Infectious Causes of Right Middle Lobe Syndrome Aatif Rashid, MD, Sowmya Nanjappa, MBBS, MD, and John N

Total Page:16

File Type:pdf, Size:1020Kb

Infectious Causes of Right Middle Lobe Syndrome Aatif Rashid, MD, Sowmya Nanjappa, MBBS, MD, and John N Case Series Infectious Causes of Right Middle Lobe Syndrome Aatif Rashid, MD, Sowmya Nanjappa, MBBS, MD, and John N. Greene, MD Summary: Right middle lobe (RML) syndrome is defined as recurrent or chronic obstruction or infection of the middle lobe of the right lung. Nonobstructive causes of middle lobe syndrome include inflammatory processes and defects in the bronchial anatomy and collateral ventilation. We report on 2 case patients with RML syndrome, one due to infection with Mycobacterium avium complex followed by M asiaticum infection and the other due to allergic bronchopulmonary aspergillosis. A history of atopy, asthma, or chronic obstruc- tive pulmonary disease has been reported in up to one-half of those with RML. The diagnosis can be made by plain radiography, computed tomography, and bronchoscopy. Medical treatment consists of bronchodilators, mucolytics, and antimicrobials. Patients whose disease is unresponsive to treatment and those with obstruc- tive RML syndrome can be offered surgical treatment. Introduction monary disease due to MAC infection in immunocom- The term middle lobe syndrome (MLS) was first used petent individuals can be divided into a primary form, by Graham et al1 in 1948, and the disease is defined which occurs in healthy persons who do not smoke, as recurrent or chronic collapse or infection of the middle lobe of the right lung. MLS can present in per- sons of any age. The syndrome is divided into an ob- Table 1. — Obstructive and Nonobstructive Causes of structive type (demonstrable airway occlusion) and a Middle Lobe Syndrome nonobstructive type (patent right middle lobe [RML] Sign/Symptom Obstructive Non- bronchus). Obstructive MLS can be caused either by Cause obstructive endobronchial lesions or extrinsic compression of the Cause RML bronchus. Malignancy is the most common cause Aspirated foreign body (especially in X of the obstructive type followed by an infectious etiolo- children) gy (Tables 1 and 2).2-14 Benign tumors (eg, hamartomas) Benign tumor (eg, hamartoma) X and malignant tumors (eg, primary lung cancer, me- Broncholiths endobronchially eroding X tastasis) alike can cause obstructive MLS and account from adjacent, calcified lymph nodes for up to 25% of cases.2 The most common cause of ex- Cardiovascular anomaly X trinsic compression of the RML bronchus is peribron- Endoluminal granuloma associated X chial lymphadenopathy due to infection, sarcoidosis, with sarcoidosis and metastasis.3 Nonobstructive causes of MLS include Enlarged peribronchial lymph nodes X inflammatory processes and defects in the bronchial (infection, sarcoidosis, metastasis) 15,16 causing extrinsic compression of anatomy and collateral ventilation. right middle lobe bronchus We report on 2 cases of RML syndrome, one due Etiology not completely understood X to infection with Mycobacterium avium complex Inflammation of the middle lobe and X (MAC) followed by infection with M asiaticum and the lingual area other due to allergic bronchopulmonary aspergillo- Infectious etiology X sis (ABPA). MAC is the most common nontuberculous Mycobacteria (NTM) species to infect humans.6 Pul- Inspissated mucus associated with X cystic fibrosis or allergic bronchopul- monary aspergillosis From the Departments of Internal Hospital Medicine (SN) and Insufficient collateral ventilation X Infectious Diseases (JNG), H. Lee Moffitt Cancer Center & Research Institute (AF), and the University of South Florida Morsani Col- Malignant tumor (eg, primary lung X lege of Medicine (SN), Tampa, Florida. cancer, metastases) Address correspondence to John N. Greene, MD, Department of Primary ciliary dyskinesia X Infectious Diseases, Moffitt Cancer Center, 12902 Magnolia Drive, FOB-3 BMT PROG, Tampa, FL 33612. E-mail: [email protected] Situs inversus/other congenital X malformations Submitted March 1, 2016; accepted June 24, 2016. No significant relationships exist between the authors and the Traction diverticula of the esophagus X companies/organizations whose products or services may be Data from references 2 to 5, 7 to 10, and 13. referenced in this article. 