Environmental Analysis of Zirconium Alloy Production

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Analysis of Zirconium Alloy Production UPTEC-F11061 Examensarbete 30 hp December 2011 Environmental analysis of zirconium alloy production Mikael Lundberg Abstract Environmental analysis of zirconium alloy production Mikael Lundberg Teknisk- naturvetenskaplig fakultet UTH-enheten The generation of electricity in light water nuclear power plants uses Besöksadress: zirconium alloys as the primary Ångströmlaboratoriet Lägerhyddsvägen 1 containment and cladding of the nuclear Hus 4, Plan 0 fuel. The environmental impacts of the production of zirconium alloys have been Postadress: analyzed form a lifecycle perspective. Box 536 751 21 Uppsala From the mining of the zirconium-bearing mineral zircon to the finished zirconium Telefon: alloy tube. A qualitative study 018 – 471 30 03 indentifying the production processes Telefax: and their potential environmental 018 – 471 30 00 impacts have been performed. A quantitative study to perform a Hemsida: lifecycle analysis of the zircon mining http://www.teknat.uu.se/student and mineral separation was carried out. The life cycle analysis for the zircon mining was compared to the current lifecycle analysis (LCA) in Vattenfall's Forsmark nuclear power plant environmental product declaration (EPD). The results showed that the additional impact on Forsmark's EPD, when including the mining of zircon, is below 0.1% of the current levels for all parameters analyzed. A lifecycle analysis for the production of zirconium metal and zirconium alloy tube could not be performed due to lack of data from the zirconium metal industry. The major direct emissions from the zircon mining industry are related to the use of fossile fuels in machinery. The major direct emissions from the zirconium metal manufactoring industry are related to the use of acids. Handledare: Lasse Kyläkorpi Ämnesgranskare: Mattias Lantz Examinator: Thomas Nyberg ISSN: 1401-5757, UPTEC-F11061 Sponsor: Vattenfall AB 0.1 Popul¨arvetenskaplig sammanfattning Zirkoniumlegeringen zircalloy anv¨andssom konstruktionsmaterial vid tillverkn- ing av k¨arnbr¨ansleti dagens k¨arnkraftverk av l¨attvattentyp. Legeringen zircal- loy som anv¨andsf¨oratt innesluta uranet som ¨arsj¨alva k¨allantill energiutvinnin- gen i ett k¨arnkraftverk. Vid tillverkningen av k¨arnbr¨ansleplaceras uran i form av sm˚akutsar i l˚angar¨orav zircalloy, dessa r¨ormonteras sedan ihop paket om ett hundratal r¨orf¨oratt bygga upp ett br¨ansleelement. Det ¨ardessa br¨ansleelement som laddas in i k¨arnkraftveken varje ˚arvid revisionsavst¨allningen. Br¨ansle- inkapslingen av zicalloy har tv˚ahuvudsakliga funktioner, dels att h˚allaurankut- sarna p˚aplats, dels att fungera som en barri¨arf¨oratt f¨orhindraspridning av radioaktiva ¨amnen. Anledningen till att zirkoniumlegeringar anv¨andssom br¨ansleinkapsling ¨aratt zirkonium ¨armotst˚andskraftigtmot korrosion samt att det l¨attsl¨apper igenom de neutroner som bildas vid k¨arnklyvningar och som kr¨avsf¨oratt uppr¨atth˚allaklyvningen av uranatomerna. Denna rapport syftar till att unders¨oka milj¨oaspekterna av tillverkningen av zirkoniumlegeringar, fr˚angruvbrytning av den zirkoniuminneh˚allandemineralen zirkon till tillverkningen av de zircalloy-r¨orsom anv¨andsf¨ork¨arnbr¨ansletillverkning. Rapporten behandlar inte sj¨alva tillverkningen av k¨arnbr¨ansled¨arurankutsar monteras i