An Uncommon Etiological Factor for Aspiration Pneumonitis Caused By

Total Page:16

File Type:pdf, Size:1020Kb

An Uncommon Etiological Factor for Aspiration Pneumonitis Caused By Cao et al. BMC Pulm Med (2021) 21:254 https://doi.org/10.1186/s12890-021-01620-5 CASE REPORT Open Access An uncommon etiological factor for aspiration pneumonitis caused by spontaneous sphenoid sinus meningoencephalocele with cerebrospinal fuid rhinorrhea: a case report Jiayu Cao1†, Wei Liu2†, Li Wang1, Yujuan Yang1, Yu Zhang1* and Xicheng Song1 Abstract Background: Aspiration pneumonitis is an infammatory disease of the lungs which is difcult to diagnose accu- rately. Large-volume aspiration of oropharyngeal or gastric contents is essential for the development of aspiration pneumonitis. The role of cerebrospinal fuid (CSF) rhinorrhea is often underestimated as a rare etiological factor for aspiration in the diagnosis process of aspiration pneumonitis. Case presentation: We present a case of a patient with 4 weeks of right-sided watery rhinorrhea accompanied by intermittent postnasal drip and dry cough as the main symptoms. Combined with clinical symptoms, imaging exami- nation of the sinuses, and laboratory examination of nasal secretions, she was initially diagnosed as spontaneous sphenoid sinus meningoencephalocele with CSF rhinorrhea, and intraoperative endoscopic fndings and postopera- tive pathology also confrmed this diagnosis. Her chest computed tomography showed multiple focculent ground glass density shadows in both lungs on admission. The patient underwent endoscopic resection of meningoenceph- alocele and repair of skull base defect after she was ruled out of viral pneumonitis. Symptoms of rhinorrhea and dry cough disappeared, and pneumonitis was improved 1 week after surgery and cured 2 months after surgery. Persistent CSF rhinorrhea caused by spontaneous sphenoid sinus meningoencephalocele was eventually found to be a major etiology for aspiration pneumonitis although the absence of typical symptoms and well-defned risk factors for aspira- tion, such as dysphagia, impaired cough refex and refux diseases. Conclusions: We report a rare case of aspiration pneumonitis caused by spontaneous sphenoid sinus meningoen- cephalocele with CSF rhinorrhea, which can bring more attention and understanding to the uncommon etiology for aspiration, so as to make more accurate diagnosis of the disease and early surgical treatment. Keywords: Aspiration pneumonitis, Meningoencephalocele, Sphenoid sinus, Etiology, Postnasal drip Background Aspiration pneumonitis is an infectious disease of the *Correspondence: [email protected] lungs caused by large-volume aspiration of oropharyn- †Jiayu Cao and Wei Liu contributed equally to this paper. geal or upper gastrointestinal contents, which is more 1 Department of Otolaryngology-Head and Neck Surgery, Yantai likely to occur in patients with risk factors such as Yuhuangding Hospital, Qingdao University, Yantai 264000, China Full list of author information is available at the end of the article impaired swallowing, consciousness, and cough refex, © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Cao et al. BMC Pulm Med (2021) 21:254 Page 2 of 5 etc. [1]. However, aspiration pneumonitis is sometimes (COVID-19). COVID-19 was ruled out after the results difcult to diagnose in the frst place due to atypical clini- of both oropharyngeal swabs and serum IgM/IgG for cal features and uncertain etiology. We described such a COVID-19 were negative. Meanwhile, test results of case of aspiration pneumonitis caused by spontaneous TORCH (TOX, RV, CMV, HSV), EB virus nucleic acid, sphenoid sinus meningoencephalocele with cerebrospi- and nine respiratory pathogens were all negative and nal fuid (CSF) rhinorrhea. the possibility of the patient sufering from viral pneu- monitis was excluded. Meanwhile, she underwent a Case presentation pulmonary function test that showed normal pulmo- A 62-year-old female presented with 4 weeks of right- nary ventilation, and the serum allergen-specifc IgE sided watery rhinorrhea. She reported spontaneous test showed no seasonal