60 Cancer Control January 2017, Vol. 24, No. 1 and a secondary form, which occurs new changes in the left lower lobe, in persons with underlying lung dis- Table 2. — Infectious Causes of posterior bronchiectasis, and distal Middle Lobe Syndrome ease (eg, chronic obstructive pulmo- nodularity when compared with the nary disease [COPD], latent tubercu- Actinobacteria results on CT obtained 4 years prior losis, bronchiectasis, cystic fibrosis). Aspergillus species (Fig 1). She was treated with azithro- In general, the primary form affects Blastomyces species mycin and trimethoprim/sulfa- elderly women who are otherwise Bordetella pertussis methoxazole and advised to undergo healthy nonsmokers, and it presents surgical removal of the RML. Chlamydophila psittaci with an interstitial/nodular pattern Six months later she underwent on chest radiography.6 M asiaticum is Echinococcal pulmonary hydatid disease RML resection due to progressive a slow-growing mycobacterium spe- Haemophilus influenza symptoms and severe bronchiec- cies first recognized in Australia by Histoplasma species tasis predominantly in the RML. Blacklock et al17 in the early 1980s. Moraxella catarrhalis Findings on histopathology showed They surmised that M asiaticum Mycobacterium avium intracellulare necrotizing granulomatous bron- was a potential pulmonary pathogen Mycobacterium fortuitum chiolitis. Results from acid-fast ba- among individuals with an underly- cilli tissue staining were positive Mycobacterium tuberculosis ing chronic respiratory problem such with areas of chronic bronchitis and as COPD.17 Staphylococcus aureus bronchiolitis. She was then treated Persons with chronic lung dis- Streptococcus pneumonia on azithromycin monotherapy for ease are at risk of Aspergillus coloni- Data from references 6, 8, and 11 to 14. approximately 5 years with inter- zation and infection.18 ABPA occurs mittent courses of trimethoprim/ as a result of hypersensitivity to colonizing Aspergillus sulfamethoxazole. species in the airways of persons with asthma, NTM Five years following resection of the RML, she infection, and cystic fibrosis.8 It affects 2% of those returned for evaluation with symptoms of hemopty- with asthma.19 MLS caused by ABPA has rarely been sis, persistent cough, and pleuritic chest pain. Find- documented.19 ings on CT demonstrated new areas of nodularity in the anterior medial lingular area with bronchial wall Case Reports thickening, tree-in-bud nodules in the right posterior Case 1 lung, and an increase in nodularity in the left medial A woman aged 55 years presented with a 10-year his- posterior lung (Fig 2). BAL cultures grew M asiaticum tory of chronic cough with no prior history of smoking. sensitive to amikacin, ciprofloxacin, azithromycin, Serial computed tomography (CT) of the chest was ob- ethambutol, moxifloxacin, rifabutin, and trime- tained prior to her referral to our center. Bronchoalve- thoprim/sulfamethoxazole. olar lavage (BAL) was performed and the culture grew She was treated with azithromycin and trime- M avium intracellulare (MAI). She was treated with oral thoprim/sulfamethoxazole for 6 months. Her symptoms azithromycin, ethambutol, and rifampin for 1.5 years. resolved, and she has remained without any unwanted After several years of taking antibiotics, she devel- change in weight or significant pulmonary complaints, oped hemoptysis. Repeat BAL was performed and the