bioRxiv preprint doi: https://doi.org/10.1101/2021.06.15.448607; this version posted June 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. MyoD-Cre driven alterations in K-Ras and p53 lead to a mouse model with histological and molecular characteristics of human rhabdomyosarcoma with direct translational applications Kengo Nakahata1, Brian W. Simons2, Enrico Pozzo3, Ryan Shuck1, Lyazat Kurenbekova1, Cristian Coarfa4,6 Tajhal D. Patel1, and Jason T. Yustein*1,5,6 1Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030 2Center for Comparative Medicine, Baylor College of Medicine, Houston, TX 77030 3Translational Cardiomyology Laboratory, Stem Cell Research Institute, Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium. 4Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 5Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030 6Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, TX 77030 *Corresponding Author Corresponding Author: Jason T. Yustein, MD, PhD 1102 Bates St., Suite 1025.07 Houston, Texas 77030 832-824-4601 (Office)
[email protected] ORCID: https://orcid.org/0000-0002-2052-0527 - 1 - bioRxiv preprint doi: https://doi.org/10.1101/2021.06.15.448607; this version posted June 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.