allergy. Terefore, we consid- clear, salty nasal drainage without a history of trauma. ered preliminarily that pulmonary infammation might Two weeks later, she developed a frequent dry cough result from chronic aspiration of CSF. Te patient caused by postnasal drip and gradually worsened espe- underwent endoscopic resection of meningoencepha- cially when lying down, which prevented her from falling locele and repair of skull base defect on July 10, 2020. asleep. Te patient underwent nasal cavity examination We found a 4 * 5 mm2 bone defect in the lateral wall of and computed tomography (CT) scan of sinuses after vis- the right sphenoid sinus (Fig. 2a), and a free mucosal iting department of otolaryngology, and we found a con- fap of nasal foor was used to repair the defect. Te tinuous fow of clear fuid to posterior pharyngeal wall patient’s dry cough disappeared on the frst day after (Fig. 1a) and sinus CT showed the lesion tissue extending surgery. Pathological diagnosis revealed the resected from the right middle cranial fossa into sphenoid sinus lesion was brain tissue. Nasal endoscopy showed that through a local bone defect in the lateral wall of the right the repaired area of the skull base defect healed well sphenoid sinus (Fig. 1b). Combined with measurement of 2 months after surgery (Fig. 2b). Compared to preoper- glucose level in nasal secretions (4.4 mmol/L), the patient ative imaging (Fig. 3a), pneumonitis seemed to be still was initially diagnosed with spontaneous sphenoid sinus in progressive stage with characteristics of the consoli- meningoencephalocele accompanied by CSF rhinorrhea, dation lesion with a mini cavity in the right lung 1 week and she was admitted to department of otolaryngology after surgery although parts of multiple focculent -head and neck surgery on June 29, 2020. ground glass density shadows were gone (Fig. 3b). Te Chest computed tomography (CT) scan was per- lesion disappeared completely 2 months after surgery formed and showed multiple focculent ground glass (Fig. 3c). Infection-related infammatory indexes, such density shadows in both lungs after consultation with as c-reactive protein (CRP), white blood cells (WBC), a respiratory physician, which could not be ruled and neutrophils were completely improved 1 week after out as viral pneumonitis. Te patient had no epide- surgery (Fig. 4). miological history related to coronavirus disease 2019 Fig. 1 Preoperative endoscopy image and sinus computed tomography (CT) scan. a Preoperative endoscopy image. The blue arrow indicates the persistent fow of cerebrospinal fuid (CSF) backwards into the right posterior nostril. b Sinus CT scan. The black arrow indicates the place of lesion tissue protruding into right sphenoid sinus Cao et al. BMC Pulm Med (2021) 21:254 Page 3 of 5 Fig. 2 Endoscopy images. a Intraoperative endoscopy image. The blue arrow points to the lesion tissue and skull base defect in the lateral wall of the right sphenoid sinus. b Endoscopy image 2 months after surgery. The black arrow indicates repaired area of the skull base defect Fig. 3 Chest CT images. a Preoperative chest CT image. b Chest CT image 1 week after surgery. c Chest CT image 2 months after surgery Fig. 4 Changes of infection-related infammatory indexes such as white blood cells (WBC), neutrophils and c-reactive protein (CRP) after surgery Discussion and conclusions compared to those with non-aspiration pneumonitis [4]. Aspiration pneumonitis accounts for 5–24% of com- Terefore, it is very important to fnd out relevant etio- munity-acquired pneumonitis and about 5–15% of hos- logical factors for aspiration in time for early diagnosis pitalized pneumonitis [2, 3]. A meta-analysis showed and treatment of aspiration pneumonitis. that in-hospital and 30-day mortality was signifcantly Te patient was not initially diagnosed with aspira- increased in patients with aspiration pneumonitis tion pneumonitis. One of the main reasons was similar Cao et al. BMC Pulm Med (2021) 21:254 Page 4 of 5 clinical symptoms and chest CT imaging features with Although uncommon, spontaneous sphenoid sinus viral pneumonitis. Runny nose and dry cough, as com- meningoencephalocele with CSF rhinorrhea is an etio- mon symptoms of respiratory tract infection, did not logical factor for macroaspiration. Timely endoscopic cause enough attention of the patient at the begin- lesion resection and repair of skull base defect can efec- ning. Most of the imaging fndings of viral pneumoni- tively avoid large-volume aspiration and make aspiration tis, including COVID-19, are manifested as multiple
