Residency, Growth, and Outmigration Size of Juvenile Chinook

Total Page:16

File Type:pdf, Size:1020Kb

Residency, Growth, and Outmigration Size of Juvenile Chinook RESIDENCY, GROWTH, AND OUTMIGRATION SIZE OF JUVENILE CHINOOK SALMON (ONCORHYNCHUS TSHAWYTSCHA), ACROSS REARING LOCATIONS IN THE SHASTA RIVER, CALIFORNIA By Christine Mei Ling Roddam A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Natural Resources: Fisheries Committee Membership Dr. Darren Ward, Committee Chair Dr. David Hankin, Committee Member Dr. Margaret Wilzbach, Committee Member July 2014 ABSTRACT Residency, Growth, and Outmigration Size of Juvenile Chinook Salmon (Oncorhynchus tshawytscha), Across Rearing Locations in the Shasta River, California Christine Mei Ling Roddam The Shasta River is one of the most productive tributaries of the Klamath River for Chinook salmon (Oncorhynchus tshawytscha). There are two primary spawning and juvenile rearing areas for Chinook salmon in the Shasta: the lower basin canyon, and the Shasta-Big Springs complex of the upper basin. These two areas of the basin are characterized by dramatically different in-stream habitats. This project evaluated differences in growth, residence time, and size at outmigration between these two critical salmonid habitat areas in the Shasta River using a combination of mark-recapture field studies and otolith strontium isotope ratio analysis of new and archived samples. In spring 2012 and 2013, during the primary rearing time for juvenile Chinook salmon in the Shasta River, three groups of fish were PIT tagged: (1) fish caught, tagged, and released in the upper basin; (2) fish caught at the lower basin, tagged and transplanted to the upper basin; and (3) fish caught, tagged, and released in the lower basin. Results indicate significant differences in residence time (defined as tagging date to date of outmigration), growth, and outmigration size between fish in the upper and lower basin, regardless of whether fish were originally caught in the upper basin or transplanted there. Several tagged fish residing in the Shasta-Big Springs complex ii displayed upstream movement and long residency times more similar to river-type Chinook salmon, than to ocean-type juveniles. Strontium isotope ratios (87Sr/86Sr) in stream water collected in March 2012 and 2013 were measured to be 0.704 (precision of 0.000031) and 0.706 (precision of 0.000019) for the upper basin and the lower basin respectively. Juvenile Chinook salmon that reared in the lower or upper basin are identifiable by the distinct differences in 87Sr/86Sr incorporated into the juvenile region of the otoliths. This creates a unique opportunity to determine the relative contribution of the two rearing areas to juvenile Chinook salmon production and, potentially, adult returns via analysis of juvenile and adult otoliths. Overall, I found consistent difference in the duration of residence, growth, and outmigration size between juvenile Chinook salmon that reared in the upper or lower Shasta River basin, irrespective of the location from which fish were initially sampled. Life history differences reflected differences in habitat conditions between the upper and lower basin. Additionally, this project demonstrated the potential use of otolith isotope analysis to identify the rearing location of juvenile Chinook salmon, which may affect marine survival and adult returns. iii ACKNOWLEDGEMENTS Funding for this project was provided by The National Oceanic and Atmospheric Administration (NOAA), the College of Natural Resources at Humboldt State University, and the Marin Rod and Gun Club. Very special thanks to my advisor, Dr. Darren Ward, whose support, patience, and encouragement were integral to this project. Thanks to my committee members, Dr. Margaret Wilzbach, and Dr. David Hankin for their valuable comments and suggestions on this manuscript. Enormous thanks to Bill Chesney, Chris Adams, Morgan Knechtle, Diana Chesney, Caitlin Bean, and Mike McVey at the California Department of Fish and Wildlife in Yreka, for their continued support, assistance, and encouragement on various aspects of this project. Thanks also to the entire CDFW field crew for their assistance with field work and data collection. Thanks to The Nature Conservancy for essential river access, and in particular Chris Babcock and Ada Fowler. Thanks to Justin Glessner at the University of California, Davis for his help with otolith microchemical analysis. Thanks also to Jim Hobbs at UC, Davis, and George Whitman at UC, Santa Cruz for their help with otolith preparation. Thanks to the HSU stockroom manager, Anthony Desch for providing me with essential field equipment and otolith preparation materials. Huge thanks to Tancy Moore for assistance with data analysis in Program Mark. I am incredibly grateful towards all my fellow graduate students in both the fisheries and wildlife departments at HSU for their friendship, support, and encouragement. And of course, this project would not have been possible without the love and support of my family, Thank you. iv TABLE OF CONTENTS ABSTRACT ........................................................................................................................ ii ACKNOWLEDGEMENTS ............................................................................................... iv TABLE OF CONTENTS .................................................................................................... v LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES .......................................................................................................... 