except for an occasional nonproductive cough, for culture grew methicillin-resistant Staphylococcus au- 3 years following the discontinuation of the antibiotics. reus, so she was treated with oral clindamycin and trimethoprim/ sulfamethoxazole for 2 weeks. Following treatment the patient felt better but still had intermit- tent cough and periodic right lat- eral chest pain. Following 1 month off antibiotics, BAL was again performed and the culture grew both MAI and methicillin-resistant S aureus. CT of the chest was obtained and revealed persistent RML bron- chiectasis and distal nodularity, with new nodules and bronchiectasis in Fig 1. — Computed tomography showing the right middle lobe with large amounts of clustered the superior segment of the right bronchiectasis, distal nodularity. Nodules and bronchiectasis in the superior segment of the right lower lobe. CT results also showed and left lower lobes are also present. January 2017, Vol. 24, No. 1 Cancer Control 61 Case 2 A white woman aged 48 years with a history of rheumatoid arthri- tis was receiving treatment with methotrexate, adalimumab, and sulfasalazine. She also had a history of asthma requiring therapy with a β-agonist inhaler and intermittent corticosteroids. Approximately 3 months prior to her presentation, she developed right upper quadrant abdominal pain. Imaging of her abdomen and Fig 2. — Computed tomography of the chest showing a large mass with a lobulated, scalloped border chest was obtained, the results of in the right middle lobe. which showed a large mass in her RML approximately 6 cm in diam- eter. Transthoracic needle biop- sy was performed that revealed chronic nongranulomatous inflam- mation with septate hyphae con- sistent with Aspergillus infection. No cultures were sent. Findings from acid-fast bacilli stains were negative. CT and positron emis- sion tomography were performed, and the results showed increasing uptake and a lesion thought to be postobstructive pneumonia (Fig 3). Repeat needle biopsy was per- formed and demonstrated septate
Recommended publications
  • X-Ray Interpretation
    Objectives Describe a systematic method for interpretation of chest and abdomen x-rays List findings to accurately identify common X-ray Interpretation pathology in chest & abdomen x-rays Describe a systematic method to approach the Denise Ramponi, DNP, FNP-C, ENP-BC, FAANP, FAEN important components in interpretation of upper & lower extremity x-rays Chest X-ray: Standard Views Lateral Film Postero-anterior (PA): (LAT) view can determine th On inspiration – diaphragm descends to 10 rib the anterior-posterior posteriorly structures along the axis of the body Normal LAT film Counting Ribs AP View - Portable http://www.lumen.luc.edu/lumen/MedEd/medicine/pulmonar/cxr/cxr_f.htm When the patient is unable to tolerate routine views with pts sitting or supine No participation from the patient Film is against the patient's back (supine) 1 Consolidation, Atelectasis, Chest radiograph Interstitial involvement Consolidation - any pathologic process that fills the alveoli with Left and right heart fluid, pus, blood, cells or other borders well defined substances Interstitial - involvement of the Both hemidiaphragms supporting tissue of the lung visible to midline parenchyma resulting in fine or coarse reticular opacities Right - higher Atelectasis - collapse of a part of Heart less than 50% of the lung due to a decrease in the amount of air resulting in volume diameter of the chest loss and increased density. Infiltrate, Consolidation vs. Congestive Heart Failure Atelectasis Fluid leaking into interstitium Kerley B 2 Kerley B lines Prominent interstitial markings Kerley lines Magnified CXR Cardiomyopathy & interstitial pulmonary edema Short 1-2 cm white lines at lung periphery horizontal to pleural surface Distended interlobular septa - secondary to interstitial edema.
