Appendix a Second Quantization

Total Page:16

File Type:pdf, Size:1020Kb

Appendix a Second Quantization Appendix A Second Quantization The most remarkable fact about a system of fermions is that no more than one fermion can occupy a quantum particle state (Pauli’s exclusion principle). For bosons no such restriction applies. That is, any number of bosons can occupy the same state. We shall discuss the second quantization formalism in which creation and annihilation operators associated with each quantum state are used. This formalism is extremely useful in treating of many-boson and/or many-fermion system. A.1 Boson Creation and Annihilation Oper- ators The quantum state for a system of bosons (or fermions) can most conve- niently be represented by a set of occupation numbers where are the numbers of bosons (or fermions) occupying the quantum particle-states This representation is called the occupation number representation or simply the number representation. For bosons, the possible values for are zero, one, two, or any positive integers: The many-boson state can best be represented by the distribution of particles (balls) in the states (boxes) as shown in Fig. A.1. Let us introduce operators (without prime) whose eigenvalues are given by 0, 1, 2, ... Since Eq. (A.1) is meant for each and every state indepen- 333 334 APPENDIX A. SECOND QUANTIZATION dently, we assume that It is convenient to introduce complex dynamic variables and instead of directly dealing with the number operators We attach labels to the dynamic variables and associated with the states and assume that and satisfy the following Bose commutation rules: Let us set which is Hermitean. Clearly, satisfy Eqs. (A.2). We shall show that has as eigenvalues all non-negative integers. Let be an eigenvalue of (dropping the suffix a) and an eigenket belonging to it. By definition Now is the squared length of the ket and hence A.1. BOSON CREATION AND ANNIHILATION OPERATORS 335 Also by definition hence from Eqs. (A.5) and (A.6), we obtain the case of equality occurring only if Consider now We may use the following identities: and obtain Hence Now if then is, according to Eq. (A.11), an eigenket of belonging to the eigenvalue Hence for non-zero is another eigenvalue. We can repeat the argument and deduce that, if is another eigenvalue of Continuing in this way, we obtain a series of eigenvalues which can terminate only with the value 0 because of inequality (A.7). By a similar process, we can show from the Hermitean conjugate of Eq. (A.10): that the eigenvalue of has no upper limit [Problem A.1.1]. Hence, the eigenvalues of are non- negative integers: 0,1,2,... (q.e.d) Let be a normalized eigenket of belonging to the eigenvalue 0 so that By multiplying all these kets together, we construct a normalized eigen- ket: which is a simultaneous eigenket of all belonging to the eigenvalues zero. This ket is called the vacuum ket. It has the following property: 336 APPENDIX A. SECOND QUANTIZATION Using the commutation rules (A.3) we obtain a relation (dropping suffix a) which may be proved by induction (Problem A.1.2). Multiply Eq. (A.15) by from the left and operate the result to Using Eq. (A.14) we obtain indicating that is an eigenket belonging to the eigenvalue The square length of is We see from Eq. (A.11) that is an eigenket of belonging to the eigenvalue Similarly, we can show from that is an eigenket of belonging to the eigenvalue Thus operator acting on the number eigenket, annihilates a particle while operator creates a particle. Therefore, and are called annihilation and creation operators, respectively. From Eqs. (A.16) and (A.17) we infer that if are any non-negative integers, is a normalized simultaneous eigenket of all the belonging to the eigenvalues Various kets obtained by taking different form a complete set of kets all orthogonal to each other. Following Dirac [1], we postulate that the quantum states for N bosons can be represented by a symmetric ket where S is the symmetrizing operator: and P are permutation operators for the particle-indices (1,2,..., N). The ket in Eq. (A.19) is not normalized but A.2. OBSERVABLES 337 is a normalized ket representing the same state. Comparing Eqs. (A.21) and (A.18), we obtain That is, unnormalized symmetric kets for the system can be constructed by applying N creation operators to the vacuum ket So far we have tacitly assumed that the total number of bosons is fixed at N' . If this number is not fixed but is variable, we can easily extend the theory to this case. Let us introduce a Hermitean operator N defined by the summation extending over the whole set of boson states. Clearly, the