Acetyl-L-Carnitine Induces Muscarinic Antinocieption in Mice and Rats

Total Page:16

File Type:pdf, Size:1020Kb

Acetyl-L-Carnitine Induces Muscarinic Antinocieption in Mice and Rats FLORE Repository istituzionale dell'Università degli Studi di Firenze ACETYL-L-CARNITINE INDUCES MUSCARINIC ANTINOCICEPTION IN MICE AND RATS Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione: Original Citation: ACETYL-L-CARNITINE INDUCES MUSCARINIC ANTINOCICEPTION IN MICE AND RATS / C. GHELARDINI; N. GALEOTTI; M. CALVANI; L. MOSCONI; R. NICOLAI; A. BARTOLINI;. - In: NEUROPHARMACOLOGY. - ISSN 0028- 3908. - STAMPA. - 43(2002), pp. 1180-1187. [10.1016/S0028-3908(02)00225-3] Availability: This version is available at: 2158/311633 since: 2016-11-09T12:32:15Z Published version: DOI: 10.1016/S0028-3908(02)00225-3 Terms of use: Open Access La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf) Publisher copyright claim: (Article begins on next page) 27 September 2021 Neuropharmacology 43 (2002) 1180–1187 www.elsevier.com/locate/neuropharm Acetyl-l-carnitine induces muscarinic antinocieption in mice and rats Carla Ghelardini a,∗, Nicoletta Galeotti a, Menotti Calvani b, Luigi Mosconi b, Raffaella Nicolai b, Alessandro Bartolini a a Department of Preclinical and Clinical Pharmacology, University of Florence, Viale G. Pieraccini 6, I-50139 Florence, Italy b Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Via Pontina km 30,400, I-00040 Pomezia, Rome, Italy Received 25 January 2002; received in revised form 24 July 2002; accepted 13 August 2002 Abstract The analgesic activity of acetyl-L-carnitine (ALCAR) in neuropathic pain is well established. By contrast, its potential efficacy in the relief of acute pain has not been reported. The antinociceptive effect of ALCAR was, therefore, examined in the mouse hot- plate and abdominal constriction tests, and in the rat paw-pressure test. ALCAR (100 mg kgϪ1 s.c. twice daily for seven days) produced an increase of the pain threshold in both mice and rats. ALCAR was also able to reverse hyperalgesia induced by kainic acid and NMDA administration in the mouse hot-plate test. The antinociception produced by ALCAR was prevented by the unselec- tive muscarinic antagonist atropine, the M1 selective antagonists pirenzepine and S-(-)-ET126, and by the choline uptake inhibitor hemicholinium-3 (HC-3). By contrast the analgesic effect of ALCAR was not prevented by the opioid antagonist naloxone, the GABAB antagonist CGP 35348, the monoamine synthesis inhibitor (a)-methyl-p-tyrosine, and the Gi-protein inactivator pertussis toxin. Moreover, ALCAR antinociception was abolished by pretreament with an antisense oligonucleotide (aODN) against the M1 receptor subtype, administered at the dose of 2 nmol per single i.c.v injection. On the basis of the above data, it can be postulated that ALCAR exerted an antinociceptive effect mediated by a central indirect cholinergic mechanism. In the antinociceptive dose- range, ALCAR did not impair mouse performance evaluated by the rota-rod and hole-board tests. 2002 Elsevier Science Ltd. All rights reserved. Keywords: Acetyl-L-carnitine; Acetylcholine; M1 muscarinic receptor subtype; Analgesia; Pain; Hyperalgesia 1. Introduction been demonstrated to improve cognitive deficits in some experimental paradigms (Pettegrew et al., 1995; Acetyl-L-carnitine (γ-trimethyl-β-acetylbutyrobetaine; Dell’Anna et al., 1997), to modify the cerebral electrical ALCAR), the acetyl ester of carnitine, is a small water- activity (Mancia et al., 1990); and to induce an antide- soluble molecule naturally present in the central nervous pressant-like effect (Pulvirenti et al., 1990). Furthermore, system. ALCAR exerts a neuroprotective effect by ALCAR modulates the release of various neurotransmit- increasing glutathione and by decreasing the concen- ters such as dopamine (Harsing et al., 1992), excitatory tration of malondialdehyde (Fariello et al., 1987), pro- amino acids, taurine (Toth et al., 1993), acetylcholine moting nerve growth factor receptor synthesis and (Imperato et al., 1989), and GABA (Fariello et al., 1988). increasing its levels in the hippocampus (Taglialatela et ALCAR has also been demonstrated to be signifi- al., 1991, 1992). cantly effective in reducing neuropathic pain, a condition Several studies have indicated that ALCAR is characterised by spontaneous pain, allodynia and hyper- involved in different aspects of neuronal activity. It has algesia caused by traumatic injury, diabetes, and viral infections. Intramuscular chronic treatment