Recommended publications
  • Respiratory Syncytial Virus Bronchiolitis in Children DUSTIN K
    Respiratory Syncytial Virus Bronchiolitis in Children DUSTIN K. SMITH, DO; SAJEEWANE SEALES, MD, MPH; and CAROL BUDZIK, MD Naval Hospital Jacksonville, Jacksonville, Florida Bronchiolitis is a common lower respiratory tract infection in infants and young children, and respiratory syncytial virus (RSV) is the most common cause of this infection. RSV is transmitted through contact with respiratory droplets either directly from an infected person or self-inoculation by contaminated secretions on surfaces. Patients with RSV bronchiolitis usually present with two to four days of upper respiratory tract symptoms such as fever, rhinorrhea, and congestion, followed by lower respiratory tract symptoms such as increasing cough, wheezing, and increased respira- tory effort. In 2014, the American Academy of Pediatrics updated its clinical practice guideline for diagnosis and man- agement of RSV bronchiolitis to minimize unnecessary diagnostic testing and interventions. Bronchiolitis remains a clinical diagnosis, and diagnostic testing is not routinely recommended. Treatment of RSV infection is mainly sup- portive, and modalities such as bronchodilators, epinephrine, corticosteroids, hypertonic saline, and antibiotics are generally not useful. Evidence supports using supplemental oxygen to maintain adequate oxygen saturation; however, continuous pulse oximetry is no longer required. The other mainstay of therapy is intravenous or nasogastric admin- istration of fluids for infants who cannot maintain their hydration status with oral fluid intake. Educating parents on reducing the risk of infection is one of the most important things a physician can do to help prevent RSV infection, especially early in life. Children at risk of severe lower respiratory tract infection should receive immunoprophy- laxis with palivizumab, a humanized monoclonal antibody, in up to five monthly doses.
    [Show full text]
  • Intranasal Ipratropium Bromide Reduced Rhinorrhea and Improved Cold Symptoms
    /:*-..= S Evid Based Med: first published as 10.1136/ebm.1996.1.205 on 1 December 1996. Downloaded from Intranasal ipratropium bromide reduced rhinorrhea and improved cold symptoms Hayden FG, Diamond L, Wood PB, 0.06% in a buffered salt solution (P = 0.003). {This 17% absolute dif- KortsDC, Wecker MT. Effectiveness (2 sprays/nostril [84 u,g] 3 times/d ference in improvement between the and safety of intranasal ipratropium for 4 d) (n = 137), the same nasal ipratropium and placebo groups bromide in common colds. A ran- spray without ipratropium in = 137), means that 6 patients (95% CI, 4 to domized, double-blind, placebo- or no medication (n = 137). No cold 16) would need to be treated with controlled trial. Ann Intern Med. medications other than analgesics ipratropium (rather than placebo) for 1996JullS;12S:89-91. and antitussives were allowed. 4 days to result in improvement for 1 additional patient; the relative risk Main outcome measures improvement was 26%, CI 9% to Objective 47%* }. Rates of nasal dryness (12% To determine whether intxanasal ipra- The main outcome measure was a vs 4%), blood-tinged mucus (17% vs tropium bromide is effective and safe global assessment of overall improve- 4%), and headache (9% vs 2%) were for reducing common cold symptoms. ment (report by patients of being better or much better). Rhinorrhea greater in the ipratropium group than Design was monitored in the clinic hourly in the placebo group. 6-day, randomized, double-blind, for the first 6 hours on day 1 and Conclusion placebo-controlled trial. hourly for 3 hours on day 2.