operator N has eigenvalues 0,1,2,..., and the ket is an eigenket of N belonging to the eigenvalue N'. We may arrange kets in the order of N', i.e., zero-particle state, one-particle states, two-particle states, ... : These kets are all orthogonal to each other, two kets referring to the same number of bosons are orthogonal as before, and two referring to different numbers of bosons are orthogonal because they have different eigenvalues N'. By normalizing the kets, we get a set of kets like (A.21) with no restriction on These kets form the basic kets in a representation where are diagonal. Problem A.1.1. (a) Show (twice) that by taking the Hermitian-conjugation of Eq. (A.10) and also by using Eqs. (A.9). (b) Use this relation and obtain a series of eigenvalues where is an eigenvalue of Problem A.1.2. Prove Eq. (A.15) by mathematical induction. Hint: use Eqs. (A.9). A. 2 Observables We wish to express observable physical quantities (observables) for the system of identical bosons in terms of and These observables are by postulate symmetric functions of the boson variables. 338 APPENDIX A. SECOND QUANTIZATION An observable may be written in the form: where is a function of the dynamic variables of the boson, that of the dynamic variables of the and bosons, and so on. We take Since acts only on the ket of the boson, we have The matrix element does not depend on the particle index Summing Eq. (A.26) over all and applying operator S to the result, we obtain Since Y is symmetric, we can replace SY by YS for the lhs. After straight- forward calculations, we obtain, from Eq. (A.27), Using the commutation rules and the property (A.14) we can show that A.3. FERMIONS CREATION AND ANNIHILATION OPERATORS 339 (Problem A.2.1). Using this relation, we obtain from Eq. (A.28) Since the kets form a complete set, we obtain In a similar manner Z in Eq. (A.25) can be expressed by [Problem A.2.2] Problem A.2.1. Prove Eq. (A.29). Hint: Start with cases of one- and two- particle-state kets. Problem A.2.2. Prove Eq. (A.32) by following those steps similar to (A.27)- (A.31). A.3 Fermions Creation and Annihilation Op- erators In this section we treat a system of identical fermions in a parallel manner. The quantum states for fermions, by postulate, are represented by anti- symmetric kets: where is the antisymmetrizing operator, with being +1 or – 1 according to whether P is even or odd. Each antisymmetric ket in Eq. (A.34) is charac- terized such that it changes its sign if an odd permutation of particle indices 340 APPENDIX A. SECOND QUANTIZATION is applied to it, and the fermion states are all different. Just as for a boson system, we can introduce observables each with eigenvalues 0 or 1, representing the number of fermions in the states respectively. The many-fermion occupation-number can be represented as in Fig. A.2. We can also introduce a set of linear operators one pair for each state satisfying the Fermi anticommutation rules: The number of fermions in the state is again represented by Using Eqs. (A.36), we obtain If an eigenket of belonging to the eigenvalue is denoted by Eq. (A.38) yields Since we obtain meaning that the eigenvalues are either 0 or 1 as required: A.4. HEISENBERG EQUATION OF MOTION 341 Similarly to the case of bosons, we can show that which is normalized to unity. Observables describing the system of fermions can be expressed in terms of operators and and the results have the same form Eqs. (A.31) and (A.32) as for the case of bosons. In summary both states and observables for a system of identical particles can be expressed in terms of creation and annihilation operators. This formal- ism, called the second quantization formalism, has some notable advantages over the usual Schrödinger formalism. First, the permutation-symmetry property of the quantum particles is represented simply in the form of Bose commutation (or Fermi anticommutation) rules. Second, observables in sec- ond quantization are defined for an arbitrary number of particles so that the formalism may apply to systems in which the number of particles is not fixed, but variable. Third, and most importantly, all relevant quantities (states and observables) can be defined referring only to the single-particle states. This property allows one to describe the motion of the many-body system in the 3D space. This is a natural description since all particles in nature move in 3D. In fact, relativistic quantum field theory can be developed only in second quantization. A.4 Heisenberg Equation of Motion In the Schrödinger Picture (SP), the energy eigenvalue equation is where H is the Hamiltonian and E the eigenvalue.