    [Show full text]
  • Chest and Abdominal Radiograph 101
    Chest and Abdominal Radiograph 101 Ketsia Pierre MD, MSCI July 16, 2010 Objectives • Chest radiograph – Approach to interpreting chest films – Lines/tubes – Pneumothorax/pneumomediastinum/pneumopericar dium – Pleural effusion – Pulmonary edema • Abdominal radiograph – Tubes – Bowel gas pattern • Ileus • Bowel obstruction – Pneumoperitoneum First things first • Turn off stray lights, optimize room lighting • Patient Data – Correct patient – Patient history – Look at old films • Routine Technique: AP/PA, exposure, rotation, supine or erect Approach to Reading a Chest Film • Identify tubes and lines • Airway: trachea midline or deviated, caliber change, bronchial cut off • Cardiac silhouette: Normal/enlarged • Mediastinum • Lungs: volumes, abnormal opacity or lucency • Pulmonary vessels • Hila: masses, lymphadenopathy • Pleura: effusion, thickening, calcification • Bones/soft tissues (four corners) Anatomy of a PA Chest Film TUBES Endotracheal Tubes Ideal location for ETT Is 5 +/‐ 2 cm from carina ‐Normal ETT excursion with flexion and extension of neck 2 cm. ETT at carina Right mainstem Intubation ‐Right mainstem intubation with left basilar atelectasis. ETT too high Other tubes to consider DHT down right mainstem DHT down left mainstem NGT with tip at GE junction CENTRAL LINES Central Venous Line Ideal location for tip of central venous line is within superior vena cava. ‐ Risk of thrombosis decreased in central veins. ‐ Catheter position within atrium increases risk of perforation Acceptable central line positions • Zone A –distal SVC/superior atriocaval junction. • Zone B – proximal SVC • Zone C –left brachiocephalic vein. Right subclavian central venous catheter directed cephalad into IJ Where is this tip? Hemiazygous Or this one? Right vertebral artery Pulmonary Arterial Catheter Ideal location for tip of PA catheter within mediastinal shadow.
    [Show full text]
  • TB: Recognizing It on a Chest X-Ray
    TB: Recognizing it on a Chest X‐Ray Disclosures • Grant support from Michigan Department of Community Health – Despite conflict of interest I still want to: – There’s enough TB for job security. Objectives • You will – Be able to identify major structures on a normal chest x‐ray – Identify and correctly name CXR abnormalities seen commonly in TB – Recognize chest x‐ray patterns that suggest TB & when you find them you will Basics of Diagnostic X‐ray Physics • X‐rays are directed at the . patient and variably absorbed – When not absorbed • Pass through patient & strike the x‐ray film or – When completely absorbed • Don’t strike x‐ray film or – When scattered • Some strike the x‐ray film Absorption Shade / Density • Absorption depends • Whitest = Most Dense on the – Metal – Energy of the x‐ray beam – Contrast material (dye) – Density of the tissue – Calcium – Bone – Water – Soft Tissue – Fat – Air / Gas • Blackest = Least Dense Normal Frontal Chest X‐ray: Posterior Anterior Note silhouette formed by • lung adjacent to heart • lung adjacent to diaphragm Silhouette Sign Lifeinthefastlane.com Normal Lateral Chest X‐ray Normal PA & Lateral X‐ray: Hilum Hilum –Major bronchi, Pulmonary veins & arteries, Lymph nodes at the root of the lung. Normal PA & Lateral X‐ray: Mediastinum Mediastinum –Central chest organs (not lungs) – Heart, Aorta, Trachea, Thymus, Esophagus, Lymph nodes, Nerves (Between 2 pleuras or linings of the lungs) Normal PA & Lateral X‐ray: Apex • Apex of lung – Area of lung above the level of the anterior end of the 1st rib Wink
    [Show full text]
  • COVID-19 Pneumonia: the Great Radiological Mimicker