zircalloy-r¨orf¨oratt bilda br¨ansleelement. Fokus i rapporten ligger p˚aatt kvalitativt beskriva hur gruvbrytningen och tillverkningsprocessen g˚ar till samt att kvantitativt beskriva hur stora de utsl¨appsom f¨orekommer ¨ar. Zirkonium utvinns ur mineralen zirkon som ¨aren zirkonium-kisel-oxid som ¨ar vanligt f¨orekommande i naturen. Mineralen f¨orekommer i l˚agakoncentrationen i vulkanisk berggrund. N¨arberggrunden eroderar frig¨orsmineraler som sand- korn som sprids med vatten och vind. P˚agrund av att zirkon ¨artyngre ¨an den vanlig kiseloxid sand sedimenteras och koncentreras zirkonsanden i sand- bankar p˚astr¨anderoch sanddyner tillsammans med andra tyngre metaller som titan, uran, torium och s¨allsynta jordartsmetaller. Dagens gruvbrytning sker fr˚anfyndigheter d¨arzirkonsanden koncentrerats under perioderna mellan de senaste istiderna. Den st¨orsta delen av brytningen sker fr˚annuvarande eller historiska havsstr¨ander. De l¨andermed de st¨orstafyndigheterna och st¨orsta produktionen ¨arAustralien och Sydafrika som tillsammans st˚arf¨orca 2/3 av b˚adefyndigheterna och produktionen. Gruvbrytningen sker fr˚anoftast fr˚ansanddyner som ˚aterfinnsett flertal me- ter under markytan, d¨armedbeh¨over de ¨ovrejordlagren flyttas. Detta sker vanligtvis med lastmaskiner, dumpers och bulldozers men om grundvatten- f¨oruts¨attningarna¨arde r¨attasanv¨andsen mudderteknik d¨arsanden blandas med vatten och sugs upp. Marken ˚aterst¨allskontinuerligt i takt med att bryt- ningen f¨oljermalmkroppen fram˚at.Sanden f¨orstill ett anrikningsverk som kon- centrerar den tunga mineralsanden. Denna process bygger enbart p˚afysikalisk separering, inga kemikalier anv¨ands. Zirkonet anrikas genom sedimentering, elektrostatiskt och magnetisk separation. Den stora milj¨op˚averkan fr˚anbryt- nings och anrikningsprocesserna kommer ifr˚ande stora markytorna som sk¨ovlas f¨oratt komma ˚atmalmen och fr˚ande utsl¨appsom sker fr˚anf¨orbr¨anning av fos- sila br¨ansleni de maskiner som anv¨ands.Uran och toriumhalten i mineralerna medf¨or¨aven radiologiska krav p˚aarbetsmilj¨o˚atg¨arder. 3 Det anrikade zirkonet skeppas sedan till producenterna av zirkonium metall d¨arsanden genomg˚aren serie kemiska processer f¨oratt separera zirkonium fr˚an kisel och sedan zirkonium fr˚anhafnium. F¨oratt avl¨agsnakisel anv¨andsen h¨ogtemperaturprocess med tillsats att kol och klor. F¨orseparationen av zirko- nium fr˚anhafnium anv¨andsen av tv˚aolika metoder beroende p˚atillverkare den ena processen anv¨anderen kalium-aluminium-klorid saltsm¨alte-separation den andra processen anv¨ander l¨osningsmedletmetylisobutylketon samt saltsyra, svavelsyra och ammoniumhydroxid. Metallen reduceras med magnesium f¨or att rena bort kloridrester och vakuumdestilleras tills en por¨ossubstans kallad "zirkoniumsvamp" ˚aterst˚ar. Den stora milj¨op˚averkan h¨ar¨arutsl¨appav b˚ade l¨osningsmedeloch syror samt de rester av uran och torium som f¨allsut i pro- cessen. Den rena por¨osazirkoniumsvampen sm¨altsner till solida zirkonium stavar som sedan smids i en serie av processer f¨oratt producera de s¨oml¨osar¨orsom anv¨ands vid tillverkningen av k¨arnbr¨ansle. F¨orstkompakteras zirkoniumsvampen i en press till n˚agotsom kan liknas med gigantiska svetspinnar, som sedan sm¨alts ner i en vakuumugn som fungerar som en gigantisk pinnsvets. Sm¨altanstel- nar till en cylinder som sedan smids ut till l¨angre cylindrar som kapas upp min kortare bitar. Ett h˚alborras genom