with ALCAR significantly improves the outcome of painful ∗ Corresponding author. Tel.: +39 055 4271312; fax: +39 055 neuropathies or radiculopathies (Onofrj et al., 1995). A 4271280. beneficial effect of ALCAR has been reported in the E-mail address: carla.ghelardini@unifi.it (C. Ghelardini). treatment of symptomatic diabetic neuropathy (Quatraro 0028-3908/02/$ - see front matter 2002 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0028-3908(02)00225-3 C. Ghelardini et al. / Neuropharmacology 43 (2002) 1180–1187 1181 et al., 1995) and in the treatment of pain in distal sym- scopically after sectioning. The accuracy of the injection metrical polyneuropathy related to HIV infection technique was evaluated and the percentage of correct (Scarpini et al., 1997). However, the mechanism under- injections was 95. lying the analgesic effect of ALCAR is still obscure. By contrast, its potential efficacy in the relief of acute 2.3. Intrathecal injection technique pain has not been reported. On these bases, the aim of the present study was to first investigate the analgesic Intrathecal injections were performed under ether properties of ALCAR in animal models of acute pain anaesthesia as described by Hylden and Wilcox (1980) by using different nociceptive stimuli, such as thermal, in which the mouse was gently restrained and a 30- chemical and mechanical. We also investigated the gauge, 1/2-inch needle mated to a 50 µl Hamilton syr- receptor subtypes involved in the increase of pain thres- inge was inserted between L5 and L6 of the mouse spi- hold induced by ALCAR to elucidate its mechanism nal column. A volume of 5 µl was used for i.t. injection. of action. In order to exclude that the effects produced by 2.4. Hot-plate test ALCAR treatment were due to the induction of side effects, some additional behavioural tests (rota rod, hole The method adopted was described by O’Callaghan board) were performed. and Holzman (1975). Mice were placed inside a stainless steel container, thermostatically set at 52.5 ± 0.1°Cina precision water-bath from KW Mechanical Workshop, 2. Methods Sienna, Italy. Reaction times (s), were measured with a stop-watch before and at regular intervals up to a 2.1. Animals maximum of 120 min after treatment. The endpoint used was the licking of the fore or hind paws. Before pretreat- Maple Swiss albino mice (23–25 g) and Wistar rats ing animals with ALCAR, a pretest was performed: (150–200 g) from the Morini (San Polo d’Enza, Italy) those mice scoring below 12 and over 18 s in the pretest breeding farm were used. Fifteen mice or five rats were were rejected (30%). An arbitrary cut-off time of 45 s housed per cage (26 × 41 cm). The cages were placed was adopted. in the experimental room 24 h before the test for acclimatisation. The animals were fed a standard labora- 2.5. Abdominal constriction test tory diet and tap water ad libitum and kept at 23 ± 1°C with a 12 h light/dark cycle, light on at 7 a.m. Each Mice were injected i.p. with a 0.6% solution of acetic animal was used only once and was killed immediately acid (10 ml kgϪ1), according to Koster et al. (1959). The after the end of the experiment by exposure to diethyl number of stretching movements was counted for 10 ether. All experiments were carried out in accordance min, starting 5 min after acetic acid injection. with the European Communities Council Directive of 24 November 1986 (86/609/EEC) for experimental animal 2.6. Paw pressure test care. All efforts were made to minimise animal suffer- ing, and to reduce the number of animals used. The nociceptive threshold in the rat was determined with an analgesimeter (Ugo Basile, Varese, Italy), 2.2. Intracerebroventricular injection technique according to the method described by Leighton et al. (1988). Threshold pressure was measured before and 15, Intracerebroventricular (i.c.v.) administration was per- 30, 45 and 60 min after treatment. Before pretreating formed under ether anaesthesia, according to the method animals with ALCAR a pretest was performed: rats scor- described by Haley and McCormick (1957). Briefly, dur- ing below 30 g or over 85 g were rejected (25%). An ing anaesthesia, mice were grasped firmly by the loose arbitrary cut-off value of 250 g was adopted. skin behind the head. A 0.4 mm external diameter, hypo- dermic needle attached to a 10 µl syringe was inserted 2.7. Hole-board test perpendicularly through the skull and no more than 2 mm into the brain of the mouse, where 5 µl were then The hole board test consisted of a 40 cm square plane