    Duzgun et al. Insights Imaging (2020) 11:118 https://doi.org/10.1186/s13244-020-00933-z Insights into Imaging EDUCATIONAL REVIEW Open Access COVID-19 pneumonia: the great radiological mimicker Selin Ardali Duzgun* , Gamze Durhan, Figen Basaran Demirkazik, Meltem Gulsun Akpinar and Orhan Macit Ariyurek Abstract Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread worldwide since December 2019. Although the reference diagnostic test is a real-time reverse transcription-polymerase chain reaction (RT-PCR), chest-computed tomography (CT) has been frequently used in diagnosis because of the low sensitivity rates of RT-PCR. CT fndings of COVID-19 are well described in the literature and include predominantly peripheral, bilateral ground-glass opacities (GGOs), combination of GGOs with consolida- tions, and/or septal thickening creating a “crazy-paving” pattern. Longitudinal changes of typical CT fndings and less reported fndings (air bronchograms, CT halo sign, and reverse halo sign) may mimic a wide range of lung patholo- gies radiologically. Moreover, accompanying and underlying lung abnormalities may interfere with the CT fndings of COVID-19 pneumonia. The diseases that COVID-19 pneumonia may mimic can be broadly classifed as infectious or non-infectious diseases (pulmonary edema, hemorrhage, neoplasms, organizing pneumonia, pulmonary alveolar proteinosis, sarcoidosis, pulmonary infarction, interstitial lung diseases, and aspiration pneumonia). We summarize the imaging fndings of COVID-19 and the aforementioned lung pathologies that COVID-19 pneumonia may mimic. We also discuss the features that may aid in the diferential diagnosis, as the disease continues to spread and will be one of our main diferential diagnoses some time more.
    [Show full text]
  • Chest X-Ray Made Ridiculously Plain, Basic, Or Uncomplicated in Form, Nature, Or Design; Without Much Decoration Or Ornamentation
    Chest X-Ray Made ridiculously plain, basic, or uncomplicated in form, nature, or design; without much decoration or ornamentation Steve Cohen, MD, PA-C Associate Professor, Dept. of Surgery & Director of PA Clinical Education Florida International University Really Simple Step 3 The END, Bye-Bye Thanks for Coming! Posterior Anterior (PA) Workhorse PA Films Properties • X-ray is a “NEGATIVE” – Light is dark (ex. Air) – Less x-ray get through = shows white (eg. bone) • Beam is divergent – Posterior elements magnified – Dense posterior elements may hide anterior structures What can you see on CXR? 4 3 2 5 5 1 3 6 What are we looking at? Quickie Anatomy What are we looking at? Quickie Anatomy Airway • Film “Position” – Patients left on your right • Trachea – Midline (mostly) – Open • Mostly equal from wall to wall Ribs • Rib count – Extent quality • Bony integrity – Fracture, dislocation • Left first rib – Posterior at top • Beam hits first – Anterior at bottom Ribs • Use 1st rib to count • Posterior ribs usually most visible – beam hits first • Seen here = 8 ribs • Clavicles – Integrity (fx, displacement) – Assessing midline • Same distance from trachea Diaphragm – Stomach Bubble • Right higher than left diaphragm – Liver • Costophrenic angles – Fluid “haziness” • Air under diaphragm • Stomach bubble – variable Left Vessels and Heart • Subclavian Artery • Coming off arch • Aortic Arch • Pulmonary Artery • Returning to heart • Left Atrium • Left Ventricle Right Vessels and Heart • Ascending Aorta • Leaving heart • Superior Vena Cava • Entering
    [Show full text]
  • CHEST RADIOLOGY: Goals and Objectives
    Harlem Hospital Center Department of Radiology Residency Training Program CHEST RADIOLOGY: Goals and Objectives ROTATION 1 (Radiology Years 1): Resident responsibilities: • ED chest CTs • Inpatient and outpatient plain films including the portable intensive care unit radiographs • Consultations with referring clinicians MEDICAL KNOWLEDGE: • Residents must demonstrate knowledge about established and evolving biomedical, clinical, and cognitive sciences and the application of this knowledge to patient care. At the end of the rotation, the resident should be able to: • Identify normal radiographic and CT anatomy of the chest • Identify and describe common variants of normal, including aging changes. • Demonstrate a basic knowledge of radiographic interpretation of atelectasis, pulmonary infection, congestive heart failure, pleural effusion and common neoplastic diseases of the chest • Identify the common radiologic manifestation of thoracic trauma, including widened mediastinum, signs of aortic laceration, pulmonary contusion/laceration, esophageal and diaphragmatic rupture. • Know the expected postoperative appearance in patients s/p thoracic surgery and the expected location of the life support and monitoring devices on chest radiographs of critically ill patients (intensive care radiology); be able to recognize malpositioned devices. • Identify cardiac enlargement and know the radiographic appearance of the dilated right vs. left atria and right vs. left ventricles, and pulmonary vascular congestion • Recognize common life-threatening