Recommended publications
  • Arxiv:1512.08882V1 [Cond-Mat.Mes-Hall] 30 Dec 2015
    Topological Phases: Classification of Topological Insulators and Superconductors of Non-Interacting Fermions, and Beyond Andreas W. W. Ludwig Department of Physics, University of California, Santa Barbara, CA 93106, USA After briefly recalling the quantum entanglement-based view of Topological Phases of Matter in order to outline the general context, we give an overview of different approaches to the classification problem of Topological Insulators and Superconductors of non-interacting Fermions. In particular, we review in some detail general symmetry aspects of the "Ten-Fold Way" which forms the foun- dation of the classification, and put different approaches to the classification in relationship with each other. We end by briefly mentioning some of the results obtained on the effect of interactions, mainly in three spatial dimensions. I. INTRODUCTION Based on the theoretical and, shortly thereafter, experimental discovery of the Z2 Topological Insulators in d = 2 and d = 3 spatial dimensions dominated by spin-orbit interactions (see [1,2] for a review), the field of Topological Insulators and Superconductors has grown in the last decade into what is arguably one of the most interesting and stimulating developments in Condensed Matter Physics. The field is now developing at an ever increasing pace in a number of directions. While the understanding of fully interacting phases is still evolving, our understanding of Topological Insulators and Superconductors of non-interacting Fermions is now very well established and complete, and it serves as a stepping stone for further developments. Here we will provide an overview of different approaches to the classification problem of non-interacting Fermionic Topological Insulators and Superconductors, and exhibit connections between these approaches which address the problem from very different angles.
    [Show full text]
  • Second Quantization
    Chapter 1 Second Quantization 1.1 Creation and Annihilation Operators in Quan- tum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator. Let a and a† be two operators acting on an abstract Hilbert space of states, and satisfying the commutation relation a,a† = 1 (1.1) where by “1” we mean the identity operator of this Hilbert space. The operators a and a† are not self-adjoint but are the adjoint of each other. Let α be a state which we will take to be an eigenvector of the Hermitian operators| ia†a with eigenvalue α which is a real number, a†a α = α α (1.2) | i | i Hence, α = α a†a α = a α 2 0 (1.3) h | | i k | ik ≥ where we used the fundamental axiom of Quantum Mechanics that the norm of all states in the physical Hilbert space is positive. As a result, the eigenvalues α of the eigenstates of a†a must be non-negative real numbers. Furthermore, since for all operators A, B and C [AB, C]= A [B, C] + [A, C] B (1.4) we get a†a,a = a (1.5) − † † † a a,a = a (1.6) 1 2 CHAPTER 1. SECOND QUANTIZATION i.e., a and a† are “eigen-operators” of a†a. Hence, a†a a = a a†a 1 (1.7) − † † † † a a a = a a a +1 (1.8) Consequently we find a†a a α = a a†a 1 α = (α 1) a α (1.9) | i − | i − | i Hence the state aα is an eigenstate of a†a with eigenvalue α 1, provided a α = 0.
    [Show full text]
  • Chapter 7 Second Quantization 7.1 Creation and Annihilation Operators
    Chapter 7 Second Quantization Creation and annihilation operators. Occupation number. Anticommutation relations. Normal product. Wick's theorem. One-body operator in second quantization. Hartree- Fock potential. Two-particle Random Phase Approximation (RPA). Two-particle Tamm- Dankoff Approximation (TDA). 7.1 Creation and annihilation operators In Fig. 3 of the previous Chapter it is shown the single-particle levels generated by a double-magic core containing A nucleons. Below the Fermi level (FL) all states hi are occupied and one can not place a particle there. In other words, the A-particle state j0i, with all levels hi occupied, is the ground state of the inert (frozen) double magic core. Above the FL all states are empty and, therefore, a particle can be created in one of the levels denoted by pi in the Figure. In Second Quantization one introduces the y j i creation operator cpi such that the state pi in the nucleus containing A+1 nucleons can be written as, j i y j i pi = cpi 0 (7.1) this state has to be normalized, that is, h j i h j y j i h j j i pi pi = 0 cpi cpi 0 = 0 cpi pi = 1 (7.2) from where it follows that j0i = cpi jpii (7.3) and the operator cpi can be interpreted as the annihilation operator of a particle in the state jpii. This implies that the hole state hi in the (A-1)-nucleon system is jhii = chi j0i (7.4) Occupation number and anticommutation relations One notices that the number y nj = h0jcjcjj0i (7.5) is nj = 1 is j is a hole state and nj = 0 if j is a particle state.