administered. The injection site was 1 mm to the right with 16 flush mounted cylindrical holes (3 cm diameter) or left from the midpoint on a line drawn through to the distributed 4 × 4 in an equidistant, grid-like manner. anterior base of the ears. Injections were performed into Mice were placed on the centre of the board one by one the right or left ventricle randomly. To ascertain that the and allowed to move about freely for a period of 10 min drugs were administered exactly into the cerebral ven- each. Two electric eyes, crossing the plane from mid- tricle, some mice (20%) were injected with 5 µlof point to mid-point of opposite sides, thus dividing the diluted 1:10 India ink and their brains examined macro- plane into four equal quadrants, automatically signalled 1182 C.
Recommended publications
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Clinical Significance of Small Molecule Metabolites in the Blood of Patients
    www.nature.com/scientificreports OPEN Clinical signifcance of small molecule metabolites in the blood of patients with diferent types of liver injury Hui Li1,2,5, Yan Wang1,5, Shizhao Ma1,3, Chaoqun Zhang1,4, Hua Liu2 & Dianxing Sun1,4* To understand the characteristic of changes of serum metabolites between healthy people and patients with hepatitis B virus (HBV) infection at diferent stages of disease, and to provide reference metabolomics information for clinical diagnosis of liver disease patients. 255 patients with diferent stages of HBV infection were selected. 3 mL blood was collected from each patient in the morning to detect diferences in serum lysophosphatidylcholine, acetyl-l-carnitine, oleic acid amide, and glycocholic acid concentrations by UFLC-IT-TOF/MS. The diagnostic values of four metabolic substances were evaluated by receiver operating characteristic (ROC) curve. The results showed that the optimal cut-of value of oleic acid amide concentration of the liver cirrhosis and HCC groups was 23.6 mg/L, with a diagnostic sensitivity of 88.9% and specifcity of 70.6%. The diagnostic efcacies of the three substances were similar in the hepatitis and HCC groups, with an optimal cut-of value of 2.04 mg/L, and a diagnostic sensitivity and specifcity of 100% and 47.2%, respectively. The optimal cut-of value of lecithin of the HBV-carrier and HCC groups was 132.85 mg/L, with a diagnostic sensitivity and specifcity of 88.9% and 66.7%, respectively. The optimal cut-of value of oleic acid amide of the healthy and HCC groups was 129.03 mg/L, with a diagnostic sensitivity and specifcity of 88.4% and 83.3%, respectively.
    [Show full text]
  • An Integrated Meta-Analysis of Peripheral Blood Metabolites and Biological Functions in Major Depressive Disorder
    Molecular Psychiatry https://doi.org/10.1038/s41380-020-0645-4 ARTICLE An integrated meta-analysis of peripheral blood metabolites and biological functions in major depressive disorder 1,2,3 1,2,3 1,2,3 1,3 1,3 4,5 1,3 1,3 Juncai Pu ● Yiyun Liu ● Hanping Zhang ● Lu Tian ● Siwen Gui ● Yue Yu ● Xiang Chen ● Yue Chen ● 1,2,3 1,3 1,3 1,3 1,3 1,2,3 Lining Yang ● Yanqin Ran ● Xiaogang Zhong ● Shaohua Xu ● Xuemian Song ● Lanxiang Liu ● 1,2,3 1,3 1,2,3 Peng Zheng ● Haiyang Wang ● Peng Xie Received: 3 June 2019 / Revised: 24 December 2019 / Accepted: 10 January 2020 © The Author(s) 2020. This article is published with open access Abstract Major depressive disorder (MDD) is a serious mental illness, characterized by high morbidity, which has increased in recent decades. However, the molecular mechanisms underlying MDD remain unclear. Previous studies have identified altered metabolic profiles in peripheral tissues associated with MDD. Using curated metabolic characterization data from a large sample of MDD patients, we meta-analyzed the results of metabolites in peripheral blood. Pathway and network analyses were then performed to elucidate the biological themes within these altered metabolites. We identified 23 differentially 1234567890();,: 1234567890();,: expressed metabolites between MDD patients and controls from 46 studies. MDD patients were characterized by higher levels of asymmetric dimethylarginine, tyramine, 2-hydroxybutyric acid, phosphatidylcholine (32:1), and taurochenode- soxycholic acid and lower levels of L-acetylcarnitine, creatinine, L-asparagine, L-glutamine, linoleic acid, pyruvic acid, palmitoleic acid, L-serine, oleic acid, myo-inositol, dodecanoic acid, L-methionine, hypoxanthine, palmitic acid, L-tryptophan, kynurenic acid, taurine, and 25-hydroxyvitamin D compared with controls.
