnique, Paris, France Summary The local and global linear stability of buoyant jets and plumes has been studied as a function of the Richardson number Ri and density ratio S in the low Mach number approximation. Only the m = 0 axisymmetric mode is shown to become globally unstable, provided that the local absolute instability is strong enough. The helical mode of azimuthal wavenumber m = 1 is always globally stable. A sensitivity analysis indicates that in buoyant jets (low Ri), shear is the dominant contributor to the growth rate, while, for plumes (large Ri), it is the buoyancy. A theoretical prediction of the Strouhal number of the self-sustained oscillations in helium jets is obtained that is in good agreement with experimental observations over seven decades of Richardson numbers. INTRODUCTION Buoyant jets and plumes occur in a wide variety of environmental and industrial contexts, for instance fires, accidental gas releases, ventilation flows, geothermal vents, and volcanic eruptions. Understanding the onset of instabilities leading to turbulence is a research challenge of great practical and fundamental interest. Somewhat surprisingly, there have been relatively few studies of the linear stability properties of buoyant jets and plumes, in contrast to the related purely momentum driven classical jet. In the present study, local and global stability analyses are conducted to account for the self-sustained oscillations experimentally observed in buoyant jets of helium and helium-air mixtures [1].
    [Show full text]
  • Convective to Absolute Instability Transition in a Horizontal Porous Channel with Open Upper Boundary
    fluids Article Convective to Absolute Instability Transition in a Horizontal Porous Channel with Open Upper Boundary Antonio Barletta * and Michele Celli Department of Industrial Engineering, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-051-209-3287 Academic Editor: Mehrdad Massoudi Received: 28 April 2017; Accepted: 10 June 2017; Published: 14 June 2017 Abstract: A linear stability analysis of the parallel uniform flow in a horizontal channel with open upper boundary is carried out. The lower boundary is considered as an impermeable isothermal wall, while the open upper boundary is subject to a uniform heat flux and it is exposed to an external horizontal fluid stream driving the flow. An eigenvalue problem is obtained for the two-dimensional transverse modes of perturbation. The study of the analytical dispersion relation leads to the conditions for the onset of convective instability as well as to the determination of the parametric threshold for the transition to absolute instability. The results are generalised to the case of three-dimensional perturbations. Keywords: porous medium; Rayleigh number; absolute instability 1. Introduction Cellular convection patterns may develop in an underlying horizontal flow under appropriate thermal boundary conditions. The classic setup for the thermal instability of a horizontal fluid flow is heating from below, and the well-known type of instability is Rayleigh-Bénard [1]. Such a situation can happen in a channel fluid flow or in the filtration of a fluid within a porous channel. Both cases are widely documented in the literature [1,2].
    [Show full text]
  • Microwave Heating of Fluid/Solid Layers : a Study of Hydrodynamic Stability
    Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty. ASAC MICOWAE EAIG O UI/SOI AYES A SUY O YOYAMIC SAIIY A MEIG O OAGAIO y o Gicis In this work we study the effects of externally induced heating on the dynamics of fluid layers, and materials composed of two phases separated by a thermally driven moving front. One novel aspect of our study, is in the nature of the external source which is provided by the action of microwaves acting on dielectric materials.