centrum av de kortare cylindrarna, sedan kl¨asde med ett sm¨orjandematerial innan de pressas ut till l˚angas¨oml¨osa r¨or. Det sm¨orjandematerialet tas bort med v¨atefluoridoch salpetersyra in- nan r¨orenr¨atasupp och kapas till sin slutliga l¨angd.Den st¨orstamilj¨op˚averkan fr˚andenna process ¨arenergi˚atg˚angenfr˚ansm¨altnings och smidnings processerna samt anv¨andandetav v¨atefluorid och salpetersyra. Ett m˚almed rapporten ¨aratt genomf¨oraen analys f¨oratt se hur stor p˚averkan zirkonium legerings tillverkningen har p˚autsl¨appen fr˚an1kWh el producerad vid ett svenskt k¨arnkraftverk. M˚aletvar att genomf¨oraen livscykelanalys av tillverkningen av zircalloy-r¨or,detta kunde tyv¨arrinte genomf¨orasp˚agrund av brist p˚adata fr˚antillverkarna av zirkoniumsvamp och zircalloy-r¨or.Endast en analys av gruvbrytningen och dess p˚averkan p˚aen livscykelanalys av elen pro- ducerad i Forsmarks k¨arnkraftverk kunde genomf¨oras. De unders¨oktaparametrarna ¨arutsl¨appav: v¨axthusgaser, f¨orsurande¨amnen, ozonskapande ¨amnen,¨overg¨odande¨amnenoch partiklar samt resursanv¨andandet av r˚avatten och energi. Resultatet av denna livscykelanalys var att om utsl¨appen fr˚antillverkningen av de zirkonium legeringar l¨aggstill Forsmarks nuvarande livscykelanalys s˚akommer utsl¨appen inte att ¨oka med mer ¨an0,1% f¨orn˚agon av de analyserade parametrarna. 4 Contents 0.1 Popul¨arvetenskaplig sammanfattning . .3 1 Introduction 11 1.1 Background . 11 1.2 Objectives . 11 1.3 Limitations . 12 1.4 Method . 12 1.4.1 Availability of data . 12 1.5 Structure of the report . 13 2 The Manufacturing of zirconium alloys 14 2.1 Introduction to zirconium . 14 2.2 Zircon mining . 19 2.2.1 Preparing for mining . 20 2.2.2 Mining . 21 2.2.3 Heavy minerals concentration . 23 2.2.4 Radiological concerns . 25 2.2.5 Mine rehabilitation . 26 2.2.6 Environmental impacts . 28 2.3 Mineral separation . 28 2.3.1 Radiological concerns . 31 2.3.2 Environmental impacts . 32 2.4 Zirconium sponge production . 32 2.4.1 Zirconium-hafnium separation process . 34 2.4.2 Zirconium sponge production process . 35 2.4.3 Environmental impacts . 36 2.5 Zircaloy ingot production . 37 2.5.1 Zirconium alloy ingot production processes . 37 2.5.2 Environmental impacts . 40 2.6 Zircaloy tube production . 41 2.6.1 Zircaloy tube production processes . 41 2.6.2 Environmental impacts . 43 3 LCA of zirconium production 45 3.0.3 Data sources . 46 3.1 LCA of zircon production . 47 3.1.1 Data sources . 47 3.1.2 Impact on the LCA for Forsmark NPP . 48 5 4 Discussion 50 5 Conclusions 52 5.1 Further work . 53 Appendices 57 A List of companies 58 B Production flowcharts 60 C LCA study 76 6 List of Figures 2.1 Generalized zirconium alloy tube production process . 15 2.2 Zirconium consumption by end use in 2008 [17] . 18 2.3 Overview of zirconium mining . 20 2.4 Bulldozer feeding mineral sand into a hopper. The hopper is slowly moving to the right, through the deposit. The feed water and slurry pipelines are shown in the bottom left. [20] . 22 2.5 Dredge barges and wet concentration plant in an artificial dredge pond. Dredge barge spraying water to erode shores of dredge pond [22] . 23 2.6 Left: Bank of spiral separators [3], Right: Spiral separator where heavy minerals concentrate towards the center of the spiral [3] . 24 2.7 Heavy mineral mining on North Stradbroke Island [27] . 25 2.8 Mining with integrated rehabilitation [30] . 27 2.9 Overview of mineral separation .