    [Show full text]
  • SECOND QUANTIZATION Lecture Notes with Course Quantum Theory
    SECOND QUANTIZATION Lecture notes with course Quantum Theory Dr. P.J.H. Denteneer Fall 2008 2 SECOND QUANTIZATION x1. Introduction and history 3 x2. The N-boson system 4 x3. The many-boson system 5 x4. Identical spin-0 particles 8 x5. The N-fermion system 13 x6. The many-fermion system 14 1 x7. Identical spin- 2 particles 17 x8. Bose-Einstein and Fermi-Dirac distributions 19 Second Quantization 1. Introduction and history Second quantization is the standard formulation of quantum many-particle theory. It is important for use both in Quantum Field Theory (because a quantized field is a qm op- erator with many degrees of freedom) and in (Quantum) Condensed Matter Theory (since matter involves many particles). Identical (= indistinguishable) particles −! state of two particles must either be symmetric or anti-symmetric under exchange of the particles. 1 ja ⊗ biB = p (ja1 ⊗ b2i + ja2 ⊗ b1i) bosons; symmetric (1a) 2 1 ja ⊗ biF = p (ja1 ⊗ b2i − ja2 ⊗ b1i) fermions; anti − symmetric (1b) 2 Motivation: why do we need the \second quantization formalism"? (a) for practical reasons: computing matrix elements between N-particle symmetrized wave functions involves (N!)2 terms (integrals); see the symmetrized states below. (b) it will be extremely useful to have a formalism that can handle a non-fixed particle number N, as in the grand-canonical ensemble in Statistical Physics; especially if you want to describe processes in which particles are created and annihilated (as in typical high-energy physics accelerator experiments). So: both for Condensed Matter and High-Energy Physics this formalism is crucial! (c) To describe interactions the formalism to be introduced will be vastly superior to the wave-function- and Hilbert-space-descriptions.
    [Show full text]
  • Second Quantization∗
    Second Quantization∗ Jörg Schmalian May 19, 2016 1 The harmonic oscillator: raising and lowering operators Lets first reanalyze the harmonic oscillator with potential m!2 V (x) = x2 (1) 2 where ! is the frequency of the oscillator. One of the numerous approaches we use to solve this problem is based on the following representation of the momentum and position operators: r x = ~ ay + a b 2m! b b r m ! p = i ~ ay − a : (2) b 2 b b From the canonical commutation relation [x;b pb] = i~ (3) follows y ba; ba = 1 y y [ba; ba] = ba ; ba = 0: (4) Inverting the above expression yields rm! i ba = xb + pb 2~ m! r y m! i ba = xb − pb (5) 2~ m! ∗Copyright Jörg Schmalian, 2016 1 y demonstrating that ba is indeed the operator adjoined to ba. We also defined the operator y Nb = ba ba (6) which is Hermitian and thus represents a physical observable. It holds m! i i Nb = xb − pb xb + pb 2~ m! m! m! 2 1 2 i = xb + pb − [p;b xb] 2~ 2m~! 2~ 2 2 1 pb m! 2 1 = + xb − : (7) ~! 2m 2 2 We therefore obtain 1 Hb = ! Nb + : (8) ~ 2 1 Since the eigenvalues of Hb are given as En = ~! n + 2 we conclude that the eigenvalues of the operator Nb are the integers n that determine the eigenstates of the harmonic oscillator. Nb jni = n jni : (9) y Using the above commutation relation ba; ba = 1 we were able to show that p a jni = n jn − 1i b p y ba jni = n + 1 jn + 1i (10) y The operator ba and ba raise and lower the quantum number (i.e.
    [Show full text]
  • Casimir-Polder Interaction in Second Quantization
    Universitat¨ Potsdam Institut fur¨ Physik und Astronomie Casimir-Polder interaction in second quantization Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) in der Wissen- schaftsdisziplin theoretische Physik. Eingereicht am 21. Marz¨ 2011 an der Mathematisch – Naturwissen- schaftlichen Fakultat¨ der Universitat¨ Potsdam von Jurgen¨ Schiefele Betreuer: PD Dr. Carsten Henkel This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2011/5417/ URN urn:nbn:de:kobv:517-opus-54171 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54171 Abstract The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predic- tions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states.
    [Show full text]
  • Notes on Green's Functions Theory for Quantum Many-Body Systems
    Notes on Green's Functions Theory for Quantum Many-Body Systems Carlo Barbieri Department of Physics, University of Surrey, Guildford GU2 7XH, UK June 2015 Literature A modern and compresensive monography is • W. H. Dickhoff and D. Van Neck, Many-Body Theory Exposed!, 2nd ed. (World Scientific, Singapore, 2007). This book covers several applications of Green's functions done in recent years, including nuclear and electroncic systems. Most the material of these lectures can be found here. Two popular textbooks, that cover the almost complete formalism, are • A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Physics (McGraw-Hill, New York, 1971), • A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975). Other useful books on many-body Green's functions theory, include • R. D. Mattuck, A Guide to Feynmnan Diagrams in the Many-Body Problem, (McGraw-Hill, 1976) [reprinted by Dover, 1992], • J. P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge MA, 1986), • J. W. Negele and H. Orland, Quantum Many-Particle Systems (Ben- jamin, Redwood City CA, 1988). 2 Chapter 1 Preliminaries: Basic Formulae of Second Quantization and Pictures Many-body Green's functions (MBGF) are a set of techniques that originated in quantum field theory but have also found wide applications to the many- body problem. In this case, the focus are complex systems such as crystals, molecules, or atomic nuclei. However, many-body Green's functions still share the same language with elementary particles theory, and have several concepts in common.