    [Show full text]
  • Astrophysical Fluid Dynamics: II. Magnetohydrodynamics
    Winter School on Computational Astrophysics, Shanghai, 2018/01/30 Astrophysical Fluid Dynamics: II. Magnetohydrodynamics Xuening Bai (白雪宁) Institute for Advanced Study (IASTU) & Tsinghua Center for Astrophysics (THCA) source: J. Stone Outline n Astrophysical fluids as plasmas n The MHD formulation n Conservation laws and physical interpretation n Generalized Ohm’s law, and limitations of MHD n MHD waves n MHD shocks and discontinuities n MHD instabilities (examples) 2 Outline n Astrophysical fluids as plasmas n The MHD formulation n Conservation laws and physical interpretation n Generalized Ohm’s law, and limitations of MHD n MHD waves n MHD shocks and discontinuities n MHD instabilities (examples) 3 What is a plasma? Plasma is a state of matter comprising of fully/partially ionized gas. Lightening The restless Sun Crab nebula A plasma is generally quasi-neutral and exhibits collective behavior. Net charge density averages particles interact with each other to zero on relevant scales at long-range through electro- (i.e., Debye length). magnetic fields (plasma waves). 4 Why plasma astrophysics? n More than 99.9% of observable matter in the universe is plasma. n Magnetic fields play vital roles in many astrophysical processes. n Plasma astrophysics allows the study of plasma phenomena at extreme regions of parameter space that are in general inaccessible in the laboratory. 5 Heliophysics and space weather l Solar physics (including flares, coronal mass ejection) l Interaction between the solar wind and Earth’s magnetosphere l Heliospheric
    [Show full text]
  • Symmetric Stability/00176
    Encyclopedia of Atmospheric Sciences (2nd Edition) - CONTRIBUTORS’ INSTRUCTIONS PROOFREADING The text content for your contribution is in its final form when you receive your proofs. Read the proofs for accuracy and clarity, as well as for typographical errors, but please DO NOT REWRITE. Titles and headings should be checked carefully for spelling and capitalization. Please be sure that the correct typeface and size have been used to indicate the proper level of heading. Review numbered items for proper order – e.g., tables, figures, footnotes, and lists. Proofread the captions and credit lines of illustrations and tables. Ensure that any material requiring permissions has the required credit line and that we have the relevant permission letters. Your name and affiliation will appear at the beginning of the article and also in a List of Contributors. Your full postal address appears on the non-print items page and will be used to keep our records up-to-date (it will not appear in the published work). Please check that they are both correct. Keywords are shown for indexing purposes ONLY and will not appear in the published work. Any copy editor questions are presented in an accompanying Author Query list at the beginning of the proof document. Please address these questions as necessary. While it is appreciated that some articles will require updating/revising, please try to keep any alterations to a minimum. Excessive alterations may be charged to the contributors. Note that these proofs may not resemble the image quality of the final printed version of the work, and are for content checking only.
    [Show full text]
  • Hydrodynamic Stability and Turbulence in Fibre Suspension Flows Mathias
    Hydrodynamic stability and turbulence in fibre suspension flows by Mathias Kvick May 2012 Technical Reports from Royal Institute of Technology KTH Mechanics SE-100 44 Stockholm, Sweden Akademisk avhandling som med tillst˚andav Kungliga Tekniska H¨ogskolan i Stockholm framl¨aggestill offentlig granskning f¨oravl¨aggandeav teknologie licentiatsexamen den 12 juni 2012 kl 14.00 i Seminarierrummet, Brinellv¨agen 32, Kungliga Tekniska H¨ogskolan, Stockholm. c Mathias Kvick 2012 Universitetsservice US{AB, Stockholm 2012 Mathias Kvick 2012, Hydrodynamic stability and turbulence in fibre suspension flows Wallenberg Wood Science Center & Linn´eFlow Centre KTH Mechanics SE{100 44 Stockholm, Sweden Abstract In this thesis fibres in turbulent flows are studied as well as the effect of fibres on hydrodynamic stability. The first part of this thesis deals with orientation and spatial distribution of fibres in a turbulent open channel flow. Experiments were performed for a wide range of flow conditions using fibres with three aspect ratios, rp = 7; 14; 28. The aspect ratio of the fibres were found to have a large impact on the fibre orientation distribution, where the longer fibres mainly aligned in the streamwise direction and the shorter fibres had an orientation close to the spanwise direction. When a small amount of polyethyleneoxide (PEO) was added to the flow, the orientation distributions for the medium length fibres were found to ap- proach a more isotropic state, while the shorter fibres were not affected. In most of the experiments performed, the fibres agglomerated into stream- wise streaks. A new method was develop in order to quantify the level of ag- glomeration and the streak width independent of fibre size, orientation and concentration as well as image size and streak width.