    [Show full text]
  • Pathology of Allergic Bronchopulmonary Aspergillosis
    [Frontiers in Bioscience 8, e110-114, January 1, 2003] PATHOLOGY OF ALLERGIC BRONCHOPULMONARY ASPERGILLOSIS Anne Chetty Department of Pediatrics, Floating Hospital for Children, New England Medical Center, Boston, MA TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Immunopathogenesis 4. Pathologic Findings 4.1. Plastic bronchitis 4.2. Allergic fungal sinusitis 4.3. ABPA in cystic fibrosis 5. Acknowledgement 6. References 1. ABSTRACT Allergic bronchopulmonary aspergillosis (ABPA) individuals with episodic obstructive lung diseases such as occurs in patients with asthma and cystic fibrosis when asthma and cystic fibrosis that produce thick, tenacious Aspergillus fumigatus spores are inhaled and grow in sputum. bronchial mucus as hyphae. Chronic colonization of Aspergillus fumigatus and host’s genetically determined Decomposing organic matter serves as a substrate immunological response lead to ABPA. In most cases, for the growth of Aspergillus species. Because biologic lung biopsy is not necessary because the diagnosis is made heating produces temperatures as high as 65° to 70° C, on clinical, serologic, and roentgenographic findings. Some Aspergillus spores will not be recovered in the latter stages patients who have had lung biopsies or partial resections of composting. Aspergillus species have been recovered for atelectasis or infiltrates will have histologic diagnoses. from potting soil, mulches, decaying vegetation, and A number of different histologic diagnoses can be found sewage treatment facilities, as well as in outdoor air and even in the same patient. In the early stages the bronchial Aspergillus spores grow in excreta from birds (1) wall is infiltrated with mononuclear cells and eosinophils. Mucoid impaction and eosinophilic pneumonia are seen Allergic fungal pulmonary disease is manifested subsequently.
    [Show full text]
  • Percutaneous Endoscopic Gastrostomy Versus Nasogastric Tube Feeding: Oropharyngeal Dysphagia Increases Risk for Pneumonia Requiring Hospital Admission
    nutrients Article Percutaneous Endoscopic Gastrostomy versus Nasogastric Tube Feeding: Oropharyngeal Dysphagia Increases Risk for Pneumonia Requiring Hospital Admission Wei-Kuo Chang 1,*, Hsin-Hung Huang 1, Hsuan-Hwai Lin 1 and Chen-Liang Tsai 2 1 Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (H.-H.H.); [email protected] (H.-H.L.) 2 Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-2-23657137; Fax: +886-2-87927138 Received: 3 November 2019; Accepted: 4 December 2019; Published: 5 December 2019 Abstract: Background: Aspiration pneumonia is the most common cause of death in patients with percutaneous endoscopic gastrostomy (PEG) and nasogastric tube (NGT) feeding. This study aimed to compare PEG versus NGT feeding regarding the risk of pneumonia, according to the severity of pooling secretions in the pharyngolaryngeal region. Methods: Patients were stratified by endoscopic observation of the pooling secretions in the pharyngolaryngeal region: control group (<25% pooling secretions filling the pyriform sinus), pharyngeal group (25–100% pooling secretions filling the pyriform sinus), and laryngeal group (pooling secretions entering the laryngeal vestibule). Demographic data, swallowing level scale score, and pneumonia requiring hospital admission were recorded. Results: Patients with NGT (n = 97) had a significantly higher incidence of pneumonia (episodes/person-years) than those patients with PEG (n = 130) in the pharyngeal group (3.6 1.0 ± vs. 2.3 2.1, P < 0.001) and the laryngeal group (3.8 0.5 vs.