10 LIST OF APPENDICES ................................................................................................... 12 INTRODUCTION ............................................................................................................ 13 MATERIALS AND METHODS ...................................................................................... 18 Study Area .................................................................................................................... 18 Shasta River .............................................................................................................. 18 Big Springs Creek ..................................................................................................... 21 Capture and Tagging Methods ...................................................................................... 22 Residency .................................................................................................................. 25 Growth and Outmigration Size ................................................................................. 28 Stream Water Collection and Microchemical Analysis ................................................ 29 Otolith Sampling and Preparation ................................................................................. 31 Otolith Microchemical Analysis ................................................................................... 33 Data Analysis ............................................................................................................ 34 RESULTS ......................................................................................................................... 37 Tagging ......................................................................................................................... 37 Residency .................................................................................................................. 37 v Growth and Outmigration Size ................................................................................. 43 Stream Water Microchemical Analysis ........................................................................ 52 Otolith Microchemical Analysis ................................................................................... 52 DISCUSSION ................................................................................................................... 66 REFERENCES ................................................................................................................. 75 PERSONAL COMMUNICATIONS ................................................................................ 81 vi LIST OF TABLES Table 1. Number of otoliths analyzed for strontium isotope ratios, per year and location. ........................................................................................................................................... 32 Table 2. Number of juvenile Chinook salmon that were PIT tagged (sample size) and mean fork length (FL), in millimeters, at tagging in groups that were captured, tagged and released in the upper river (UP-SH), and groups that were captured and tagged in the lower river and transplanted to the upper river (T-BSC), or to the lower river (T-CAN), per field season (tag year). ................................................................................................ 38 Table 3. Average residence times (number of days from date tagged to date of outmigration, rounded to the nearest integer) of juvenile Chinook salmon in the Shasta River for each tag group per year. Tag groups were defined as groups of juveniles that were captured, tagged and released in the upper river (UP-SH), and groups that were captured and tagged in the lower river and transplanted to the upper river (T-BSC), or to the lower river (T-CAN). Recapture sample sizes (n) are based on antenna detections and in-hand recaptures at the rotary
Recommended publications
  • Mainstem Klamath River Fall Chinook Salmon Redd Survey 2012
    1,839U.S. Fish & Wildlife Service Arcata Fisheries Data Series Report DS 2014-39 Mainstem Klamath River Fall Chinook Salmon Redd Survey 2012 Mark Magneson and Philip Colombano U.S. Fish and Wildlife Service Arcata Fish and Wildlife Office 1655 Heindon Road Arcata, CA 95521 (707) 882-7201 November 2014 Disclaimers Funding for this study was provided by the Klamath River Habitat Assessment Study administered by the Arcata Fish and Wildlife Office. Disclaimer: The mention of trade names or commercial products in this report does not constitute endorsement or recommendation for use by the Federal government. The Arcata Fish and Wildlife Office Fisheries Program reports its study findings through two publication series. The Arcata Fisheries Data Series was established to provide timely dissemination of data to local managers and for inclusion in agency databases. The Arcata Fisheries Technical Reports publishes scientific findings from single and multi-year studies that have undergone more extensive peer review and statistical testing. Additionally, some study results are published in a variety of professional fisheries journals. Key words: Chinook salmon, Klamath River, redd, escapement, spawning survey. The correct citation for this report is: Magneson, M.D., and P. Colombano. 2014. Mainstem Klamath River Fall Chinook Salmon Redd Survey 2012. U. S. Fish and Wildlife Service, Arcata Fish and Wildlife Office, Arcata Fisheries Data Series Report Number DS 2014-39, Arcata, California. ii Table of Contents page Introduction ........................................................................................................................