    [Show full text]
  • COVID-19 Pneumonia: the Great Radiological Mimicker
    Duzgun et al. Insights Imaging (2020) 11:118 https://doi.org/10.1186/s13244-020-00933-z Insights into Imaging EDUCATIONAL REVIEW Open Access COVID-19 pneumonia: the great radiological mimicker Selin Ardali Duzgun* , Gamze Durhan, Figen Basaran Demirkazik, Meltem Gulsun Akpinar and Orhan Macit Ariyurek Abstract Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread worldwide since December 2019. Although the reference diagnostic test is a real-time reverse transcription-polymerase chain reaction (RT-PCR), chest-computed tomography (CT) has been frequently used in diagnosis because of the low sensitivity rates of RT-PCR. CT fndings of COVID-19 are well described in the literature and include predominantly peripheral, bilateral ground-glass opacities (GGOs), combination of GGOs with consolida- tions, and/or septal thickening creating a “crazy-paving” pattern. Longitudinal changes of typical CT fndings and less reported fndings (air bronchograms, CT halo sign, and reverse halo sign) may mimic a wide range of lung patholo- gies radiologically. Moreover, accompanying and underlying lung abnormalities may interfere with the CT fndings of COVID-19 pneumonia. The diseases that COVID-19 pneumonia may mimic can be broadly classifed as infectious or non-infectious diseases (pulmonary edema, hemorrhage, neoplasms, organizing pneumonia, pulmonary alveolar proteinosis, sarcoidosis, pulmonary infarction, interstitial lung diseases, and aspiration pneumonia). We summarize the imaging fndings of COVID-19 and the aforementioned lung pathologies that COVID-19 pneumonia may mimic. We also discuss the features that may aid in the diferential diagnosis, as the disease continues to spread and will be one of our main diferential diagnoses some time more.
    [Show full text]
  • Allergic Fungal Airway Disease Rick EM, Woolnough K, Pashley CH, Wardlaw AJ
    REVIEWS Allergic Fungal Airway Disease Rick EM, Woolnough K, Pashley CH, Wardlaw AJ Institute for Lung Health, Department of Infection, Immunity & Inflammation, University of Leicester and Department of Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK J Investig Allergol Clin Immunol 2016; Vol. 26(6): 344-354 doi: 10.18176/jiaci.0122 Abstract Fungi are ubiquitous and form their own kingdom. Up to 80 genera of fungi have been linked to type I allergic disease, and yet, commercial reagents to test for sensitization are available for relatively few species. In terms of asthma, it is important to distinguish between species unable to grow at body temperature and those that can (thermotolerant) and thereby have the potential to colonize the respiratory tract. The former, which include the commonly studied Alternaria and Cladosporium genera, can act as aeroallergens whose clinical effects are predictably related to exposure levels. In contrast, thermotolerant species, which include fungi from the Candida, Aspergillus, and Penicillium genera, can cause a persistent allergenic stimulus independent of their airborne concentrations. Moreover, their ability to germinate in the airways provides a more diverse allergenic stimulus, and may result in noninvasive infection, which enhances inflammation. The close association between IgE sensitization to thermotolerant filamentous fungi and fixed airflow obstruction, bronchiectasis, and lung fibrosis suggests a much more tissue-damaging process than that seen with aeroallergens. This review provides an overview of fungal allergens and the patterns of clinical disease associated with exposure. It clarifies the various terminologies associated with fungal allergy in asthma and makes the case for a new term (allergic fungal airway disease) to include all people with asthma at risk of developing lung damage as a result of their fungal allergy.
    [Show full text]
  • Pathology of Allergic Bronchopulmonary Aspergillosis
    [Frontiers in Bioscience 8, e110-114, January 1, 2003] PATHOLOGY OF ALLERGIC BRONCHOPULMONARY ASPERGILLOSIS Anne Chetty Department of Pediatrics, Floating Hospital for Children, New England Medical Center, Boston, MA TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Immunopathogenesis 4. Pathologic Findings 4.1. Plastic bronchitis 4.2. Allergic fungal sinusitis 4.3. ABPA in cystic fibrosis 5. Acknowledgement 6. References 1. ABSTRACT Allergic bronchopulmonary aspergillosis (ABPA) individuals with episodic obstructive lung diseases such as occurs in patients with asthma and cystic fibrosis when asthma and cystic fibrosis that produce thick, tenacious Aspergillus fumigatus spores are inhaled and grow in sputum. bronchial mucus as hyphae. Chronic colonization of Aspergillus fumigatus and host’s genetically determined Decomposing organic matter serves as a substrate immunological response lead to ABPA. In most cases, for the growth of Aspergillus species. Because biologic lung biopsy is not necessary because the diagnosis is made heating produces temperatures as high as 65° to 70° C, on clinical, serologic, and roentgenographic findings. Some Aspergillus spores will not be recovered in the latter stages patients who have had lung biopsies or partial resections of composting. Aspergillus species have been recovered for atelectasis or infiltrates will have histologic diagnoses. from potting soil, mulches, decaying vegetation, and A number of different histologic diagnoses can be found sewage treatment facilities, as well as in outdoor air and even in the same patient. In the early stages the bronchial Aspergillus spores grow in excreta from birds (1) wall is infiltrated with mononuclear cells and eosinophils. Mucoid impaction and eosinophilic pneumonia are seen Allergic fungal pulmonary disease is manifested subsequently.