Recommended publications
  • Coupled Thermomechanical Responses of Zirconium Alloy System Claddings Under Neutron Irradiation
    applied sciences Article Coupled Thermomechanical Responses of Zirconium Alloy System Claddings under Neutron Irradiation Hui Zhao 1,†, Chong Yang 1,†, Dongxu Guo 1, Lu Wu 2, Jianjun Mao 2, Rongjian Pan 2, Jiantao Qin 2 and Baodong Shi 1,* 1 National Engineering Research Center for Equipment and Technology of Cold Rolled Strip, School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China; [email protected] (H.Z.); [email protected] (C.Y.); [email protected] (D.G.) 2 State Key Laboratory of Nuclear Fuel and Materials, The First Sub-Institute, Nuclear Power Institute of China, Chengdu 610041, China; [email protected] (L.W.); [email protected] (J.M.); [email protected] (R.P.); [email protected] (J.Q.) * Correspondence: [email protected]; Tel.: +86-33-5838-7652 † H.Z. and C.Y. contributed equally to this work. Abstract: Zirconium (Zr) alloy is a promising fuel cladding material used widely in nuclear reactors. Usually, it is in service for a long time under the effects of neutron radiation with high temperature and high pressure, which results in thermomechanical coupling behavior during the service process. Focusing on the UO2/Zr fuel elements, the macroscopic thermomechanical coupling responses of pure Zr, Zr-Sn, and Zr-Nb binary system alloys, as well as Zr-Sn-Nb ternary system alloy as cladding materials, were studied under neutron irradiation. As a heat source, the thermal conductivity and thermal expansion coefficient models of the UO2 core were established, and an irradiation growth model of a pure Zr and Zr alloy multisystem was built.
    [Show full text]
  • Kenmare Resources Plc Moma Titanium Minerals Mine
    Kenmare Resources plc Moma Titanium Minerals Mine 2013 Half Yearly Results Trading Update Disclaimer This Confidential Presentation (the “Presentation”) has been prepared and issued by Kenmare Resources plc (the “Company” or “Kenmare”). While this Presentation has been prepared in good faith, the Company and its respective officers, employees, agents and representatives expressly disclaim any and all liability for the contents of, or omissions from, this Presentation, and for any other written or oral communication transmitted or made available to the recipient or any of its officers, employees, agents or representatives. No representations or warranties are or will be expressed or are to be implied on the part of the Company, or any of its respective officers, employees, agents or representatives in or from this Presentation or any other written or oral communication from the Company, or any of its respective officers, employees, agents or representatives concerning the Company or any other factors relevant to any transaction involving the Company or as to the accuracy, completeness or fairness of this Presentation, the information or opinions on which it is based, or any other written or oral information made available in connection with the Company. This Presentation does not constitute or form part of, and should not be construed as, an offer, invitation or inducement to purchase or subscribe for any securities of the Company nor shall it or any part of it form the basis of, or be relied upon in connection with, any contract or investment decision relating to such securities, nor does it constitute a recommendation regarding the securities of the Company.