    [Show full text]
  • UKTR Chinook Biological Review Team
    Upper Klamath and Trinity River Chinook Salmon Biological Review Team Report Williams1, T. H., J. C. Garza1, N. Hetrick2, S. T. Lindley1, M. S. Mohr1, J. M. Myers3, M. R. O’Farrell1, R. M. Quiñones4, and D. J. Teel3 1 National Marine Fisheries Service, Southwest Fisheries Science Center, Santa Cruz, California. 2 U.S. Fish and Wildlife Service, Arcata Fish and Wildlife Office, Arcata, California. 3 National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, Washington. 4 U.S. Forest Service, Klamath National Forest, Yreka, California. December 2011 ii Table of Contents List of Figures.................................................................................................................... iv List of Tables ...................................................................................................................... v 1. Background..................................................................................................................... 1 2. ESU Configuration.......................................................................................................... 2 3. Biological Status of Upper Klamath and Trinity River Chinook Salmon ESU............ 11 4. Conclusions................................................................................................................... 25 5. References..................................................................................................................... 27 iii List of Figures Figure 1. Two generalized patterns of evolution of life-history
    [Show full text]
  • Estimation of Stream Conditions in Tributaries of the Klamath River, Northern California
    U.S. Fish & Wildlife Service Arcata Fisheries Technical Report TR 2018-32 Estimation of Stream Conditions in Tributaries of the Klamath River, Northern California Christopher V. Manhard, Nicholas A. Som, Edward C. Jones, Russell W. Perry U.S. Fish and Wildlife Service Arcata Fish and Wildlife Office 1655 Heindon Road Arcata, CA 95521 (707) 822-7201 January 2018 Funding for this study was provided by a variety of sources including the Klamath River Fish Habitat Assessment Program administered by the Arcata Fish and Wildlife Office, U.S. Fish and Wildlife Service and the Bureau of Reclamation, Klamath Falls Area Office. Disclaimer: The mention of trade names or commercial products in this report does not constitute endorsement or recommendation for use by the Federal Government. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service. The Arcata Fish and Wildlife Office Fisheries Program reports its study findings through two publication series. The Arcata Fisheries Data Series was established to provide timely dissemination of data to local managers and for inclusion in agency databases. Arcata Fisheries Technical Reports publish scientific findings from single and multi- year studies that have undergone more extensive peer review and statistical testing. Additionally, some study results are published in a variety of professional fisheries aquatic habitat conservation journals. To ensure consistency with Service policy relating to its online peer-reviewed journals, Arcata Fisheries Data Series and Technical Reports are distributed electronically and made available in the public domain. Paper copies are no longer circulated.
    [Show full text]
  • Klamath River Hydroelectric Settlement Agreement Interim Measure 15
    Klamath River Hydroelectric Settlement Agreement Interim Measure 15: Final 2019 Water Quality Monitoring Study Plan Prepared: January 16, 2019 KHSA IM15 2019 STUDY PLAN Table of Contents 1. Introduction and Overview ............................................................................................. 1 2. Objectives ....................................................................................................................... 3 3. Monitoring Components ................................................................................................. 4 3.1 Public Health Monitoring of Cyanobacteria and Toxins .......................................... 4 3.2 Baseline Water Quality Monitoring of the Klamath River ....................................... 4 4. Quality Assurance, Data Management, and Dissemination ............................................ 5 4.1 KHSA Program Quality Assurance Strategy for 2019 ............................................. 5 5. Sampling Constituents and Frequency............................................................................ 7 5.1 Public Health Monitoring of Cyanobacteria and Toxins .......................................... 7 5.2 Comprehensive Baseline Water Quality Monitoring of the Klamath River ............. 9 6.0 References ................................................................................................................... 13 List of Figures Figure 1. 2019 KHSA IM 15 monitoring stations .............................................................. 2 List of Tables
    [Show full text]
  • Little Shasta River 2017-2019: Pre-Project Assessment of the Proposition 1 Ecosystem Restoration Grant Activities
    Little Shasta River 2017-2019: Pre-Project Assessment of the Proposition 1 Ecosystem Restoration Grant Activities Authors: Amber Lukk, Priscilla Vasquez-Housley, Robert Lusardi, Ann Willis Report prepared for: California Trout and California Wildlife Conservation Board December 2019 Contents Introduction ..................................................................................................................................... 1 Study Area ...................................................................................................................................... 1 Methods........................................................................................................................................... 4 Hydrologic Year Type ................................................................................................................. 4 Discharge ..................................................................................................................................... 4 Water Temperature ...................................................................................................................... 5 Water Quality .............................................................................................................................. 5 Aquatic Macroinvertebrates ........................................................................................................ 6 Fish Presence/Absence ...............................................................................................................