    [Show full text]
  • Effects of Long-Term Acetyl-L-Carnitine Administration in Ratsfii: Protection Against the Disrupting Effect of Stress on the Acquisition of Appetitive Behavior
    Neuropsychopharmacology (2003) 28, 683–693 & 2003 Nature Publishing Group All rights reserved 0893-133X/03 $25.00 www.neuropsychopharmacology.org Effects of Long-Term Acetyl-L-Carnitine Administration in RatsFII: Protection Against the Disrupting Effect of Stress on the Acquisition of Appetitive Behavior 1 1 1 1 2 Flavio Masi , Benedetta Leggio , Giulio Nanni , Simona Scheggi , M Graziella De Montis , Alessandro 1 1 ,1 Tagliamonte , Silvia Grappi and Carla Gambarana* 1 2 Department of Neuroscience, Pharmacology Unit, University of Siena, Siena, Italy; Department of ‘Scienze del Farmaco’, University of Sassari, Sassari, Italy Long-term acetyl-L-carnitine (ALCAR) administration prevents the development of escape deficit produced by acute exposure to unavoidable stress. However, it does not revert the escape deficit sustained by chronic stress exposure. Rats exposed to chronic stress show a low dopamine (DA) output in the nucleus accumbens shell (NAcS) and do not acquire an appetitive behavior sustained by the earning of vanilla sugar (VS) made contingent on the choice of one of the two divergent arms of a Y-maze (VS-sustained appetitive behavior, VAB), while control rats consistently do. The present study shows that ALCAR treatment in rats exposed to a 7-day stress protocol prevented a decrease in DA output in the NAcS and medial prefrontal cortex (mPFC) of rats, and that it strengthened the DA response to VS consummation in the same two areas. Moreover, rats treated with long-term ALCAR or exposed to chronic stress while treated with ALCAR acquired VAB as efficiently as control rats. Moreover, VAB acquisition in stressed rats treated with ALCAR coincided with the reversal of the deficits in escape and in dopaminergic transmission in the NAcS.
    [Show full text]
  • Potential Role of L-Carnitine in Autism Spectrum Disorder
    Journal of Clinical Medicine Review Potential Role of L-Carnitine in Autism Spectrum Disorder Alina K˛epka 1,† , Agnieszka Ochoci ´nska 1,*,† , Sylwia Chojnowska 2 , Małgorzata Borzym-Kluczyk 3, Ewa Skorupa 1, Małgorzata Kna´s 2 and Napoleon Waszkiewicz 4 1 Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; [email protected] (A.K.); [email protected] (E.S.) 2 Faculty of Health Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland; [email protected] (S.C.); [email protected] (M.K.) 3 Department of Pharmaceutical Biochemistry, Medical University of Bialystok, 15-089 Bialystok, Poland; [email protected] 4 Department of Psychiatry, Medical University of Bialystok, 15-089 Bialystok, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-22-815-73-01 † These authors are sharing the first place. Both contributed equally to this work. Abstract: L-carnitine plays an important role in the functioning of the central nervous system, and especially in the mitochondrial metabolism of fatty acids. Altered carnitine metabolism, abnormal fatty acid metabolism in patients with autism spectrum disorder (ASD) has been documented. ASD is a complex heterogeneous neurodevelopmental condition that is usually diagnosed in early child- hood. Patients with ASD require careful classification as this heterogeneous clinical category may include patients with an intellectual disability or high functioning, epilepsy, language impairments, or associated Mendelian genetic conditions. L-carnitine participates in the long-chain oxidation of fatty acids in the brain, stimulates acetylcholine synthesis (donor of the acyl groups), stimulates ex- pression of growth-associated protein-43, prevents cell apoptosis and neuron damage and stimulates Citation: K˛epka,A.; Ochoci´nska,A.; neurotransmission.