    [Show full text]
  • Electromagnetic Evaluation of Hydrogen Content in Zr 2.5%Nb Alloy
    Electromagnetic evaluation of hydrogen content in Zr 2.5%Nb alloy R.Grimberg 1, M.L.Craus 1,2 , A.Savin 1, R.Steigmann 2, M.Ruch 3 1 National Institute of Research and Development for Technical Physics, Iasi, Romania 2 Joint Institute for Nuclear Research, Dubna, Russia 3 CNEA, Buenos Aires, Argentina Abstract Zr 2.5%Nb alloys have wide utilization in nuclear energy engineering, being used at the fabrication of pressure tubes from Pressurized Heavy Water Reactors (PHWR). This paper proposes to present an electromagnetic method for determination of diffused hydrogen/deuterium content based on the measurement of conductivity, correlating the theoretical results with those experimental obtained on samples cropped from non-irradiated pressure tubes. The methods can be used directly, the results being obtained by data inversion. Keywords: PHWR, hydrogen content, electromagnetic nondestructive evaluation method, conductivity 1. Introduction Zirconium alloys represents the majority of structural materials from nuclear reactors, Light Water Reactors types (LWR) and Pressurized Heavy Water reactor” (PHWR). Zirconium alloys are exclusively used at the manufacturing of nuclear fuel cladding, nuclear fuel bundle subassemblies and fuel channels. During the reactor functioning, the zirconium alloy absorbs hydrogen or deuterium that can appear due to the radiolysis of water used as coolant agent or due to heavy water according to the reactions → + HO2 H 2 O (a) → + D2 O D 2 O (b) Also, hydrogen and deuterium can appear due to oxidation of zirconium alloys + → + Zr 2H2 O ZrO 2 2H 2 (c) + → + Zr 2D2 O ZrO 2 2D 2 (d) Hydrogen in solid solution diffuses due to the existence of concentration, temperature and stress gradients.
    [Show full text]
  • 2020-08-19 KMR H1 2020 Results and Interim Dividend Announcement
    Kenmare Resources plc, 4th Floor, Styne House, Hatch Street Upper, Dublin 2, D02 DY27, Ireland T: +353 1 671 0411 E: [email protected] W: www.kenmareresources.com Kenmare Resources plc (“Kenmare” or “the Company” or “the Group”) 19 August 2020 Half-yearly results for the six months to 30 June 2020 and interim dividend Kenmare Resources plc (LSE:KMR, ISE:KMR), one of the leading global producers of titanium minerals and zircon, which operates the Moma Titanium Minerals Mine (the "Mine" or "Moma") in northern Mozambique, today announces its half year results for the six month period ended 30 June 2020 (“H1 2020”) and declares its interim dividend. The Company also provides updated full year (“FY”) 2020 guidance. Statement from Michael Carvill, Managing Director: “Our performance during the first half of 2020 demonstrated Kenmare’s resilience and agility, effectively managing many challenges posed by the COVID-19 pandemic to continue to produce and ship our products safely. Although production was weaker in H1 2020 than in the corresponding period last year, our business remained profitable and I am pleased to announce an interim dividend of USc2.31 per share. This represents 20% of profit after tax, in line with our dividend policy. Market conditions for titanium feedstocks continued to strengthen in H1 2020, driving a 28% increase in received ilmenite prices, to US$217 per tonne, compared to last year. We have agreements for the majority of our H2 2020 ilmenite production, although market conditions are expected to become more subdued in the second half of the year. We continue to actively manage COVID-19-related disruption to the relocation of Wet Concentrator Plant B.