    [Show full text]
  • Redalyc.POSTERS EXPOSTOS
    Revista Portuguesa de Pneumología ISSN: 0873-2159 [email protected] Sociedade Portuguesa de Pneumologia Portugal POSTERS EXPOSTOS Revista Portuguesa de Pneumología, vol. 23, núm. 3, noviembre, 2017 Sociedade Portuguesa de Pneumologia Lisboa, Portugal Disponível em: http://www.redalyc.org/articulo.oa?id=169753668003 Como citar este artigo Número completo Sistema de Informação Científica Mais artigos Rede de Revistas Científicas da América Latina, Caribe , Espanha e Portugal Home da revista no Redalyc Projeto acadêmico sem fins lucrativos desenvolvido no âmbito da iniciativa Acesso Aberto Document downloaded from http://www.elsevier.es, day 06/12/2017. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. POSTERS EXPOSTOS PE 001 PE 002 A PLEASANT FINDING MALIGNANT CHEST PAIN A Pais, AI Coutinho, M Cardoso, A Pignatelli, C Bárbara A Pais, C Pereira, C Antunes, V Pereira, AI Coutinho, A Feliciano, Centro Hospitalar de Lisboa Norte C Quadros, A Ribeiro, L Carvalho, C Bárbara Centro Hospitalar de Lisboa Norte Key-words: mass, debridement, hamartoma Key-words: pain, S100, sarcoma 37-year-old male patient, salesman. Sporadic smoker. With a past history of allergic rhinitis and chronic gastritis. With no usual 26-year-old male patient, supermarket employee. Smoker of 10 medication. In January 2017, he was diagnosed with a respiratory pack-year. Past history of bronchial asthma in childhood. No rel - infection, having completed ten days of empirical antibiotic ther - evant family history. Without usual ambulatory medication. With apy with amoxicillin / clavulanic acid, with clinical improvement. a history of dry cough and chest pain in the posterior region of In May 2017, he underwent thoracic xray, which revealed homoge - the left hemithorax, for about two years, having had at that time, neous opacity of triangular morphology in the middle lobe of the chest X-ray without pathological findings, and the clinical picture right lung.
    [Show full text]
  • Pneumonia (CAP)
    肺實質化病變與肺塌陷 胸腔內科周百謙醫師 Dr. Pai-chien Chou MD PhD Department of Thoracic Medicine Taipei Medical University Hospital Chest X-ray • P-A view • Lateral view • Oblique view • Lordotic view • Expiratory film • Decubitus view • Overpenetrated grid film The Elements of a chest x-ray (CXR) • The Broncho-vascular markings in the lung • The borders of the heart • The contours of the mediastinum and pleural space • The ribs and spine Segmental anatomy Segmental Anatomy Cardiomediastinal outlines on Chest X-ray Density of image ◆ Gas ◆ Water ◆ Fat ◆ Metal and bone ◆ Thinking of pathogenesis Basic thinking of a lesion on Chest X-ray ◆ Size ◆ Location (Silhouette sign) – Anterior, posterior – Which lobe is involved ◆ Intrapulmonary (Air bronchogram sign) ◆ Extrapulmonary (Incomplete border sign) Infiltrate in the lungs • Fluid accumulates in lung, predominate in the alveolar (airspace) compartment or the interstitial compartment. interstitial compartment Lymphatic compartment Alveolar unit Vascular unit Air space opacification The opacification is caused by fluid or solid material within the airways that causes a difference in the relative attenuation of the lung: • transudate, e.g. pulmonary edema secondary to heart failure • pus, e.g. bacterial pneumonia • blood, e.g. pulmonary hemorrhage • cells, e.g. bronchoalveolar carcinoma • protein, e.g. alveolar proteinosis • fat, e.g. lipoid pneumonia • gastric contents, e.g. aspiration pneumonia • water, e.g. drowning When considering the likely causes of airspace opacification, it is useful to determine chronicity
    [Show full text]
  • Chapter 12: Imaging Techniques