    [Show full text]
  • Acetylcarnitine Is a Candidate Diagnostic and Prognostic
    Published OnlineFirst March 14, 2016; DOI: 10.1158/0008-5472.CAN-15-3199 Cancer Integrated Systems and Technologies Research Acetylcarnitine Is a Candidate Diagnostic and Prognostic Biomarker of Hepatocellular Carcinoma Yonghai Lu1, Ning Li2, Liang Gao3, Yong-Jiang Xu4, Chong Huang2, Kangkang Yu2, Qingxia Ling2, Qi Cheng2, Shengsen Chen2, Mengqi Zhu2, Jinling Fang1, Mingquan Chen2, and Choon Nam Ong1,3 Abstract The identification of serum biomarkers to improve the diag- carcinoma tumors and matched normal tissues. Post hoc analysis nosis and prognosis of hepatocellular carcinoma has been elusive to evaluate serum diagnosis and progression potential further to date. In this study, we took a mass spectroscopic approach to confirmed the diagnostic capability of serum acetylcarnitine. characterize metabolic features of the liver in hepatocellular Finally, an external validation in an independent batch of 58 carcinoma patients to discover more sensitive and specific serum samples (18 hepatocellular carcinoma patients, 20 liver biomarkers for diagnosis and progression. Global metabolic cirrhosis patients, and 20 healthy individuals) verified that profiling of 50 pairs of matched liver tissue samples from hepa- serum acetylcarnitine was a meaningful biomarker reflecting tocellular carcinoma patients was performed. A series of 62 hepatocellular carcinoma diagnosis and progression. These find- metabolites were found to be altered significantly in liver tumors; ings present a strong new candidate biomarker for hepatocellular however, levels of acetylcarnitine correlated most strongly with carcinoma with potentially significant diagnostic and prognostic tumor grade and could discriminate between hepatocellular capabilities. Cancer Res; 76(10); 2912–20. Ó2016 AACR. Introduction early and accurate diagnosis of hepatocellular carcinoma, there have been a number of previous investigations on gene expres- Hepatocellular carcinoma is the most common type of pri- sion, miRNA profiles, and protein expression of hepatocellular mary liver cancer and has become a major global health issue.
    [Show full text]
  • The Prebiotic Inulin Beneficially Modulates the Gut-Brain Axis by Enhancing Metabolism in an Apoe4 Mouse Model" (2018)
    University of Kentucky UKnowledge Theses and Dissertations--Pharmacology and Nutritional Sciences Pharmacology and Nutritional Sciences 2018 THE PREBIOTIC INULIN BENEFICIALLY MODULATES THE GUT- BRAIN AXIS BY ENHANCING METABOLISM IN AN APOE4 MOUSE MODEL Jared D. Hoffman University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0002-9424-3526 Digital Object Identifier: https://doi.org/10.13023/etd.2018.405 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Hoffman, Jared D., "THE PREBIOTIC INULIN BENEFICIALLY MODULATES THE GUT-BRAIN AXIS BY ENHANCING METABOLISM IN AN APOE4 MOUSE MODEL" (2018). Theses and Dissertations-- Pharmacology and Nutritional Sciences. 24. https://uknowledge.uky.edu/pharmacol_etds/24 This Doctoral Dissertation is brought to you for free and open access by the Pharmacology and Nutritional Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Pharmacology and Nutritional Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • A Chemoinformatics Approach for the in Silico Identification of Interactions Between Psychiatric Drugs and Plant-Based Food
    Diploma Thesis A Chemoinformatics Approach for the In Silico Identification of Interactions Between Psychiatric Drugs and Plant-Based Food Anna Maria Tsakiroglou Thesis Supervisors: Assoc. Prof.: Kouskoumvekaki Irene Assoc. Prof.: Topakas Evangelos February 2016 Dedication To all the people who made the realization of this work possible. My supervisor for the most useful input and advice along the way. My parents for their unending support. To Katerina, and last, but not least, to Panagiotis, for always being there for me, even from so far away. You are awesome. i ii Abstract The overall objective of this project was the development of a systematic approach for identifying potential interactions between plant-based food and marketed psycholeptics and psychoanaleptic drugs. The problem was addressed, initially, by pairing psychiatric agents and phytochemicals to their common protein targets, using information available in online databases, such as NutriChem 1.0 [21] and Drugbank [16] and constructing the food-drug interaction networks. Thereupon, a search for additional phytochemicals that would be expected to interact with targets of psychiatric drugs was carried out. More specifically, three protein targets, P07550, P28222 and P14416 were selected, based on their frequency of interaction with both psycholeptics and psychoanaleptics and the avail- ability of 3D structural information in PDB [19]. For these protein targets, ligand-based pharmacophoric hypothesis were generated, using experimental activity data from the literature, and the HypoGen feature of Accelrys Discovery Studio (DS) [7]. The phar- macophore models were validated using external test sets and Fisher’s method. Sub- sequently, the models were used as queries to screen the NutriChem 1.0 database for more potentially active phytochemicals.