    [Show full text]
  • Download the Report
    ANNUAL REPORT 2000 IRISH TAKEOVER PANEL Report for the year ended June 30, 2000 IRISH TAKEOVER PANEL Report for the year ended June 30, 2000 This third annual report of the Irish Takeover Panel is made to Mary Harney, T.D., Minister for Enterprise, Trade and Employment as required by section 19 of the Irish Takeover Panel Act, 1997 Irish Takeover Panel (Registration No. 265647), 8 Upper Mount Street, Dublin 2 Telephone: (01) 6789020 Facsimile: (01) 6789289 Contents Page Members of the Panel, Directors and Director General 3 Introduction 5 Chairperson’s Statement 7 Director General’s Report 9 Directors’ Report 13 Statement of Directors’ Responsibilities 15 Auditors’ Report 16 Financial Statements 18 Appendix 1 ­ Administrative Appendix 24 Appendix 2 ­ Takeovers supervised by Irish Takeover 31 Panel, July 1, 1999 to June 30, 2000 Appendix 3 ­ List of Relevant Companies as 32 at June 30, 2000 Euro denominated memoranda Financial Statements 33 2 Members of the Panel Irish Association of Investment Managers Irish Clearing House Limited ­ Nominated by the Irish Bankers Federation Irish Stock Exchange Limited Law Society of Ireland Brian Walsh ­ Nominated by the Consultative Committee of Accountancy Bodies ­ Ireland Directors of the Panel Chairperson Daniel O’Keeffe, S.C. } } Appointed by the Governor of the Central } Bank of Ireland Deputy Chairperson William M. McCann, FCA } Leonard Abrahamson Appointed by the Irish Stock Exchange (Alternate: Brendan O’Connor) Ann Fitzgerald Appointed by the Irish Association of Investment Managers Daniel J. Kitchen Appointed by the Consultative Committee of Accountancy Bodies ­ Ireland Brian J. O’Connor Appointed by the Law Society of Ireland (Alternate: Laurence Shields) Roisin Brennan Appointed by the Irish Bankers Federation (Alternate: John Butler) Director General (and Secretary of the Panel) Miceal Ryan 3 4 Introduction The Irish Takeover Panel (“the Panel”) is the statutory body responsible for monitoring and supervising takeovers and other relevant transactions in Ireland.
    [Show full text]
  • The Unsustainable Use of Sand: Reporting on a Global Problem
    sustainability Article The Unsustainable Use of Sand: Reporting on a Global Problem Walter Leal Filho 1,2,* , Julian Hunt 3, Alexandros Lingos 1, Johannes Platje 4 , Lara Werncke Vieira 5, Markus Will 6 and Marius Dan Gavriletea 7 1 European School of Sustainability Science and Research, Hamburg University of Applied Sciences, Ulmenliet 20, D-21033 Hamburg, Germany; [email protected] 2 Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK 3 Energy Program, International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria; [email protected] 4 WSB University in Wroclaw, ul. Fabryczna 29-31, 53-609 Wroclaw, Poland; [email protected] 5 Federal University of Rio Grande do Sul—UFRGS, Porto Alegre 90040-060, Brazil; [email protected] 6 Zittau/Görlitz University of Applied Sciences, Theodor-Körner-Allee 16, D-02763 Zittau, Germany; [email protected] 7 Business Faculty, Babe¸s-BolyaiUniversity, Horea 7, 400038 Cluj–Napoca, Romania; [email protected] * Correspondence: [email protected] Abstract: Sand is considered one of the most consumed natural resource, being essential to many industries, including building construction, electronics, plastics, and water filtration. This paper assesses the environmental impact of sand extraction and the problems associated with its illegal exploitation. The analysis indicates that extracting sand at a greater rate than that at which it is naturally replenished has adverse consequences for fauna and flora. Further, illicit mining activities compound environmental damages and result in conflict, the loss of taxes/royalties, illegal work, and Citation: Leal Filho, W.; Hunt, J.; losses in the tourism industry.