    ith advancing technology, diagnostic im- aging techniques available for avian pa- CHAPTER tients now include ultrasound, fluoros- W copy, computed tomography (CT) and nu- clear scintigraphy; however, routine radiography re- mains the most frequently performed imaging mo- dality in birds and frequently is diagnostic without the need for more sophisticated procedures. Informa- tion obtained from radiographs will frequently com- plement results from other testing methods, provid- 12 ing for a more thorough evaluation of a disease process. Both risk and benefit to the patient should be consid- ered when radiography is used as a screening proce- dure in an apparently normal companion bird. In general, radiography should be performed only when IMAGING indicated by historical information, physical exami- nation findings and laboratory data. Indiscriminate TECHNIQUES radiographic studies create an unnecessary risk to the patient and technical staff. Radiographic findings should always be correlated with surgical, endoscopic or necropsy findings. These comparisons will refine a clinician’s ability to detect subtle radiographic changes, and improve diagnostic capabilities and therapeutic results. Marjorie C. McMillan 247 CHAPTER 12 IMAGING TECHNIQUES graphic contrast is controlled by subject contrast, scatter, and film contrast and fog. Detail is improved Technical Considerations by using a small focal spot, the shortest possible exposure time (usually 0.015 seconds), adequate fo- cus-film distance (40 inches), a collimated beam, sin- gle emulsion film and a rare earth, high-detail The size (mainly thickness), composition (air, soft screen. The contact between the radiographic cas- tissue and bone) and ability to arrest motion are the sette and the patient should be even, and the area of primary factors that influence radiographic tech- interest should be as close as possible to the film.
    [Show full text]
  • Not Every Wheeze Is Asthmatic: an Aspiration Pneumonia Case Report
    Arch Clin Med Case Rep 2021; 5 (3): 368-372 DOI: 10.26502/acmcr.96550368 Case Report Not Every Wheeze is Asthmatic: An Aspiration Pneumonia Case Report Gabriel Melo Alexandre Silva1, Herbert Iago Feitosa Fonseca1, Pablo André Brito de Souza1, Ana Cássia Silva Oliveira1, Luciana Lopes Albuquerque da Nobrega2* 1Medical School, Federal University of Roraima, Boa Vista, RR, Brazil 2Medial Doctor, Pediatric Pulmonologist, Professor in Pediatrics, Federal University of Roraima, Boa Vista, RR, Brazil *Corresponding Author: Luciana Lopes Albuquerque da Nobrega, Medical School of Roraima, Federal University of Roraima, Av. Capitão Ene Garcez, 2413, Boa Vista, RR, 69310-000, Brazil Received: 01 April 2021; Accepted: 16 April 2021; Published: 03 May 2021 Abstract Introduction: Wheezing in infants is an extremely common complaint, being markedly frequent in emergency services. Nonetheless, such a complaint is part of a wide spectrum of pathologies thus, demanding deeper investigation over the differential diagnosis must be addressed in an appropriate manner, in order to implement the necessary therapy as early as possible, and excessive intervention avoided, as much as possible Therefore, this case- report seeks to serve as a reminder of the importance of keeping a high suspicion on aspiration pneumonia even in previously healthy patients. The Case: HPDJ, male, date of birth (Dec, 30th of 2019), then 10 months and 10 days old, enters the medical emergency service of the pediatric hospital on November, 10th of 2020, with a report of flu-like symptoms that persisted for 10 days. The possibilities of bronchiolitis, pneumonia and SARS-COV 2 are questioned given the pandemic context, therefore being approached with salbutamol and prednisolone, chest x-ray and complementary exams.
    [Show full text]