    [Show full text]
  • Percutaneous Endoscopic Gastrostomy Versus Nasogastric Tube Feeding: Oropharyngeal Dysphagia Increases Risk for Pneumonia Requiring Hospital Admission
    nutrients Article Percutaneous Endoscopic Gastrostomy versus Nasogastric Tube Feeding: Oropharyngeal Dysphagia Increases Risk for Pneumonia Requiring Hospital Admission Wei-Kuo Chang 1,*, Hsin-Hung Huang 1, Hsuan-Hwai Lin 1 and Chen-Liang Tsai 2 1 Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (H.-H.H.); [email protected] (H.-H.L.) 2 Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-2-23657137; Fax: +886-2-87927138 Received: 3 November 2019; Accepted: 4 December 2019; Published: 5 December 2019 Abstract: Background: Aspiration pneumonia is the most common cause of death in patients with percutaneous endoscopic gastrostomy (PEG) and nasogastric tube (NGT) feeding. This study aimed to compare PEG versus NGT feeding regarding the risk of pneumonia, according to the severity of pooling secretions in the pharyngolaryngeal region. Methods: Patients were stratified by endoscopic observation of the pooling secretions in the pharyngolaryngeal region: control group (<25% pooling secretions filling the pyriform sinus), pharyngeal group (25–100% pooling secretions filling the pyriform sinus), and laryngeal group (pooling secretions entering the laryngeal vestibule). Demographic data, swallowing level scale score, and pneumonia requiring hospital admission were recorded. Results: Patients with NGT (n = 97) had a significantly higher incidence of pneumonia (episodes/person-years) than those patients with PEG (n = 130) in the pharyngeal group (3.6 1.0 ± vs. 2.3 2.1, P < 0.001) and the laryngeal group (3.8 0.5 vs.
    [Show full text]
  • Olfactory Dysfunction and Sinonasal Symptomatology in COVID-19: 3 Prevalence, Severity, Timing and Associated Characteristics 4 5 Marlene M
    Complete Manuscript Click here to access/download;Complete Manuscript;manuscript 042220 v3.docx This manuscript has been accepted for publication in Otolaryngology-Head and Neck Surgery. 2 Olfactory dysfunction and sinonasal symptomatology in COVID-19: 3 prevalence, severity, timing and associated characteristics 4 5 Marlene M. Speth, MD, MA1, Thirza Singer-Cornelius, MD1, Michael Obere, PhD2, Isabelle 6 Gengler, MD3, Steffi J. Brockmeier, MD1, Ahmad R. Sedaghat, MD, PhD3 7 8 9 1Klinik für Hals-, Nasen-, Ohren- Krankheiten, Hals-und Gesichtschirurgie, Kantonsspital 10 Aarau, Switzerland, 2Institute for Laboratory Medicine, Kantonsspital Aarau, Aarau, 11 Switzerland, 3Department of Otolaryngology—Head and Neck Surgery, University of 12 Cincinnati College of Medicine, Cincinnati, OH, USA. 13 14 15 Funding: MMS and TSC received funding from Kantonsspital Aarau, Department of 16 Otolaryngology, Funded by Research Council KSA 1410.000.128 17 18 Conflicts of Interest: None 19 20 21 Authors’ contributions: 22 MMS: designed and performed study, wrote and revised manuscript, approved final 23 manuscript. 24 TSC: designed and performed study, approved final manuscript. 25 MO: performed study, approved final manuscript. 26 IG: designed study, revised manuscript and approved final manuscript 27 SJB: designed and performed study, revised manuscript and approved final manuscript 28 ARS: conceived, designed and performed study, wrote and revised manuscript, approved 29 final manuscript. 30 31 32 Corresponding Author: 33 Ahmad R. Sedaghat, MD, PhD 34
    [Show full text]
  • Global Strategy for Asthma Management and Prevention, 2019. Available From
    DISTRIBUTE OR COPY NOT DO MATERIAL- COPYRIGHTED ASTHMA MANAGEMENT AND PREVENTION GLOBAL STRATEGY FOR Updated 2019 9 Global Strategy for Asthma Management and Prevention (2019 update) DISTRIBUTE OR COPY NOT DO The reader acknowledges that this reportMATERIAL- is intended as an evidence-based asthma management strategy, for the use of health professionals and policy-makers. It is based, to the best of our knowledge, on current best evidence and medical knowledge and practice at the date of publication. When assessing and treating patients, health professionals are strongly advised to use their own professional judgment, and to take into account local or national regulations and guidelines. GINA cannot be held liable or responsible for inappropriate healthcare associated with the use of this document, including any use which is not in accordance with applicable local or national regulations or COPYRIGHTEDguidelines. This document should be cited as: Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2019. Available from: www.ginasthma.org 1 Table of contents Tables and figures ............................................................................................................................................................... 5 Preface ................................................................................................................................................................................. 7 Members of GINA committees (2018) ................................................................................................................................