    [Show full text]
  • Evaluate the Contribution of the Fuel Cladding Oxidation Process on The
    Evaluate the contribution of the fuel cladding oxidation process on the hydrogen production from the reflooding during a potential severe accident in a nuclear reactor Florian Haurais To cite this version: Florian Haurais. Evaluate the contribution of the fuel cladding oxidation process on the hydrogen production from the reflooding during a potential severe accident in a nuclear reactor. Materials. Université Paris-Saclay, 2016. English. NNT : 2016SACLS375. tel-01519349 HAL Id: tel-01519349 https://tel.archives-ouvertes.fr/tel-01519349 Submitted on 6 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS375 THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS-SACLAY PRÉPARÉE À L’UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE N°576 Particules Hadrons Énergie et Noyau : Instrumentation, Image, Cosmos et Simulation Spécialité de doctorat : Énergie Nucléaire Par M. Florian Haurais Evaluate the contribution of the fuel cladding oxidation process on the hydrogen production from the reflooding during a potential severe accident in a nuclear reactor Thèse présentée et soutenue à Palaiseau, le Lundi 14 Novembre 2016. Composition du Jury : M. Frédérico Garrido, Professeur des universités, Université Paris-Sud, Président du jury M. Arthur Motta, Professeur, Pennsylvania State University, Rapporteur M.
    [Show full text]
  • 5.03 Corrosion of Zirconium Alloys
    This article was originally published in the Comprehensive Nuclear Materials published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Allen T.R., Konings R.J.M., and Motta A.T. (2012) Corrosion of Zirconium Alloys. In: Konings R.J.M., (ed.) Comprehensive Nuclear Materials, volume 5, pp. 49-68 Amsterdam: Elsevier. © 2012 Elsevier Ltd. All rights reserved. Author's personal copy 5.03 Corrosion of Zirconium Alloys T. R. Allen University of Wisconsin, Madison, WI, USA R. J. M. Konings European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany A. T. Motta The Pennsylvania State University, University Park, PA, USA ß 2012 Elsevier Ltd. All rights reserved. 5.03.1 Introduction 49 5.03.2 General Considerations 50 5.03.2.1 Oxidation 50 5.03.2.2 Hydrogen Uptake 51 5.03.2.3 Controlling Factors for Corrosion 52 5.03.3 Uniform
    [Show full text]
  • Life Cycle Assessment of Zircon Sand
    The International Journal of Life Cycle Assessment https://doi.org/10.1007/s11367-019-01619-5 LCI METHODOLOGY AND DATABASES Life cycle assessment of zircon sand Johannes Gediga1 & Andrea Morfino1 & Matthias Finkbeiner2 & Matthias Schulz3 & Keven Harlow4 Received: 24 June 2018 /Accepted: 27 March 2019 # The Author(s) 2019 Abstract Purpose To support the needs of downstream users of zircon sand and other industry stakeholders, the Zircon Industry Association (ZIA) conducted an industry-wide life cycle assessment (LCA) with the aim to quantify the potential environmental impacts of zircon sand production, from mining to the separation of zircon sand (zirconium silicate or ZrSiO4). This novel work presents the first, globally representative LCA dataset using primary data from industry. The study conforms to relevant ISO standards and is backed up by an independent critical review. Methods Data from ZIA member companies representing 10 sites for the reference year 2015 were collected. In total, more than 77% of global zircon sand production was covered in this study. All relevant mining routes (i.e. wet and dry mining) were considered in the investigation, as well as all major concentration and separation plants in major zircon sand–producing regions of the world (i.e. Australia, South Africa, Kenya, Senegal and the USA). As it is common practise in the metal and mining industry, mass allocations were applied with regard to by-products (Santero and Hendry, Int J Life Cycle Assess 21:1543–1553, Santero and Hendry 2016) where economic allocation is only applied if high-valued metals like PGMs are separated with a process flow.