    [Show full text]
  • Klamath River Fall Chinook Salmon Age-Specific Escapement, River Harvest, and Run Size Estimates, 2020 Run
    1 Klamath River Fall Chinook Salmon Age-Specific Escapement, River Harvest, and Run Size Estimates, 2020 Run Klamath River Technical Team 15 February 2021 Summary The number of Klamath River fall Chinook Salmon returning to the Klamath River Basin (Basin) in 2020 was estimated to be: Run Size Age Number Proportion 2 9,077 0.17 3 37,820 0.69 4 7,579 0.14 5 8 0.00 Total 54,484 1.00 Preseason forecasts of the number of fall Chinook Salmon adults returning to the Basin and the corresponding post-season estimates are: Adults Preseason Postseason Sector Forecast Estimate Pre / Post Run Size 59,100 45,400 1.30 Fishery Mortality Tribal Harvest 8,600 5,200 1.65 Recreational Harvest 1,300 5,100 0.25 Drop-off Mortality 800 600 1.33 10,700 10,900 0.98 Escapement Hatchery Spawners 12,200 8,300 1.47 Natural Area Spawners 36,200 26,200 1.38 48,400 34,500 1.40 2 Introduction This report describes the data and methods used by the Klamath River Technical Team (KRTT) to estimate age-specific numbers of fall Chinook Salmon returning to the Basin in 2020. The estimates provided in this report are consistent with the Klamath Basin Megatable (CDFW 2021) and with the 2021 forecast of ocean stock abundance (KRTT 2021). Age-specific escapement estimates for 2020 and previous years, coupled with the coded-wire tag (CWT) recovery data from Basin hatchery stocks, allow for a cohort reconstruction of the hatchery and natural components of Klamath River fall Chinook Salmon (Goldwasser et al.
    [Show full text]
  • The Nelson Ranch Located Along the Shasta River Has Two Flow Gaging
    Baseline Assessment of Salmonid Habitat and Aquatic Ecology of the Nelson Ranch, Shasta River, California Water Year 2007 Jeffrey Mount, Peter Moyle, and Michael Deas, Principal Investigators Report prepared by: Carson Jeffres (Project lead), Evan Buckland, Bruce Hammock, Joseph Kiernan, Aaron King, Nickilou Krigbaum, Andrew Nichols, Sarah Null Report prepared for: United States Bureau of Reclamation Klamath Area Office Center for Watershed Sciences University of California, Davis • One Shields Avenue • Davis, CA 95616-8527 Table of Contents 1. EXECUTIVE SUMMARY..................................................................................................................................2 2. INTRODUCTION...............................................................................................................................................6 3. ACKNOWLEDGEMENTS .................................................................................................................................6 4. SITE DESCRIPTION.........................................................................................................................................7 5. HYDROLOGY.....................................................................................................................................................8 5.1. STAGE-DISCHARGE RATING CURVES .......................................................................................................9 5.2. PRECIPITATION........................................................................................................................................11
    [Show full text]
  • Yurok Final Brief
    Case 3:16-cv-06863-WHO Document 107 Filed 03/23/18 Page 1 of 22 JEFFREY H. WOOD, Acting Assistant Attorney General 1 Environment & Natural Resources Division 2 SETH M. BARSKY, Chief S. JAY GOVINDAN, Assistant Chief 3 ROBERT P. WILLIAMS, Sr. Trial Attorney KAITLYN POIRIER, Trial Attorney 4 U.S. Department of Justice 5 Environment & Natural Resources Division Wildlife & Marine Resources Section 6 Ben Franklin Station, P.O. Box 7611 7 Washington, D.C. 20044-7611 Tel: 202-307-6623; Fax: 202-305-0275 8 Email: [email protected] Email: [email protected] 9 10 Attorneys for Federal Defendants 11 UNITED STATES DISTRICT COURT 12 FOR THE NORTHERN DISTRICT OF CALIFORNIA 13 SAN FRANCISCO DIVISION 14 YUROK TRIBE, et al., ) 15 Case No. 3:16-cv-06863-WHO ) 16 Plaintiff, ) ) 17 FEDERAL DEFENDANTS’ RESPONSE v. ) TO DEFENDANT-INTERVENORS’ 18 ) MOTION FOR RELIEF FROM U.S. BUREAU OF RECLAMATION, et al., ) JUDGMENT AND/OR STAY OF 19 ) ENFORCEMENT (ECF No. 101) Defendants, ) 20 ) 21 and ) ) 22 KLAMATH WATER USERS ) ASSOCIATION, et al., ) 23 ) 24 Defendant-Intervenors. ) 25 26 27 28 1 Federal Defendants’ Response to Intervenors’ Motion for Relief 3:16-cv-6863-WHO Case 3:16-cv-06863-WHO Document 107 Filed 03/23/18 Page 2 of 22 1 TABLE OF CONTENTS 2 I. INTRODUCTION 3 3 II. FACTUAL BACKGROUND 5 4 A. Hydrologic Conditions In Water Year 2018 5 5 B. 2013 Biological Opinion Requirements for Suckers 5 6 III. DISCUSSION 7 7 A. Given Hydrologic Conditions, Guidance Measures 1 8 and 4 Cannot Both Be Implemented As They Were Designed Without Impermissibly Interfering With 9 Conditions Necessary to Protect Endangered Suckers 7 10 1.
    [Show full text]
  • SHASTA REPORT Final Cannon
    Removal of Dwinnell Dam and Alternatives Draft Concepts Report Prepared by Thomas Cannon Prepared for Karuk Tribe December 2011 1 Abstract Passage of salmon and steelhead to the upper Shasta River was blocked by the construction of Dwinnell Dam in 1928. Approximately 22 percent of the salmon and steelhead spawning and rearing habitat of the Shasta River was lost with the construction of the dam and reservoir. Spring run Chinook salmon that depended more on the upper watershed became extinct, while fall run Chinook salmon, coho salmon, and steelhead suffered severe declines in numbers from the loss of the upper watershed and long-term degradation of lower watershed habitats. Passage to the upper river could be restored by installing a fish ladder on the dam, trapping and hauling fish around the reservoir, dam removal, or providing a bypass route around the reservoir. These four alternatives are evaluated in this report. All four alternatives would require substantial habitat restoration including development of water supplies and improvements to spawning and rearing habitat and fish passage both above and below the Dam to achieve all the potential benefits. There are approximately 12 miles of accessible habitats to salmon and steelhead above Dwinnell Dam in the mainstem Shasta River, plus a similar amount in tributary creeks. There are approximately 16 miles of accessible habitat in Parks Creek. Dam removal would allow access to all of these habitats, including 4 miles in the reservoir reach, plus improve access and habitat to the six miles of Shasta River below the Dam. Ladder and Trap-and-Haul alternatives would allow access to only 8 additional miles of the upper Shasta River.
    [Show full text]
  • Shasta River Chinook and Coho Salmon Observations in 2013 Siskiyou County, CA
    California Department of Fish and Wildlife Final Report Klamath River Project August 14, 2014 Shasta River Chinook and Coho Salmon Observations in 2013 Siskiyou County, CA Prepared by: Diana Chesney and Morgan Knechtle California Department of Fish and Wildlife Klamath River Project 1625 S. Main Street Yreka, CA 96097 (530) 841-1176 1 California Department of Fish and Wildlife Final Report Klamath River Project August 14, 2014 Shasta River Fish Counting Facility, Chinook and Coho Salmon Observations in 2013 Siskiyou County, CA ABSTRACT A total of 8,021 fall run Chinook salmon (Chinook, Oncorhynchus tshawytscha) were estimated to have entered the Shasta River during the 2013 spawning season. An underwater video camera was operated in the flume of the Shasta River Fish Counting Facility (SRFCF) twenty four hours a day, seven days a week, from August 28, 2013 until December 9, 2013, when the weir sustained structural damage from ice build-up and was removed. The first Chinook was observed on September 9, 2013 and the last Chinook on December 3, 2013. KRP staff also processed a total of 512 Chinook carcasses during spawning ground surveys (of which 469 were used in fork length histograms), 65 Chinook carcasses as wash backs against the SRFCF weir (a systematic 1:10 sample), and 45 live Chinook in a trap immediately upstream of the video flume during the season. Chinook carcasses sampled in the spawning ground surveys ranged in fork length (FL) from 43 cm to 100 cm and grilse were determined to be < 59 cm in FL. Males ranged in FL from 43 to100 cm.