    [Show full text]
  • Snotty Noses – When Is It Sinusitis? Objectives
    11/2/2019 Snotty Noses – When is it Sinusitis? Uma Ramaswamy, MD Objectives • Identify and medically manage acute rhinosinusitis • Recognize signs/symptoms of pediatric chronic rhinosinusitis (PCRS) • Recognize refractory or complicated sinusitis • When to refer to ENT 1 11/2/2019 https://www.sciencephoto.com/media/728470/view https://www.sciencephoto.com/media/728470/view 2 11/2/2019 Physiology and Function • Humidification • Temperature modification • Filtration of inspired air • Olfaction https://openi.nlm.nih.gov/imgs/512/28/2719610/PMC2719610_1465-9921-10-61-2.png https://hosting.med.upenn.edu/otocme/wp-content/uploads/sites/25/2016/12/pci4-300x183.jpg Pediatric Rhinosinusitis • Inflammation of the nasal cavity and paranasal sinuses Two or more symptoms • Nasal obstruction/congestion • Nasal Discharge – Anterior – Rhinorrhea – Posterior – Post-nasal drip (PND) • Cough • Facial Pain or Pressure • Fever 3 11/2/2019 Contributing Factors • Anatomic Factors • Infectious Agents – Bacterial versus Viral • Biofilms • Adenoids • Allergic Rhinitis • Immunodeficiency • Primary Ciliary Dyskinesia • Cystic Fibrosis Differential Diagnosis of Pediatric Sinusitis • Allergic rhinitis • Chronic invasive fungal sinusitis • Cystic fibrosis • Sinonasal neoplasm • Immotile cilia • Upper respiratory tract infection syndrome/Primary ciliary dyskinesia • Unilateral choanal atresia – Kartagener syndrome (situs • Adenoid hypertrophy inversus, chronic sinusitis, and bronchiectasis) • Nasal foreign body • Odontogenic • Immunodeficiency (immunoglobulin [Ig]A,
    [Show full text]
  • Not Every Wheeze Is Asthmatic: an Aspiration Pneumonia Case Report
    Arch Clin Med Case Rep 2021; 5 (3): 368-372 DOI: 10.26502/acmcr.96550368 Case Report Not Every Wheeze is Asthmatic: An Aspiration Pneumonia Case Report Gabriel Melo Alexandre Silva1, Herbert Iago Feitosa Fonseca1, Pablo André Brito de Souza1, Ana Cássia Silva Oliveira1, Luciana Lopes Albuquerque da Nobrega2* 1Medical School, Federal University of Roraima, Boa Vista, RR, Brazil 2Medial Doctor, Pediatric Pulmonologist, Professor in Pediatrics, Federal University of Roraima, Boa Vista, RR, Brazil *Corresponding Author: Luciana Lopes Albuquerque da Nobrega, Medical School of Roraima, Federal University of Roraima, Av. Capitão Ene Garcez, 2413, Boa Vista, RR, 69310-000, Brazil Received: 01 April 2021; Accepted: 16 April 2021; Published: 03 May 2021 Abstract Introduction: Wheezing in infants is an extremely common complaint, being markedly frequent in emergency services. Nonetheless, such a complaint is part of a wide spectrum of pathologies thus, demanding deeper investigation over the differential diagnosis must be addressed in an appropriate manner, in order to implement the necessary therapy as early as possible, and excessive intervention avoided, as much as possible Therefore, this case- report seeks to serve as a reminder of the importance of keeping a high suspicion on aspiration pneumonia even in previously healthy patients. The Case: HPDJ, male, date of birth (Dec, 30th of 2019), then 10 months and 10 days old, enters the medical emergency service of the pediatric hospital on November, 10th of 2020, with a report of flu-like symptoms that persisted for 10 days. The possibilities of bronchiolitis, pneumonia and SARS-COV 2 are questioned given the pandemic context, therefore being approached with salbutamol and prednisolone, chest x-ray and complementary exams.