    [Show full text]
  • The Counter-Propagating Rossby-Wave Perspective on Baroclinic Instability
    Q. J. R. Meteorol. Soc. (2005), 131, pp. 1393–1424 doi: 10.1256/qj.04.22 The counter-propagating Rossby-wave perspective on baroclinic instability. Part III: Primitive-equation disturbances on the sphere 1∗ 2 1 3 CORE By J. METHVEN , E. HEIFETZ , B. J. HOSKINS and C. H. BISHOPMetadata, citation and similar papers at core.ac.uk 1 Provided by Central Archive at the University of Reading University of Reading, UK 2Tel-Aviv University, Israel 3Naval Research Laboratories/UCAR, Monterey, USA (Received 16 February 2004; revised 28 September 2004) SUMMARY Baroclinic instability of perturbations described by the linearized primitive equations, growing on steady zonal jets on the sphere, can be understood in terms of the interaction of pairs of counter-propagating Rossby waves (CRWs). The CRWs can be viewed as the basic components of the dynamical system where the Hamil- tonian is the pseudoenergy and each CRW has a zonal coordinate and pseudomomentum. The theory holds for adiabatic frictionless flow to the extent that truncated forms of pseudomomentum and pseudoenergy are globally conserved. These forms focus attention on Rossby wave activity. Normal mode (NM) dispersion relations for realistic jets are explained in terms of the two CRWs associated with each unstable NM pair. Although derived from the NMs, CRWs have the conceptual advantage that their structure is zonally untilted, and can be anticipated given only the basic state. Moreover, their zonal propagation, phase-locking and mutual interaction can all be understood by ‘PV-thinking’ applied at only two ‘home-bases’— potential vorticity (PV) anomalies at one home-base induce circulation anomalies, both locally and at the other home-base, which in turn can advect the PV gradient and modify PV anomalies there.
    [Show full text]
  • 5-1 Rudiments of Hydrodynamic Instability
    1 Notes on 1.63 Advanced Environmental Fluid Mechanics Instructor: C. C. Mei, 2002 [email protected], 1 617 253 2994 October 30, 2002 Chapter 5. Rudiments of hydrodynamic instability References: Drazin: Introduction to hydrodynamic stability Chandrasekar: Hydrodynamic and hydromagnatic instability Stuart: Hydrodynamic stability,inRosenhead(ed):Laminar boundary layers Lin : Theory of Hydrodynamic stability Drazin and Reid : Hydrodynamic stability Schlichting: Boundary layer theory C.S. Yih, 1965, Dynamics of Inhomogeneous Fluids, MacMillan. −−−−−−−−−−−−−−−−−−− Various factors can be crucial to hydrodynamic instability.: shear, gravity, surface tension, heat, centrifugal force, etc. Some instabilities lead to a different flow; some to turbulence. We only discuss the linearized analysis of instability. Let us take the parallel flow as an example and outline the standard procedure of lin- earized analysis as follows: 1. Let the basic flow have velocity U(z)inthex direction. 2. Derive the linearized equation for infinitestimal perturbations and homogeneous bound- ary conditions. 3. Consider sinusoidal wave- like disturbances so that all unknowns are of the form ¯ i(kx ωt) fi = fi(z)e − 4. Reduce the partial differential equations to ordinary differential equation(s), hence obtain an eignevalue problem. 5. Solve for the eigenvalue ω for a given and real k. 6. If the eigenvalue is complex, ω = ωr +iωi, find the condition under which ωi > 0. Since iωt i(ωr+iωi)t iωrt ωit e− = e− = e− e , the flow is unstable ωi > 0 as time grows, stable if ωi < 0, and neutrally stable if ωi =0. 2 5.1 Kelvin-Helmholtz instability of flow with discon- tinuous shear and stratification.
    [Show full text]