    [Show full text]
  • High Temperature Oxidation of Zirconium Base Alloy in Steam
    HIGH TEMPERATURE OXDATION OF A ZIRCONIUM BASE ALLOY IN STEAM KWANGHEON PARK"), TAEGEUN YOO', SUNGKWONKIM') HYUN-GlL KIM2 YONGHWAN JEONG2I, KYUTAE KIM3 ) 1)=ghee University, South Korea 2\Comra Atomic Energy Research Institute 3)KEPCO Nuclear Fuel Company, South Korea Abstract High temperature steam oxidation behaviors of a Zirconium alloy, Zr-1%oNb alloy was examined for the comparison to those of Zircaloy-4 (Zry-4). Testing temperatures were 700 - 12000C. At atmospheric steam pressure, oxidation kinetics of Zr-lNb alloy follows parabolic-rate law, instead of cubic-rate as was observed in Zry-4 below 900 C. The oxidation rate ofZr-lNb alloy is slightly lower than that ofZry-4. A double layer autoclave, that can make high steam pressures up to 50bar and temperatures up to 900 0C, was used to get the steam pressure effects on high temperature oxidation. Zry-4 was very sensitive to the steam pressure, and the oxidation rate increases exponentially with applied steam pressure. Zr-IlNb alloy was less sensitive to the high-pressure steam. The enhancement parameter is about 3 to 13 times lower than that of Zry-4. The stability oftetragonal phase in the Zr-I %oNb alloy comparing Zry-4 seems to make the differcnue in oxidation kinetics. 1. INTRODUCTION Zr-base alloys are used as cladding materials for nuclear fuel in light and heavy water reactors. Zricaloy-4 (Zry-4) has been used satisfactorily as a cladding material in pressurized water reactors. Nowadays, light water reactors tend to extend their fuel cycle length with high bum-up of nuclear fuel to get the improved economy.
    [Show full text]
  • Financial Reporting Decisions MISSION
    2020 Financial Reporting Supervision Unit Financial Reporting Decisions MISSION To contribute to Ireland having a strong regulatory environment in which to do business by supervising and promoting high quality financial reporting, auditing and effective regulation of the accounting profession in the public interest DISCLAIMER Whilst every effort has been made to ensure the accuracy of the information contained in this document, IAASA accepts no responsibility or liability howsoever arising from any errors, inaccuracies, or omissions occurring. IAASA reserves the right to take action, or refrain from taking action, which may or may not be in accordance with this document IAASA: Financial Reporting Decisions 2 Contents Page 1. Background & introduction .................................................................................................... 4 2. Bank of Ireland Group plc ...................................................................................................... 5 3. Crown Global Secondaries IV plc .......................................................................................... 8 4. Irish Residential Properties REIT plc................................................................................... 10 5. Kerry Group plc ................................................................................................................... 13 6. Kenmare Resources plc ...................................................................................................... 16 7. Smurfit Kappa Group plc ....................................................................................................
    [Show full text]
  • Kenmare Resources CASE STUDY
    Kenmare Resources CASE STUDY About SNAPSHOT Metals and Mining Kenmare Resources is an Irish incorporated mining company with its head office INDUSTRY located in Dublin. The company is a member of the FTSE All-Share Index and has a premium listing on the London Stock Exchange and a secondary listing on the Irish 1500 Stock Exchange. EMPLOYEES & CONTRACTORS The principal activity of the company is the operation of the Moma Titanium Minerals Mine, which is located on the north east coast of Mozambique. The Moma Mine Mozambique contains deposits of heavy minerals which include the titanium minerals ilmenite and PROJECT LOCATION rutile, as well as the zirconium silicate mineral, zircon. 2014 CUSTOMER SINCE Q&A PRODUCTS & SERVICES We spoke to Jose Sinanhal, System Administrator at Kenmare Resources, about their need for a workforce management solution to improve their compliance, reduce their INX InControl risk and increase their productivity. Training What were you using to previously manage your workforce in these areas? Data migration We were previously using another EHS solution which had a number of limitations and gaps in functionality such as action management and root case analysis. RELEVANT SOLUTIONS Safety What was sought in a new system? Risk We sought a new user-friendly system were all data and reporting would be maintained, managed and readily available when required. Compliance What have been some notable changes since implementing the system? Since implementing INX, the most notable positive changes have included: • Ease of and range of reporting • Redefining the ‘assign user’ security access, • Aligning the monthly stats with Kenmare Report systems • Focus on relevant and important incidents and events with the ability to better manage and report.
    [Show full text]