    [Show full text]
  • Wandering Consolidation 685 Postgrad Med J: First Published As 10.1136/Pgmj.71.841.685 on 1 November 1995
    Wandering consolidation 685 Postgrad Med J: first published as 10.1136/pgmj.71.841.685 on 1 November 1995. Downloaded from Wandering consolidation Michael AR Keane, David M Hansell, Charles RK Hind A 63-year-old man who had previously been fit and well, developed an acute illness with headaches and fever. His chest X-ray is shown in figure 1. Other investigations revealed an elevated lactate dehydrogenase and gamma glutamyl transferase and transient microscopic haematuria for which no cause was found. Following antibiotic treatment, his symptoms settled. Over the next six weeks he complained of increasing breathlessness but had no other symptoms. His family doctor found signs ofleft lower lobe consolidation and treated him with antibiotics, but there was no symptomatic improvement and he was referred to hospital. It was noted that he had travelled to Canada, Fiji, Australia, and Singapore a year previously. On examination he appeared unwell and he had signs of left-sided consolidation. He was in atrial fibrillation and was normotensive. Routine blood tests were normal other than an erythrocyte sedimentation rate of 75 mm/h. His repeat chest X-ray is shown in figure 2. Figure 1 Initial chest X-ray Figure 2 Chest X-ray six weeks later Royal Brompton http://pmj.bmj.com/ Hospital, London SW3 6NP, UK MAR Keane DM Hansell Royal Liverpool University Hospital, Liverpool L7 8XP, UK on September 29, 2021 by guest. Protected copyright. CRK Hind Questions Correspondence to Dr DM 1 What is the most likely diagnosis? Hansell Accepted 3 May 1995 2 Suggest three alternative diagnoses.
    [Show full text]
  • Cryptogenic Organizing Pneumonia
    462 Cryptogenic Organizing Pneumonia Vincent Cottin, M.D., Ph.D. 1 Jean-François Cordier, M.D. 1 1 Hospices Civils de Lyon, Louis Pradel Hospital, National Reference Address for correspondence and reprint requests Vincent Cottin, Centre for Rare Pulmonary Diseases, Competence Centre for M.D., Ph.D., Hôpital Louis Pradel, 28 avenue Doyen Lépine, F-69677 Pulmonary Hypertension, Department of Respiratory Medicine, Lyon Cedex, France (e-mail: [email protected]). University Claude Bernard Lyon I, University of Lyon, Lyon, France Semin Respir Crit Care Med 2012;33:462–475. Abstract Organizing pneumonia (OP) is a pathological pattern defined by the characteristic presence of buds of granulation tissue within the lumen of distal pulmonary airspaces consisting of fibroblasts and myofibroblasts intermixed with loose connective matrix. This pattern is the hallmark of a clinical pathological entity, namely cryptogenic organizing pneumonia (COP) when no cause or etiologic context is found. The process of intraalveolar organization results from a sequence of alveolar injury, alveolar deposition of fibrin, and colonization of fibrin with proliferating fibroblasts. A tremen- dous challenge for research is represented by the analysis of features that differentiate the reversible process of OP from that of fibroblastic foci driving irreversible fibrosis in usual interstitial pneumonia because they may determine the different outcomes of COP and idiopathic pulmonary fibrosis (IPF), respectively. Three main imaging patterns of COP have been described: (1) multiple patchy alveolar opacities (typical pattern), (2) solitary focal nodule or mass (focal pattern), and (3) diffuse infiltrative opacities, although several other uncommon patterns have been reported, especially the reversed halo sign (atoll sign).
    [Show full text]