    [Show full text]
  • Second Quantization I Fermion
    Second quantization for fermions Masatsugu Sei Suzuki Department of Physics SUNY at Binghamton (Date: April 20, 2017) Vladimir Aleksandrovich Fock (December 22, 1898 – December 27, 1974) was a Soviet physicist, who did foundational work on quantum mechanics and quantum electrodynamics. His primary scientific contribution lies in the development of quantum physics, although he also contributed significantly to the fields of mechanics, theoretical optics, theory of gravitation, physics of continuous media. In 1926 he derived the Klein– Gordon equation. He gave his name to Fock space, the Fock representation and Fock state, and developed the Hartree–Fock method in 1930. He made many subsequent scientific contributions, during the rest of his life. Fock developed the electromagnetic methods for geophysical exploration in a book The theory of the study of the rocks resistance by the carottage method (1933); the methods are called the well logging in modern literature. Fock made significant contributions to general relativity theory, specifically for the many body problems. https://en.wikipedia.org/wiki/Vladimir_Fock 1. Introduction What is the definition of the second quantization? In quantum mechanics, the system behaves like wave and like particle (duality). The first quantization is that particles behave like waves. For example, the wave function of electrons is a solution of the Schrödinger equation. Although electromagnetic waves behave like wave, they also behave like particle, as known as photon. This idea is known as second quantization; waves behave like particles. Instead of traditional treatment of a wave function as a solution of the Schrödinger equation in the position representation or representation of some dynamical observable, we will now find a totally different basis formed by number states (or Fock states).
    [Show full text]
  • 1 Lecture 3. Second Quantization, Bosons
    Manyb o dy phenomena in condensed matter and atomic physics Last modied September Lecture Second Quantization Bosons In this lecture we discuss second quantization a formalism that is commonly used to analyze manyb o dy problems The key ideas of this metho d were develop ed starting from the initial work of Dirac most notably by Fo ck and Jordan In this approach one thinks of multiparticle states of b osons or fermions as single particle states each lled with a certain numb er of identical particles The language of second quantization often allows to reduce the manybo dy problem to a single particle problem dened in terms of quasiparticles ie particles dressed by interactions The Fo ck space The manyb o dy problem is dened for N particles here b osons describ ed by the sum of singleparticle Hamiltonians and the twob o dy interaction Hamiltonian N X X (1) (2) H H x H x x b a a a�1 a6�b 2 h (1) (2) 0 (2) 0 2 H x H x x U x x U x r x m where x are particle co ordinates In some rare cases eg for nuclear particles one a also has to include the threeparticle and higher order multiparticle interactions such as P (3) H x x x etc a b c abc The system is describ ed by the manyb o dy wavefunction x x x symmetric 2 1 N with resp ect to the p ermutations of co ordinates x The symmetry requirement fol a lows from pareticles indestinguishability and Bose statistics ie the wav efunction invari ance under p ermutations of the particles The wavefunction x x x ob eys the 2 1 N h H Since the numb er of particles in typical
    [Show full text]
  • QUANTUM THEORY of SOLIDS Here A+ Is Simply the Hermitian Conjugate of A
    1 QUANTUM THEORY OF SOLIDS Here a+ is simply the Hermitian conjugate of a. Using these de¯nitions we can rewrite the Hamiltonian as: Version (02/12/07) ~! H = (aa+ + a+a): (6) 2 SECOND QUANTIZATION We now calculate (aa+ ¡ a+a)f(x) = [a; a+]f(x), f any function In this section we introduce the concept of second quantization. Historically, the ¯rst quantization is the = 1 ¢ f(x) , since p = ¡i~@x: (7) quantization of particles due to the commutation rela- Hence tion between position and momentum, i.e., [a; a+] = 1; (8) [x; p] = i~: (1) which is the Boson commutation relation. In addition, Second quantization was introduced to describe cases, [a; a] = [a+; a+] = 0. Using this commutation relation we where the number of particles can vary. A quantum ¯eld can rewrite the Hamiltonian in second quantized form as such as the electromagnetic ¯eld is such an example, since the number of photons can vary. Here it is necessary H = ~!(a+a + 1=2): (9) to quantize a ¯eld ª(r), which can also be expressed in terms of commutation relations In order to solve the Hamiltonian in this form we can write the wave function as [ª(r); ª+(r0)] = ±(r ¡ r0): (2) (a+)n Ãn = p j0i; (10) However, there is only one quantum theory, hence n! nowadays ¯rst quantization refers to using eigenval- and aj0i = 0, where j0i is the vacuum level of the system. ues and eigenfunctions to solve SchrÄodingerequation, We now show that Ãn de¯ned in this way is indeed the whereas in second quantization one uses creation and an- solution to SchrÄodinger'sequation HÃn = EnÃn.