    [Show full text]
  • Name Type Sub-Subtype Acetylcarnitine Lipid Carnitine
    Name Type Sub-Subtype acetylcarnitine Lipid Carnitine metabolism acetylphosphate Energy Oxidative phosphorylation adrenate (22:4n6) Lipid Long chain fatty acid alanine Amino acid Alanine and aspartate metabolism alpha-hydroxyisocaproate Amino acid Valine, leucine and isoleucine metabolism alpha-hydroxyisovalerate Amino acid Valine, leucine and isoleucine metabolism alpha-tocopherol Cofactors and Tocopherol metabolism vitamins andro steroid monosulfate 2* Lipid Sterol/Steroid androsterone sulfate Lipid Sterol/Steroid arabitol Carbohydrate Nucleotide sugars, pentose metabolism arachidonate (20:4n6) Lipid Long chain fatty acid arginine Amino acid Urea cycle; arginine-, proline-, metabolism asparagine Amino acid Alanine and aspartate metabolism azelate (nonanedioate) Lipid Fatty acid, dicarboxylate benzoate Xenobiotics Benzoate metabolism beta-alanine Amino acid Alanine and aspartate metabolism beta-hydroxyisovalerate Amino acid Valine, leucine and isoleucine metabolism betaine Amino acid Glycine, serine and threonine metabolism bilirubin (E,E)* Cofactors and Hemoglobin and porphyrin vitamins metabolism bilirubin (E,Z or Z,E)* Cofactors and Hemoglobin and porphyrin vitamins metabolism bilirubin (Z,Z) Cofactors and Hemoglobin and porphyrin vitamins metabolism biliverdin Cofactors and Hemoglobin and porphyrin vitamins metabolism butyrylcarnitine Lipid Fatty acid metabolism (also BCAA metabolism) C-glycosyltryptophan* Amino acid Tryptophan metabolism caprate (10:0) Lipid Medium chain fatty acid caproate (6:0) Lipid Medium chain fatty acid caprylate
    [Show full text]
  • Acetylcarnitine and Cholinergic Receptors
    (2) P. L. Schiff, Jr., and R. W. Doskotch, Lloydia, 33,404 (1970). ACKNOWLEDGMENTS (3) C.-H. Chen and J. Wu, Taiwan Yao Hsueh Tsa Chih, 28, 121 (1976). Adapted in part from the theses submitted by T.-M. Chen and C. Lee (4) M. Shamma, M. J. Hillman, and C.D. Jones, Chem. Reu., 69,779 to the National Taiwan University in partial fulfillment of the Master (1969). of Science degree requirements. (5) V.Simanek, V. Preininger, and J. Lasovsky, Coll. Czech. Chem. Supported by the National Science Council of the Republic of Commun., 41,1050 (1976). China. (6) G.Habermehl, J. Schunk, and G. Schaden, Justus Liebigs Ann. The authors thank Dr. Edward H. Fairchild and Dr. Jinn Wu, College Chem., 742, 138 (1970). of Pharmacy, Ohio State University, for measurement of some PMR and (7) C. Moulis, J. Gleye, and E. Stanislas, Phytochemistry, 16,1283 mass spectra and Dr. Kuo-Hsiung Lee, School of Pharmacy, University (1977). of North Carolina at Chapel Hill, for measurement of the high-resolution (8) H.Suguna and B. R. Pai, Coll. Czech. Chem. Commun., 41,1219 mass spectra. They also thank Dr. B. R. Pai, Department of Chemistry, (1976). Presidency University, Madras, India, for an authentic sample of 3- (9) J. Schmutz, Helu. Chim. Acta, 42,335 (1959). hydroxy-2-methoxy-l0,ll-methylenedioxyberbineand Dr. C. Moulis, (10) T. Kametani, M. Takeshita, and S. Takano, J. Chem. SOC.Perkin Faculty of Pharmaceutical Sciences, University of Toulouse, France, for I, 1972,2834. authentic samples of pseudocolumbamine and dehydropseudocheilan- (11) T. Kametani, Y.Hirai, F.