    [Show full text]
  • Schedule of Proposed Action (SOPA) 10/01/2020 to 12/31/2020 Klamath National Forest This Report Contains the Best Available Information at the Time of Publication
    Schedule of Proposed Action (SOPA) 10/01/2020 to 12/31/2020 Klamath National Forest This report contains the best available information at the time of publication. Questions may be directed to the Project Contact. Expected Project Name Project Purpose Planning Status Decision Implementation Project Contact Projects Occurring Nationwide Locatable Mining Rule - 36 CFR - Regulations, Directives, In Progress: Expected:12/2021 12/2021 Nancy Rusho 228, subpart A. Orders DEIS NOA in Federal Register 202-731-9196 EIS 09/13/2018 [email protected] Est. FEIS NOA in Federal Register 11/2021 Description: The U.S. Department of Agriculture proposes revisions to its regulations at 36 CFR 228, Subpart A governing locatable minerals operations on National Forest System lands.A draft EIS & proposed rule should be available for review/comment in late 2020 Web Link: http://www.fs.usda.gov/project/?project=57214 Location: UNIT - All Districts-level Units. STATE - All States. COUNTY - All Counties. LEGAL - Not Applicable. These regulations apply to all NFS lands open to mineral entry under the US mining laws. More Information is available at: https://www.fs.usda.gov/science-technology/geology/minerals/locatable-minerals/current-revisions. R5 - Pacific Southwest Region, Occurring in more than one Forest (excluding Regionwide) Six Rivers Hazardous Fuels and - Wildlife, Fish, Rare plants Developing Proposal Expected:06/2021 09/2021 Carol Spinos Fire Management Project - Vegetation management Est. Scoping Start 11/2020 707-441-3561 EA (other than forest products) [email protected] *UPDATED* - Fuels management Description: The Fuels & Fire Project would authorize a set of manual and mechanical land management tools to prepare our landscapes for up to 8,000 acres of prescribed burning every year.
    [Show full text]
  • Klamath River Fall Chinook Salmon Age-Specific Escapement, River Harvest, and Run Size Estimates, 2018 Run
    Klamath River Fall Chinook Salmon Age-Specific Escapement, River Harvest, and Run Size Estimates, 2018 Run Klamath River Technical Team 14 February 2019 Summary The number of Klamath River fall Chinook Salmon returning to the Klamath River Basin (Basin) in 2018 was estimated to be: Run Size Age Number Proportion 2 11,114 0.11 3 86,717 0.84 4 5,567 0.05 5 9 0.00 Total 103,407 1.00 Preseason forecasts of the number of fall Chinook Salmon adults returning to the Basin and the corresponding post-season estimates are: Adults Preseason Postseason Sector Forecast Estimate Pre / Post Run Size 91,900 92,300 1.00 Fishery Mortality Tribal Harvest 18,100 14,800 1.22 Recreational Harvest 3,500 4,100 0.85 Drop-off Mortality 1,600 1,300 1.23 23,200 20,200 1.15 Escapement Hatchery Spawners 27,900 18,600 1.50 Natural Area Spawners 40,700 53,600 0.76 68,600 72,200 0.95 Introduction This report describes the data and methods used by the Klamath River Technical Team (KRTT) to estimate age-specific numbers of fall Chinook Salmon returning to the Basin in 2018. The estimates provided in this report are consistent with the Klamath Basin Megatable (CDFW 2019) and with the 2019 forecast of ocean stock abundance (KRTT 2019). Age-specific escapement estimates for 2018 and previous years, coupled with the coded-wire tag (CWT) recovery data from Basin hatchery stocks, allow for a cohort reconstruction of the hatchery and natural components of Klamath River fall Chinook Salmon (Goldwasser et al.
    [Show full text]