    [Show full text]
  • Nuclear-Electronic All-Particle Density Matrix Renormalization Group
    Nuclear-Electronic All-Particle Density Matrix Renormalization Group 1 1 1 1, Andrea Muolo, Alberto Baiardi, Robin Feldmann, and Markus Reiher ∗ 1ETH Z¨urich,Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Z¨urich,Switzerland Abstract We introduce the Nuclear Electronic All-Particle Density Matrix Renormalization Group (NEAP-DMRG) method for solving the time-independent Schr¨odingerequation simultaneously for electrons and other quantum species. In contrast to already existing multicomponent approaches, in this work we construct from the outset a multi-reference trial wave function with stochastically optimized non-orthogonal Gaussian orbitals. By iterative refining of the Gaussians' positions and widths, we obtain a compact multi-reference expansion for the multicomponent wave function. We extend the DMRG algorithm to multicomponent wave functions to take into account inter- and intra-species correlation effects. The efficient parametrization of the total wave function as a ma- trix product state allows NEAP-DMRG to accurately approximate full configuration interaction energies of molecular systems with more than three nuclei and twelve particles in total, which is currently a major challenge for other multicomponent approaches. We present NEAP-DMRG + results for two few-body systems, i.e., H2 and H3 , and one larger system, namely BH3. arXiv:2003.04446v2 [physics.chem-ph] 13 May 2020 ∗ corresponding author: [email protected] 1 I. INTRODUCTION Modeling the static and dynamical properties of molecular systems relies routinely on the Born{Oppenheimer (BO) approximation [1, 2] which separates the time-independent Schr¨odingerequation into the electronic and nuclear parts, motivated by the large mass dif- ference between the two subsystem components.
    [Show full text]
  • Second Quantization of the Klein-Gordon Equation
    Kapitza Spring 2018 Second Quantization of the Klein-Gordon Equation Ben Saltzman Q.F.T. TERM PAPER Professor Sarada Rajeev April 20th 2017 1 Introduction The Schr¨odinger equation, successful as it is for describing non-relativistic quantum particles, fails in the relativistic regime. By using special relativity, one can derive a relativistic version of the Schr¨odingerequation, known as the first quantization of the Klein-Gordon equation. Unfortunately, this has its own problems: negative energy and probability solutions, nonphysical entities that could spell the end for a theory. Moving from quantum theory to quantum field theory, fields are introduced as fundamental. Quantizing the Klein-Gordon equation in quantum field theory leads to a model known as the second quantization, which avoids many of the problems of the first quantization. 2 Second Quantization of the Klein-Gordon Equation 2.1 The Klein-Gordon Field We can write the Klein-Gordon field operator as 3 ( ik x) (ik x) φ(x)=C d k e − · a(k)+e · a†(k) (1) Z ✓ ◆ where 1 C = (2) 2k0(2⇡)3 0 and k = Ek. The field operator satisfiesp the Klein-Gordon equation, i.e. µ 2 (@µ@ + m )φ =0 (3) This can be split into positive and negative energy components as follows: (+) ( ) φ(x)=φ (x)+φ − (x) (+) 3 ( ik x) φ (x)=C d ke− · a(k) (4) Z ( ) 3 (ik x) φ − (x)=C d ke · a†(k) Z The conjugate momentum for the field operator is therefore ⇧(x)=φ˙(x) 0 3 = ik C d k exp( ik x)a(k) exp(ik x)a†(k) (5) − − · − · Z ✓ ◆ 1 Inverting equations 1 and 5 and solving for the annihilation and creation operators a and
    [Show full text]