    [Show full text]
  • 3.2 Choline and Its Products Acetylcholine and Phosphatidylcholine
    3.2 Choline and Its Products Acetylcholine and Phosphatidylcholine AU1 Choline R. J. Wurtman . M. Cansev . I. H. Ulus 1 Introduction ...................................................................................... 3 2 Choline in the Blood ............................................................................. 3 2.1 Sources of Plasma Choline . ................................................................. 4 2.1.1 Dietary Choline ..................................................................................... 4 2.1.2 Endogenous Choline Synthesis . ................................................................. 5 2.1.3 Choline‐Containing Membrane Phospholipids . ................................... 9 2.2 Fates of Circulating Choline . ................................................................ 10 2.2.1 Choline as a Source of Methyl Groups (Choline Oxidase System) . 12 2.3 Effects of Physiologic or Pathologic States on Plasma Choline .................................. 15 3 Choline in the Brain ............................................................................ 16 3.1 Sources of Brain Choline . ................................................................ 16 3.1.1 Uptake of Circulating Choline into the Brain . .................................. 16 3.1.2 Liberation from Membrane PC . ................................................................ 17 3.1.3 Reutilization of Choline Formed from Hydrolysis of Acetylcholine . 18 3.1.4 De Novo Synthesis of Phosphatidylcholine and Choline . .................................
    [Show full text]
  • Cognitive Function Modulation During Aging: a Focus on L-Alpha-GPE
    European Review for Medical and Pharmacological Sciences 2021; 25: 3015-3027 Cognitive function modulation during aging: a focus on L-alpha-GPE G. BIGGIO1, I. DI FAZIO2, C. MARTINI3 1Department of Life and Environmental Sciences, Institute of Neuroscience, CNR, University of Cagliari, Cagliari, Italy 2Geriatric Evaluation and Rehabilitation Unit Richiedei Foundation, Palazzolo sull’Oglio, Brescia, Italy 3Department of Pharmacy, University of Pisa, Pisa, Italy All authors contributed equally to this work Abstract. – OBJECTIVE: The objectives of Introduction this review are to explore the neuronal path- ways and cellular and molecular mechanisms Cognitive impairment (CI) is a global health involved in both healthy and impaired cognitive issue and, as such, causes a substantial individ- function and to discuss the role of nootropics, ual, economic and societal burden. In addition, in particular, those with cholinergic activity, as promising interventions to preserve and/or im- CI can herald the onset of dementia, which is in- prove cognitive performance in patients in the creasingly associated with significant morbidity symptomatic pre-dementia stage, known as and mortality1,2. During the aging process, there mild cognitive impairment (MCI). is a decline in the ability to perform cognitive MATERIALS AND METHODS: Papers were re- tasks that require one to quickly process/trans- trieved by a PubMed search, using different com- form information to make a decision, includ- binations of keywords (e.g., cognitive function ing measures of speed of processing, working AND aging AND nootropics), without limitations in 1 terms of publication date or language. memory, and executive cognitive function . By RESULTS: Nootropics modulate the activities investigating the factors influencing the course of specific brain pathways involving neurotrans- of cognitive aging may be useful in both preven- mitters and neuromodulators that have distinct tion and treatment strategies aimed at preserv- roles in the cognitive processes.
    [Show full text]